Isolation and Identification of Bacterial Strains Colonizing the Surface of Biodegradable Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mesocosms
2.2. Bacterial Strain Identification
2.2.1. Analysis of Film Surface
2.2.2. Bacterial Growth and Strain Isolation
2.2.3. DNA Extraction and Molecular Identification
2.3. MCA Analysis
3. Results
3.1. PBS
3.2. PBSA
3.3. PCL
3.4. PHB
3.5. PLA
3.6. MCA Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Eygen, E.; Feketitsch, J.; Laner, D.; Rechberger, H.; Fellner, J. Comprehensive analysis and quantification of national plastic flows: The case of Austria. Resour. Conserv. Recycl. 2017, 117, 183–194. [Google Scholar] [CrossRef]
- Filho, W.L.; Salvia, A.L.; Bonoli, A.; Saari, U.A.; Voronova, V.; Klõga, M.; Kumbhar, S.S.; Olszewski, K.; De Quevedo, D.M.; Barbir, J. An assessment of attitudes towards plastics and bioplastics in Europe. Sci. Total Environ. 2021, 755, 142732. [Google Scholar] [CrossRef] [PubMed]
- Adane, L.; Muleta, D. Survey on the usage of plastic bags, their disposal and adverse impacts on environment: A case study in Jimma City, Southwestern Ethiopia. J. Toxicol. Environ. Health Sci. 2011, 3, 234–248. [Google Scholar]
- North, E.J.; Halden, R.U. Plastics and environmental health: The road ahead. Rev. Environ. Health 2013, 28, 1–8. [Google Scholar] [CrossRef]
- Thakur, S.; Chaudhary, J.; Sharma, B.; Verma, A.; Tamulevicius, S.; Thakur, V.K. Sustainability of bioplastics: Opportunities and challenges. Curr. Opin. Green Sustain. Chem. 2018, 13, 68–75. [Google Scholar] [CrossRef]
- Palazzo, L.; Coppa, S.; Camedda, A.; Cocca, M.; De Falco, F.; Vianello, A.; Massaro, G.; de Lucia, G.A. A novel approach based on multiple fish species and water column compartments in assessing vertical microlitter distribution and composition. Environ. Pollut. 2021, 272, 116419. [Google Scholar] [CrossRef]
- Santonicola, S.; Volgare, M.; Rossi, F.; Castaldo, R.; Cocca, M.; Colavita, G. Detection of fibrous microplastics and natural in fish species (Engraulis encrasicolus, Mullus barbatus, and Merluccius merliccius) for human consumption from the Tyrrhennian sea. Chemosphere 2024, 363, 142778. [Google Scholar] [CrossRef]
- Abioye, A.A.; Obuekwe, C.; Fasanmi, O.; Oluwadare, O.; Abioye, O.P.; Afolalu, S.A.; Akinlabi, S.A.; Bolu, C.A. Investigation of biodegradation speed and biodegradability of polyethylene and Manihot Esculenta starch blends. J. Ecol. Eng. 2019, 20, 65–72. [Google Scholar] [CrossRef]
- Sharma, B.; Jain, P. Deciphering the advances in bioaugmentation of plastic wastes. J. Clean. Prod. 2020, 275, 123241. [Google Scholar] [CrossRef]
- Yanti, N.A.; Sembiring, L.; Margino, S.; Ahmad, S.W. Bacterial Production of Poly-b-hydroxybutyrate (PHB): Converting Starch into Bioplastics. In Bioplastics for Sustainable Development; Springer: Singapore, 2021; pp. 259–276. ISBN 9789811618239. [Google Scholar]
- Bano, R.; Kuddus, K.; Zaheer, M.R.; Zia, M. Mohammed Microbial enxymatic degradation of biodegradable plastics. Curr. Pharm. Biotechnol. 2017, 18, 429–440. [Google Scholar]
- Gross, R.A.; Kalra, B. Biodegradable polymers for the environment. Science 2002, 297, 803–807. [Google Scholar] [CrossRef]
- Yu, J.; Chen, L.X.L. The greenhouse gas emissions and fossil energy requirement of bioplastics from cradle to gate of a biomass refinery. Environ. Sci. Technol. 2008, 42, 6961–6966. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S. Biodegradable Polymers: Present Opportunities and Challenges in Providing a Microplastic-Free Environment. Macromol. Chem. Phys. 2020, 221, 2000017. [Google Scholar] [CrossRef]
- Viel, T.; Cocca, M.; Manfra, L.; Caramiello, D.; Libralato, G.; Zupo, V.; Costantini, M. Effects of biodegradable-based microplastics in Paracentrotus lividus Lmk embryos: Morphological and gene expression analysis. Environ. Pollut. 2023, 334, 122129. [Google Scholar] [CrossRef] [PubMed]
- Manfra, L.; Marengo, V.; Libralato, G.; Costantini, M.; De Falco, F.; Cocca, M. Biodegradable polymers: A real opportunity to solve marine plastic pollution? J. Hazard. Mater. 2021, 416, 125763. [Google Scholar] [CrossRef]
- Viel, T.; Cocca, M.; Esposito, R.; Amato, A.; Russo, T.; Di Cosmo, A.; Polese, G.; Manfra, L.; Libralato, G.; Zupo, V.; et al. Effect of biodegradable polymers upon grazing activity of the sea urchin Paracentrotus lividus (Lmk) revealed by morphological, histological and molecular analyses. Sci. Total Environ. 2024, 929, 172586. [Google Scholar] [CrossRef] [PubMed]
- Samir, A.; Ashour, F.H.; Hakim, A.A.A.; Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. npj Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Danso, D.; Chow, J.; Streita, W.R. Plastics: Environmental and biotechnological perspectives on microbial degradation. Appl. Environ. Microbiol. 2019, 85, e01095-19. [Google Scholar] [CrossRef]
- Zeenat; Elahi, A.; Bukhari, D.A.; Shamim, S.; Rehman, A. Plastics degradation by microbes: A sustainable approach. J. King Saud Univ.-Sci. 2021, 33, 101538. [Google Scholar] [CrossRef]
- Koh, J.; Bairoliya, S.; Salta, M.; Cho, Z.T.; Fong, J.; Neo, M.L.; Cragg, S.; Cao, B. Sediment-driven plastisphere community assembly on plastic debris in tropical coastal and marine environments. Environ. Int. 2023, 179, 108153. [Google Scholar] [CrossRef]
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.J.; Erni-Cassola, G.; Zadjelovic, V.; Latva, M.; Christie-Oleza, J.A. Marine plastic debris: A new surface for microbial colonization. Environ. Sci. Technol. 2020, 54, 11657–11672. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Wang, D.; Wei, N. Enzyme discovery and engineering for sustainable plastic recycling. Trends Biotechnol. 2022, 40, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, H.; Hou, J. Progress on the effects of microplastics on aquatic crustaceans: A review. Int. J. Mol. Sci. 2023, 24, 5523. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Jung, S.; Yun, H.; Choi, K.; Heo, G.; Jin, H.J.; Park, S.; Kwak, H.W. Biodegradation behavior of polybutylene succinate (PBS) fishing gear in marine sedimentary environments for ghost fishing prevention. Polym. Degrad. Stab. 2023, 216, 110490. [Google Scholar] [CrossRef]
- Lu, B.; Wang, G.X.; Huang, D.; Ren, Z.L.; Wang, X.W.; Wang, P.L.; Zhen, Z.C.; Zhang, W.; Ji, J.H. Comparison of PCL degradation in different aquatic environments: Effects of bacteria and inorganic salts. Polym. Degrad. Stab. 2018, 150, 133–139. [Google Scholar] [CrossRef]
- Jeon, Y.; Jin, H.J.; Kong, Y.; Cha, H.G.; Lee, B.W.; Yu, K.; Yi, B.; Kim, H.T.; Joo, J.C.; Yang, Y.H.; et al. Poly(3-hydroxybutyrate) degradation by Bacillus infantis sp. isolated from soil and identification of phaZ and bdhA expressing PHB depolymerase. J. Microbiol. Biotechnol. 2023, 33, 1076–1083. [Google Scholar] [CrossRef]
- Bubpachat, T.; Sombatsompop, N.; Prapagdee, B. Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polym. Degrad. Stab. 2018, 152, 75–85. [Google Scholar] [CrossRef]
- Wang, S.; Shi, W.; Huang, Z.; Zhou, N.; Xie, Y.; Tang, Y.; Hu, F.; Liu, G.; ZHeng, H. Complete digestion/biodegradation of polystyrene microplastics by greater wax moth (Galleria mellonella) larvae: Direct in vivo evidence, gut microbiota independence, and potential metabolic pathways. J. Hazard. Mater. 2022, 423, 127213. [Google Scholar] [CrossRef]
- Joshi, G.; Goswami, P.; Verma, P.; Prakash, G.; Simon, P.; Vinithkumar, N.V.; Dharani, G. Unraveling the plastic degradation potentials of the plastisphere-associated marine bacterial consortium as a key player for the low-density polyethylene degradation. J. Hazard. Mater. 2022, 425, 128005. [Google Scholar] [CrossRef]
- Jaduan, J.S.; Bansal, S.; Sonthalia, A.; Rai, A.K.; Singh, S.P. Biodegradation of plastics for sustainable environment. Bioresour. Technol. 2022, 347, 126697. [Google Scholar]
- Li, X.; Liu, X.; Zhang, J.; Chen, F.; Khalid, M.; Ye, J.; Romantschuk, M.; Hui, N. Hydrolase and plastic-degrading microbiota explain degradation of polyethylene terephthalate microplastics during high-temperature composting. Bioresour. Technol. 2024, 393, 130108. [Google Scholar] [CrossRef]
- Lv, S.; Li, Y.; Zhao, S.; Shao, Z. Biodegradation of typical plastics: From microbial diversity to metabolic mechanisms. Int. J. Mol. Sci. 2024, 25, 593. [Google Scholar] [CrossRef] [PubMed]
- Ruocco, N.; Bertocci, I.; Munari, M.; Musco, L.; Caramiello, D.; Danovaro, R.; Zupo, V.; Costantini, M. Morphological and molecular responses of the sea urchin Paracentrotus lividus to highly contaminated marine sediments: The case study of Bagnoli-Coroglio brownfield (Mediterranean Sea). Mar. Environ. Res. 2020, 154, 104865. [Google Scholar] [CrossRef]
- Yurkov, V.V.; van Gemerden, H. Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch. Microbiol. 1993, 159, 84–89. [Google Scholar] [CrossRef]
- Liu, Y.; Lim, C.K.; Shen, Z.; Lee, P.K.H.; Nah, T. Effects of pH and light exposure on the survival of bacteria and their ability to biodegrade organic compounds in clouds: Implications for microbial activity in acidic cloud water. Atmos. Chem. Phys. 2023, 23, 1731–1747. [Google Scholar] [CrossRef]
- Grigioni, S.; Boucher-Rodoni, R.; Demarta, A.; Tonolla, M.; Peduzzi, R. Phylogenetic characterisation of bacterial symbionts in the accessory nidamental glands of the sepioid Sepia officinalis (Cephalopoda: Decapoda). Mar. Biol. 1999, 136, 217–222. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, L.T. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Introduction to Python 3: Python Documentation Manual Part 1; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar] [CrossRef]
- Halford, M.P. Available online: https://github.com/MaxHalford/prince (accessed on 30 January 2024).
- Waskom, M. Seaborn: Statistical Data Visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- De Falco, F.; Avolio, R.; Errico, M.E.; Di Pace, E.; Avella, M.; Cocca, M.; Gentile, G. Comparison of biodegradable polyesters degradation behavior in sand. J. Hazard. Mater. 2021, 416, 126231. [Google Scholar] [CrossRef] [PubMed]
- Frontier, S. Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modd’le du bâton brisé. J. Exp. Mar. Biol. Ecol. 1976, 25, 67–75. [Google Scholar] [CrossRef]
- Carpenter, E.J.; Anderson, S.J.; Harvey, J.R.; Miklas, H.P.; Peck, B.B. Polystyrene Spherules in coastal Waters. Science 1972, 178, 750–753. [Google Scholar] [CrossRef]
- Carpenter, E.J.; Smith, K.L.J. Plastics on the Sargasso Sea Surface. Science 1972, 175, 1240–1241. [Google Scholar] [CrossRef] [PubMed]
- Gregory, M.R. Environmental implications of plastic debris in marine settings- entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2013–2025. [Google Scholar] [CrossRef]
- Roager, L.; Sonnenschein, E.C. Bacterial Candidates for Colonization and Degradation of Marine Plastic Debris. Environ. Sci. Technol. 2019, 53, 11636–11643. [Google Scholar] [CrossRef]
- He, M.; Hsu, Y.I.; Uyama, H. Superior sequence-controlled poly(L-lactide)-based bioplastic with tunable seawater biodegradation. J. Hazard. Mater. 2024, 474, 134819. [Google Scholar] [CrossRef]
- Dang, H.; Li, T.; Chen, M.; Huang, G. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl. Environ. Microbiol. 2008, 74, 52–60. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Natarajan, K.; Hemambika, B.; Ramesh, N.; Sumathi, C.S.; Kottaimuthu, R.; Rajesh Kannan, V. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett. Appl. Microbiol. 2010, 51, 205–211. [Google Scholar] [CrossRef]
- Danko, A.S.; Luo, M.; Bagwell, C.E.; Brigmon, R.L.; Freedman, D.L. Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Appl. Environ. Microbiol. 2004, 70, 6092–6097. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Pal, S.; Ray, S. Study of microbes having potentiality for biodegradation of plastics. Environ. Sci. Pollut. Res. Int. 2013, 20, 4339–4355. [Google Scholar] [CrossRef]
- Kumar Sen, S.; Raut, S. Microbial degradation of low density polyethylene (LDPE): A review. J. Environ. Chem. Eng. 2015, 3, 462–473. [Google Scholar] [CrossRef]
- Mohan, A.J.; Sekhar, V.C.; Bhaskar, T.; Nampoothiri, K.M. Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresour. Technol. 2016, 213, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef]
- Shimpi, N.; Borane, M.; Mishra, S.; Kadam, M. Biodegradation of polystyrene (PS)-poly(lactic acid) (PLA) nanocomposites using Pseudomonas aeruginosa. Macromol. Res. 2012, 20, 181–187. [Google Scholar] [CrossRef]
- Suzuki, M.; Tachibana, Y.; Oba, K.; Takizawa, R.; Kasuya, K. ichi Microbial degradation of poly(ε-caprolactone) in a coastal environment. Polym. Degrad. Stab. 2018, 149, 1–8. [Google Scholar] [CrossRef]
- Oberbeckmann, S.; Loeder, M.G.J.; Gerdts, G.; Osborn, M.A. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol. Ecol. 2014, 90, 478–492. [Google Scholar] [CrossRef]
- Oberbeckmann, S.; Osborn, A.M.; Duhaime, M.B. Microbes on a bottle: Substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS ONE 2016, 11, e0159289. [Google Scholar] [CrossRef] [PubMed]
- Oberbeckmann, S.; Kreikemeyer, B.; Labrenz, M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front. Microbiol. 2018, 8, 2709. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.A.; Clemente, T.M.; Viviani, D.A.; Fong, A.A.; Thomas, K.A.; Kemp, P.; Karl, D.M.; White, A.E.; DeLong, E.F. Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre. mSystems 2016, 1, e00024-16. [Google Scholar] [CrossRef]
- Frère, L.; Maignien, L.; Chalopin, M.; Huvet, A.; Rinnert, E.; Morrison, H.; Kerninon, S.; Cassone, A.L.; Lambert, C.; Reveillaud, J.; et al. Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environ. Pollut. 2018, 242, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Syranidou, E.; Karkanorachaki, K.; Amorotti, F.; Franchini, M.; Repouskou, E.; Kaliva, M.; Vamvakaki, M.; Kolvenbach, B.; Fava, F.; Corvini, P.F.X.; et al. Biodegradation of weathered polystyrene films in seawater microcosms. Sci. Rep. 2017, 7, 17991. [Google Scholar] [CrossRef] [PubMed]
- Pollet, T.; Berdjeb, L.; Garnier, C.; Durrieu, G.; Le Poupon, C.; Misson, B.; Briand, J.F. Prokaryotic community successions and interactions in marine biofilms: The key role of Flavobacteriia. FEMS Microbiol. Ecol. 2018, 94, fiy083. [Google Scholar] [CrossRef]
- Butbunchu, N.; Pathom-Aree, W. Actinobacteria as Promising Candidate for Polylactic Acid Type Bioplastic Degradation. Front. Microbiol. 2019, 10, 2834. [Google Scholar] [CrossRef]
- Prasad, R.; Kumar, V.; Singh, J.; Prakash, C.; Editors, U. Recent Developments in Microbial Technologies; Springer: Singapore, 2020; ISBN 978-981-15-4439-2. [Google Scholar]
- Dussud, C.; Meistertzheim, A.L.; Conan, P.; Pujo-Pay, M.; George, M.; Fabre, P.; Coudane, J.; Higgs, P.; Elineau, A.; Pedrotti, M.L.; et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ. Pollut. 2018, 236, 807–816. [Google Scholar] [CrossRef]
- Didier, D.; Anne, M.; Alexandra, T.H. Plastics in the North Atlantic garbage patch: A boat-microbe for hitchhikers and plastic degraders. Sci. Total Environ. 2017, 599–600, 1222–1232. [Google Scholar] [CrossRef]
- Kimura, Y.; Fukuda, Y.; Otsu, R.; Yu, J.; Mino, S.; Misawa, S.; Maruyama, S.; Ikeda, Y.; Miyamachi, R.; Noguchi, H.; et al. A lesson from polybutylene succinate plastisphere to the discovery of novel plastic degrading enzyme genes in marine vibrios. Environ. Microbiol. 2023, 25, 2834–2850. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Cho, J.Y.; Cho, D.H.; Jung, H.J.; Kim, B.C.; Bhatia, S.K.; Park, S.H.; Park, K.; Yang, Y.H. Acceleration of Polybutylene Succinate Biodegradation by Terribacillus sp. JY49 isolated from a marine environment. Polymers 2022, 14, 3978. [Google Scholar] [CrossRef]
- Suzuki, M.; Ishii, S.; Gonda, K.; Kashima, H.; Suzuki, S.; Uematsu, K.; Arai, T.; Tachibana, Y.; Iwata, T.; Kasuya, K. Marine Biodegradation Mechanism of Biodegradable Plastics Revealed by Plastisphere Analysis. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Soulenthone, P.; Suzuki, M.; Tachibana, Y.; Furukori, M.; Saito, T.; Kawamura, R.; Bankole, P.O.; Kasuya, K. ichi Halopseudomonas sp. MFKK-1: A marine-derived bacterium capable of degrading poly(butylene succinate-co-adipate), poly(ε-caprolactone), and poly(butylene adipate-co-terephthalate) in marine ecosystems. Polym. Degrad. Stab. 2025, 232, 111161. [Google Scholar] [CrossRef]
- Zampolli, J.; Vezzini, D.; Brocca, S.; Di Gennaro, P. Insights into the biodegradation of polycaprolactone through genomic analysis of two plastic-degrading Rhodococcus bacteria. Front. Microbiol. 2023, 14, 1284956. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.; Hasan, F.; Shah, A.A. Degradation of poly(ε-caprolactone) (PCL) by a newly isolated Brevundimonas sp. strain MRL-AN1 from soil. FEMS Microbiol. Lett. 2015, 362, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Yu, T.; Zheng, Y.; Ma, H.; Shan, J.; Yi, X.; Liu, Y.; Zhan, J.; Wang, W.; Zhou, H. Isolation, characteristics, and poly(butylene adipate-co-terephthalate) (PBAT) degradation mechanism of a marine bacteria Roseibium aggregatum ZY-1. Mar. Pollut. Bull. 2024, 201, 116261. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Sun, C. A marine bacterial community that degrades poly(ethylene terephthalate) and polyethylene. bioRxiv 2020. [Google Scholar] [CrossRef]
- Yao, Z.; Seong, H.J.; Jang, Y.S. Degradation of low density polyethylene by Bacillus species. Appl. Biol. Chem. 2022, 65, 84. [Google Scholar] [CrossRef]
- Yang, H.S.; Yoon, J.S.; Kim, M.N. Dependence of biodegradability of plastics in compost on the shape of specimens. Polym. Degrad. Stab. 2005, 87, 131–135. [Google Scholar] [CrossRef]
- Chinaglia, S.; Tosin, M.; Degli-Innocenti, F. Biodegradation rate of biodegradable plastics at molecular level. Polym. Degrad. Stab. 2018, 147, 237–244. [Google Scholar] [CrossRef]
- Du, Y.; Liu, X.; Dong, X.; Yin, Z. A review on marine plastisphere: Biodiversity, formation, and role in degradation. Comput. Struct. Biotechnol. J. 2022, 20, 975–988. [Google Scholar] [CrossRef]
- Al Hosni, A.S.; Pittman, J.K.; Robson, G.D. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Magagement 2019, 97, 105–114. [Google Scholar] [CrossRef]
- Rafiq, M.; Hassan, N.; Rehman, M.; Hayat, M.; Nadeem, G.; Hassan, F.; Iqbal, N.; Ali, H.; Zada, S.; Kang, Y.; et al. Challenges and approaches of culturing the unculturable archaea. Biology 2023, 12, 1499. [Google Scholar] [CrossRef]
- Silva, R.R.A.; Marques, C.S.; Arruda, T.R.; Teixeira, S.C.; de Oliveira, T.V. Biodegradation of polymers: Stages, measurement, standards and prospects. Macromol 2023, 3, 371–399. [Google Scholar] [CrossRef]
- Cao, Z.; Yan, W.; Ding, M.; Yuan, Y. Construction of microbial consortia for microbial degradation of complex compounds. Front. Bioeng. Biotechnol. 2022, 10, 1051233. [Google Scholar] [CrossRef]
- Su, T.; Zhang, T.; Liu, P.; Bian, J.; Zheng, Y.; Yuan, Y.; Li, Q.; Liang, Q.; Qi, Q. Biodegradation of polyurethane by the microbial consortia enriched from landfill. Appl. Microbiol. Biotechnol. 2023, 107, 1983–1995. [Google Scholar] [CrossRef] [PubMed]
- Martín-González, D.; de la Fuente Tagarro, C.; De Lucas, A.; Bordel, S.; Santos-Beneit, F. Genetic modifications in bacteria for the degradation of synthetic polymers: A review. Int. J. Mol. Sci. 2024, 25, 5536. [Google Scholar] [CrossRef] [PubMed]
Species | Month (Condition) | Accession | Identity (%) |
---|---|---|---|
Calothrix sp. | 10 (G) | KM019977.1 | 98.7 |
Halomonas sp. | 12 (S) | MT653353.1 | 88.6 |
Labrenzia sp. | 4 (U) | KY770164.1 | 95.8 |
Marinobacter jannaschii | 12 (G, U) | NR_113757.1 | 97.8 |
Marinobacter sp. | 10 (G) | MF382075.1 | 99.6 |
Marinobacterium rhizophilium | 3 (G) | GQ245896.1 | 99.4 |
Marinobacterium sp. | 12 (U) | PQ278257.1 | 97.2 |
Microbacterium sp. | 12 (S) | KX496339.1 | 97.9 |
ND | 4 (G) | ||
Paenihalocynthiibacter stylae | 10 (U), 12 (S, G) | NR_181360.1 | 99.2 |
Pontibacterium sinense | 10 (S, U) | MZ222395.1 | 99.6 |
Pseudoalteromonas citrea | 10 (S) | KX453254.1 | 97.9 |
Pseudoalteromonas sp. | 3 (U) | OP209750.1 | 99.4 |
Pseudomonas citrea | 10 (G) | KX453254.1 | 98.1 |
Pseudonomas sp. | 3 (G) | MT180478.1 | 90 |
Rossellomorea aquimaris | 3 (G) | MH261129.1 | 99.4 |
Ruegeria sp. | 3 (U), 12 (S, U) | KY770077.1 | 100 |
Salinicola sp. | 4 (U) | KC834569.1 | 99.8 |
Vibrio caribbeanicus | 12 (S, G) | KP329557.1 | 100 |
Vibrio sp. | 10 (G) | FJ357697.1 | 93.7 |
Vibrio variabilis | 3 (S), 4 (S) | MT269597.1 | 97.9 |
Species | Month (Condition) | Accession | Identity (%) |
---|---|---|---|
Alkalihalobacillus sp. | 3 (S) | KP297330.1 | 98.6 |
Alteromonas confluentis | 12 (G) | OP583651.1 | 99.44 |
Bacillus sp. | 12 (G) | KF966199.1 | 78.1 |
Cyanobium sp. | 10 (S) | KU951691.1 | 95.2 |
Halomonas sp. | 10 (S) | EU868853.1 | 99.2 |
Labrenzia sp. | 3 (U) | MG025898.1 | 98.2 |
Leisingera aquaemixtae | 12 (U) | MH283824.1 | 97.4 |
Marinobacter sp. | 3 (U) | LT600659.1 | 99.2 |
Marinobacterium sp. | 3 (G) | PQ278257.1 | 99.4 |
Marinovum sp. | 3 (U) | MT673143.1 | 97.1 |
Oceanicola sp. | 3 (G) | CP040932.1 | 97.4 |
Paenihalocynthiibacter styleae | 10 (G), 12 (S, U) | NR_181360.1 | 99.2 |
Pseudoalteomonas citrea | 10 (U) | KX453254.1 | 98.6 |
Pseudoalteromonas sp. | 10 (G) | PQ670272.1 | 98.5 |
Pseudomonas sp. | 3 (G, U) | JQ723717.1 | 99.8 |
Psychrobacter sp. | 10 (U) | EF190337.1 | 95.1 |
Rathayibacter sp. | 12 (S) | PQ596301.1 | 98.8 |
Roseibium aggregatum | 3 (U) | OP355453.1 | 98.2 |
Ruegeria sp. | 10 (S) | KY770077.1 | 99.8 |
Tenacibaculum sp. | 12 (S, G) | KU560487.1 | 100 |
Tritonnibacter scottomollicae | 10 (S) | NR_042675.1 | 99.6 |
Vibrio alginolyticus | 4 (S) | MN945277.1 | 99.4 |
Vibrio sp. | 3 (G), 4 (G) | OQ553684.1 | 98.6 |
Species | Sampling Month | Accession | Identity (%) |
---|---|---|---|
Alkalihalobacillus algicola | 3 (U) | OR262827.1 | 99.3 |
Alkalihalobacillus hemicentroti | 10 (G) | MF197940.1 | 84.2 |
Alteromonas sp. | 12 (S, G) | KR269635.1 | 98.3 |
Bacillus sp. | 4 (G), 12 (U) | KC815809.1 | 96.6 |
Glaciecola sp. | 4 (U) | JX310209.1 | 95.4 |
Halomonas sp. | 3 (G) | PP446495.1 | 86.6 |
Halopseudomonas gallaeciensis | 4 (U) | OR225156.1 | 94.4 |
Halopseudomonas sp. | 3 (U) | OQ780586.1 | 93.2 |
Kocuria rosea | 3 (S) | OP268600.0 | 94.4 |
Magnetococcus sp. | 12 (U) | ON340531.1 | 88.2 |
Marinobacter algicola | 3 (S) | LT600680.1 | 98 |
Marinobacter sediminum | 4 (U) | NR_029028.1 | 99 |
Marinobacter similis | 4 (U) | NR_178677.1 | 99 |
Marinobacter sp. | 3 (G) | AP028070.1 | 96.6 |
Paenihalocynthiibacter styelae | 10 (U) | NR_181360.1 | 99.4 |
Paraglaciecola sp. | 4 (S, U) | OQ119896.1 | 95.7 |
Photobacterium sp. | 12 (G) | JX134425.1 | 99.5 |
Pseudoalteromoas sp. | 4 (U), 3 (U) | FJ169986.1 | 90.4 |
Pseudomonas sp. | 3 (S, G, U), 4 (G, U) | EU249981.1 | 100 |
Roseovarius sp. | 12 (G) | MF948949.1 | 95.1 |
Rossellomorea vietnamensis | 4 (G) | PQ629588.1 | 89.2 |
Ruegeria sp. | 4 (G), 10 (S) | KY770246.1 | 100 |
Sulfitobacter sp. | 3 (S) | AJ534212.1 | 91.8 |
Tenacibaculum xiamenense | 12 (S) | NR_109729.1 | 97.2 |
Thalassospira permensis | 12 (U) | KX027355.1 | 96.8 |
Tritonnibacter scottomollicae | 4 (G) | NR_042675.1 | 99.4 |
Species | Month (Condition) | Accession | Identity (%) |
---|---|---|---|
Enterobacter sp. | 10 (U) | OK035565.1 | 94.6 |
Halomonas sp. | 3 (S) | AB305244.1 | 97.7 |
Labrenzia sp. | 12 (S) | MG025898.1 | 100 |
Marinobacter algicola | 3 (U), 10 (S, G) | LT600552.1 | 99.1 |
Marinobacter sp. | 3 (S, U), 12 (S) | PQ278257.1 | 97.5 |
Pseudoalterommonas prydzensis | 3 (G) | KP236351.1 | 94.4 |
Pseudoalteromonas citrea | 10 (G) | KX453254.1 | 95.9 |
Pseudoalteromonas sp. | 10 (U) | KY272049.1 | 99.7 |
Pseudomonas aeruginosa | 10 (U) | CP007224.1 | 94.6 |
Pseudomonas sp. | 3 (G), 4 (U) | AM403176.1 | 94 |
Roseibium aggregatum | 12 (S) | OQ553960.1 | 99.2 |
Thalassospira permensis | 10 (U), 12 (U) | KX027355.1 | 99.4 |
Tritonibacter litoralis | 12 (G) | NR_180841.1 | 99.7 |
Vibrio alginolyticus | 10 (U) | PQ670272.1 | 94.6 |
Vibrio coraliilyticus | 4 (G), 12 (S) | MW828508.1 | 99.7 |
Vibrio sp. | 4 (U) | CP155566.1 | 95.9 |
Species | Month (Condition) | Accession | Identity (%) |
---|---|---|---|
Alteromonas australica | 3 (S, G), 12 (S) | OP342934.1 | 99.4 |
Alteromonas confluentis | 12 (S) | OR262787.1 | 97.2 |
Alteromonas macleodii | 4 (G, U) | KM041224.1 | 96.7 |
Alteromonas sp. | 3 (U), 4 (S) | MG696193.1 | 92.4 |
Bacillus aquimaris | 3 (U) | MZ430464.1 | 96.7 |
Bacillus hwajinpoensis | 12 (S) | KF933706.1 | 98.3 |
Cyanobium sp. | 3 (S) | HM217050.1 | 97.6 |
Glaciecola sp. | 10 (S), 12 (S) | JX310209.1 | 99.3 |
Halomonas sp. | 10 (G, U), 12 (S) | KF201593.1 | 99.7 |
Halomonas taenennsis | 3 (G) | MK063863.1 | 96.8 |
Idiomarina ioihiensis | 3 (S) | KP860601.1 | 99.7 |
Idiomarina ramblicola | 3 (S) | MK063828.1 | 99.7 |
Leisingera caerulea | 10 (G) | MW422659.1 | 97.8 |
Leisingera sp. | 10 (U), 12 (U) | KU554489.1 | 100 |
Marinobacter sp. | 3 (U) | MF401328.1 | 98.6 |
Microbulbifer sp. | 3 (S) | KM362894.1 | 99.1 |
Paraglaciecola sp. | 10 (S) | PQ856828.1 | 98.9 |
Phaebacyer sp. | 10 (G, U) | HM031995.1 | 99.4 |
Pseudoalteromonas citrea | 10 (G, U) | KX453254.1 | 99.3 |
Pseudoalteromonas sp. | 10 (G, U) | PQ670272.1 | 99.1 |
Pseudomonas sp. | 4 (S) | KF786975.1 | 89.1 |
Psychrobacter submarinus | 10 (S) | KF424825.1 | 97.8 |
Ruegeria atlantica | 12 (U) | JX463483.1 | 97.5 |
Sulfitobacter dubius | 12 (U) | MZ292263.1 | 97.4 |
Sutcliffiella horikoshi | 12 (G) | OQ560489.1 | 99.1 |
Tenacibaculum xiamenense | 12 (U) | NR_109729.1 | 95.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, R.; Federico, S.; Amato, A.; Viel, T.; Caramiello, D.; Macina, A.; Miralto, M.; Ambrosino, L.; Chiusano, M.L.; Cocca, M.; et al. Isolation and Identification of Bacterial Strains Colonizing the Surface of Biodegradable Polymers. Microorganisms 2025, 13, 609. https://doi.org/10.3390/microorganisms13030609
Esposito R, Federico S, Amato A, Viel T, Caramiello D, Macina A, Miralto M, Ambrosino L, Chiusano ML, Cocca M, et al. Isolation and Identification of Bacterial Strains Colonizing the Surface of Biodegradable Polymers. Microorganisms. 2025; 13(3):609. https://doi.org/10.3390/microorganisms13030609
Chicago/Turabian StyleEsposito, Roberta, Serena Federico, Amalia Amato, Thomas Viel, Davide Caramiello, Alberto Macina, Marco Miralto, Luca Ambrosino, Maria Luisa Chiusano, Mariacristina Cocca, and et al. 2025. "Isolation and Identification of Bacterial Strains Colonizing the Surface of Biodegradable Polymers" Microorganisms 13, no. 3: 609. https://doi.org/10.3390/microorganisms13030609
APA StyleEsposito, R., Federico, S., Amato, A., Viel, T., Caramiello, D., Macina, A., Miralto, M., Ambrosino, L., Chiusano, M. L., Cocca, M., Manfra, L., Libralato, G., Zupo, V., & Costantini, M. (2025). Isolation and Identification of Bacterial Strains Colonizing the Surface of Biodegradable Polymers. Microorganisms, 13(3), 609. https://doi.org/10.3390/microorganisms13030609