Bacterial Distribution in the Glacier Borehole Meltwater on the Eastern Broknes Peninsula of the Larsemann Hills and Adjacent Lake Water, East Antarctica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sample Collection
2.2. Water Chemistry Measurements
2.3. DNA Extraction and Polymerase Chain Reaction (PCR) Amplification
2.4. Sequencing and Bioinformatics
3. Results
3.1. Environmental Parameters
3.2. Alpha (α) Diversity Indices
3.3. Bacterial Diversity
3.4. Correlation Analysis of Bacterial Communities with Environmental Factors
3.5. Stochastic and Deterministic Assembly Processes
4. Discussion
4.1. Comparative Analyses of Bacterial Communities Between the Lakes and Glacier Boreholes
4.2. Bacterial Distribution Changed with Glacier Borehole Depth
4.3. Assembly Processes for the Samples from the Lakes and Glacier Boreholes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cowan, D.A.; Tow, L.A. Endangered antarctic environments. Annu. Rev. Microbiol. 2004, 58, 649–690. [Google Scholar] [CrossRef]
- Convey, P.; Stevens, M.I. Antarctic biodiversity. Science 2007, 317, 1877–1878. [Google Scholar] [CrossRef]
- Cary, S.C.; McDonald, I.R.; Barrett, J.E.; Cowan, D.A. On the rocks: The microbiology of Antarctic Dry Valley soils. Nat. Rev. Microbiol. 2010, 8, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Makhalanyane, T.P.; Valverde, A.; Birkeland, N.K.; Cary, S.C.; Marla Tuffin, I.; Cowan, D.A. Evidence for successional development in Antarctic hypolithic bacterial communities. ISME J. 2013, 7, 2080–2090. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.W.; Lee, D.S.; Kim, J.H.; Ha, S.Y.; Kim, S.; Choi, H.G. The glacier melting process is an invisible barrier to the development of Antarctic subtidal macroalgal assemblages. Environ. Res. 2023, 233, 116438. [Google Scholar] [CrossRef]
- Pulschen, A.A.; Bendia, A.G.; Fricker, A.D.; Pellizari, V.H.; Galante, D.; Rodrigues, F. Isolation of uncultured bacteria from Antarctica using long incubation periods and low nutritional media. Front. Microbiol. 2017, 8, 1346. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, R.C.; Feyzioglu, A.M.; Altinok, I. Prokaryotic community and diversity in coastal surface waters along the Western Antarctic Peninsula. Polar Sci. 2022, 31, 100764. [Google Scholar] [CrossRef]
- Obbels, D.; Verleyen, E.; Mano, M.J.; Namsaraev, Z.; Sweetlove, M.; Tytgat, B.; Vyverman, W. Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sør Rondane Mountains, Dronning Maud Land, East Antarctica. FEMS Microbiol. Ecol. 2016, 92, fiw041. [Google Scholar] [CrossRef]
- Elster, J.; Delmas, R.J.; Petit, J.R.; Řeháková, K. Composition of microbial communities in aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes). Biogeosci. Discuss. 2007, 4, 1779–1813. [Google Scholar]
- Laybourn-Parry, J.; Tranter, M.; Hodson, A.J. The Ecology of Snow and Ice Environments; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Chen, Y.; Liu, K.; Liu, Y.; Vick-Majors, T.J.; Wang, F.; Ji, M. Temporal variation of bacterial community and nutrients in Tibetan glacier snowpack. Cryosphere 2022, 16, 1265–1280. [Google Scholar] [CrossRef]
- Boetius, A.; Anesio, A.M.; Deming, J.W.; Mikucki, J.A.; Rapp, J.Z. Microbial ecology of the cryosphere: Sea ice and glacial habitats. Nat. Rev. Microbiol. 2015, 13, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Maccario, L.; Sanguino, L.; Vogel, T.M.; Larose, C. Snow and ice ecosystems: Not so extreme. Res. Microbiol. 2015, 166, 782–795. [Google Scholar] [CrossRef]
- Liu, J.W.; Meng, Z.; Liu, X.Y.; Zhang, X.H. Microbial assembly, interaction, functioning, activity and diversification: A review derived from community compositional data. Mar. Life Sci. Technol. 2019, 1, 112–128. [Google Scholar] [CrossRef]
- Laybourn-Parry, J.; Wadham, J.L. Antarctic Lakes; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Kakareka, S.; Kukharchyk, T.; Kurman, P. Major and trace elements content in freshwater lakes of Vecherny Oasis, Enderby Land, East Antarctica. Environ. Pollut. 2019, 255, 113126. [Google Scholar] [CrossRef]
- Achberger, A.M.; Christner, B.C.; Michaud, A.B.; Priscu, J.C.; Skidmore, M.L.; Vick-Majors, T.J.; WISSARD Science Team. Microbial community structure of subglacial lake Whillans, West Antarctica. Front. Microbiol. 2016, 7, 1457. [Google Scholar] [CrossRef] [PubMed]
- Lopatina, A.; Medvedeva, S.; Shmakov, S.; Logacheva, M.D.; Krylenkov, V.; Severinov, K. Metagenomic analysis of bacterial communities of Antarctic surface snow. Front. Microbiol. 2016, 7, 398. [Google Scholar] [CrossRef] [PubMed]
- Pessi, I.S.; Lara, Y.; Durieu, B.; Maalouf, P.C.; Verleyen, E.; Wilmotte, A. Community structure and distribution of benthic cyanobacteria in Antarctic lacustrine microbial mats. FEMS Microbiol. Ecol. 2018, 94, fiy042. [Google Scholar] [CrossRef]
- Sommers, P.; Darcy, J.L.; Gendron, E.M.; Stanish, L.F.; Bagshaw, E.A.; Porazinska, D.L.; Schmidt, S.K. Diversity patterns of microbial eukaryotes mirror those of bacteria in Antarctic cryoconite holes. FEMS Microbiol. Ecol. 2018, 94, fix167. [Google Scholar] [CrossRef]
- Campen, R.; Kowalski, J.; Lyons, W.B.; Tulaczyk, S.; Dachwald, B.; Pettit, E.; Mikucki, J.A. Microbial diversity of an Antarctic subglacial community and high-resolution replicate sampling inform hydrological connectivity in a polar desert. Environ. Microbiol. 2019, 21, 2290–2306. [Google Scholar] [CrossRef]
- Weisleitner, K.; Perras, A.; Moissl-Eichinger, C.; Andersen, D.T.; Sattler, B. Source environments of the microbiome in perennially ice-covered Lake Untersee, Antarctica. Front. Microbiol. 2019, 10, 1019. [Google Scholar] [CrossRef]
- Alekseev, I.; Zverev, A.; Abakumov, E. Microbial communities in permafrost soils of Larsemann Hills, eastern Antarctica: Environmental controls and effect of human impact. Microorganisms 2020, 8, 1202. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, A.; Conte, A.; Papale, M.; Rizzo, C.; Azzaro, M.; Guglielmin, M. Prokaryotic diversity and metabolically active communities in brines from two perennially ice-covered Antarctic lakes. Astrobiology 2021, 21, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Papale, M.; Rizzo, C.; Caruso, G.; La Ferla, R.; Maimone, G.; Lo Giudice, A.; Guglielmin, M. First insights into the microbiology of three Antarctic briny systems of the Northern Victoria Land. Diversity 2021, 13, 323. [Google Scholar] [CrossRef]
- Saxton, M.A.; Samarkin, V.A.; Madigan, M.T.; Bowles, M.W.; Sattley, W.M.; Schutte, C.A.; Joye, S.B. Sulfate reduction and methanogenesis in the hypersaline deep waters and sediments of a perennially ice-covered lake. Limnol. Oceanogr. 2021, 66, 1804–1818. [Google Scholar] [CrossRef]
- Davis, C.L.; Venturelli, R.A.; Michaud, A.B.; Hawkings, J.R.; Achberger, A.M.; Vick-Majors, T.J.; Christner, B.C. Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica. ISME Commun. 2023, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Doytchinov, V.V.; Dimov, S.G. Microbial community composition of the Antarctic ecosystems: Review of the bacteria, fungi, and archaea identified through an NGS-based metagenomics approach. Life 2022, 12, 916. [Google Scholar] [CrossRef]
- Duan, J.; Cloete, R.; Loock, J.C.; Lanzirotti, A.; Newville, M.; Martínez-García, A.; Sigman, D.M.; Lam, P.J.; Roychoudhury, A.N.; Myneni, S.C.B. Biogenic-to-lithogenic handoff of particulate Zn affects the Zn cycle in the Southern Ocean. Science 2024, 384, 1235–1240. [Google Scholar] [CrossRef]
- Liu, J.W.; Li, C.J.; Du, Z.H.; Shi, G.T.; Ding, M.H.; Sun, B.; Xiao, C.D. Migration and role of zinc in biogeochemical cycles in the Antarctic Ice Sheet and the Southern Ocean. Adv. Polar Sci. 2024, 35, 157–177. [Google Scholar]
- Nemergut, D.R.; Schmidt, S.K.; Fukami, T.; O’Neill, S.P.; Bilinski, T.M.; Stanish, L.F.; Ferrenberg, S. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 2013, 77, 342–356. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Ning, D.L. Stochastic community assembly: Does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 2017, 81, 10-1128. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Zhang, W.L.; Wang, C.; Wang, P.F.; Niu, L.H.; Wu, H.N. Homogeneous selection dominates the microbial community assembly in the sediment of the Three Gorges Reservoir. Sci. Total Environ. 2019, 690, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Vimercati, L.; Bueno de Mesquita, C.P.; Johnson, B.W.; Mineart, D.; DeForce, E.; Vimercati Molano, Y.; Schmidt, S.K. Dynamic trophic shifts in bacterial and eukaryotic communities during the first 30 years of microbial succession following retreat of an Antarctic glacier. FEMS Microbiol. Ecol. 2022, 98, fiac122. [Google Scholar] [CrossRef]
- Li, A.Z.; Han, X.B.; Zhang, M.X.; Zhou, Y.; Chen, M.; Yao, Q.; Zhu, H.H. Culture-dependent and-independent analyses reveal the diversity, structure, and assembly mechanism of benthic bacterial community in the Ross Sea, Antarctica. Front. Microbiol. 2019, 10, 2523. [Google Scholar] [CrossRef]
- Gyeong, H.; Hyun, C.U.; Kim, S.C.; Tripathi, B.M.; Yun, J.; Kim, J.; Kim, M. Contrasting early successional dynamics of bacterial and fungal communities in recently deglaciated soils of the maritime Antarctic. Mol. Ecol. 2021, 30, 4231–4244. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, D.A.; Verleyen, E.; Sabbe, K.; Squier, A.H.; Keely, B.J.; Leng, M.J.; Vyverman, W. Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multi-proxy evidence from a lake sediment core. Quat. Res. 2005, 64, 83–99. [Google Scholar] [CrossRef]
- Gillieson, D. An Atlas of the Lakes of the Larsemann Hills, Princess Elizabeth Land, Antarctica; Antarctic Division; Department of the Arts, Sport, the Environment, Tourism and Territories: Canberra, Australia, 1990; Volume 74. [Google Scholar]
- Bhardwaj, L.K.; Jindal, T. Persistent organic pollutants in lakes of Grovnes Peninsula at Larsemann Hill area, East Antarctica. Earth Syst. Environ. 2020, 4, 349–358. [Google Scholar] [CrossRef]
- Hodgson, D.A.; Noon, P.E.; Vyverman, W.; Bryant, C.L.; Gore, D.B.; Appleby, P.; Wood, P.B. Were the Larsemann Hills ice-free through the last glacial maximum? Antarct. Sci. 2001, 13, 440–454. [Google Scholar] [CrossRef]
- Gupta, P. First report of diversity of cyanobacteria of Broknes Peninsula of Larsemann Hills, East Antarctica. Cryptogam. Algol. 2021, 42, 241–251. [Google Scholar] [CrossRef]
- Sun, Y.H.; Li, B.; Fan, X.P.; Li, Y.S.; Li, G.P.; Yu, H.B.; Talalay, P.G. Brief communication: New sonde to unravel the mystery of polar subglacial lakes. Cryosphere 2023, 17, 1089–1095. [Google Scholar] [CrossRef]
- Wang, W.; Geilert, S.; Wei, H.Z.; Jiang, S.Y. Competition of equilibrium and kinetic silicon isotope fractionation during silica precipitation from acidic to alkaline pH solutions in geothermal systems. Geochim. Cosmochim. Acta 2021, 306, 44–62. [Google Scholar] [CrossRef]
- Li, R. Uranium enrichment associated with geothermal alteration: An example from Rehai, Tengchong volcanic area of China. Geol. J. 2022, 57, 4139–4151. [Google Scholar] [CrossRef]
- Mori, H.; Maruyama, F.; Kato, H.; Toyoda, A.; Dozono, A.; Ohtsubo, Y.; Nagata, Y.; Fujiyama, A.; Tsuda, M.; Kurokawa, K. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 2013, 21, 217–227. [Google Scholar] [CrossRef]
- Cui, H.P.; Su, X.; Chen, F.; Holland, M.; Yang, S.X.; Liang, J.Q.; Hou, W.G. Microbial diversity of two cold seep systems in gas hydrate-bearing sediments in the South China Sea. Mar. Environ. Res. 2019, 144, 230–239. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Knight, R. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Weber, C.F. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Stegen, J.C.; Lin, X.; Fredrickson, J.K.; Chen, X.; Kennedy, D.W.; Murray, C.J.; Konopka, A. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013, 7, 2069–2079. [Google Scholar] [CrossRef]
- Nash, M.V.; Anesio, A.M.; Barker, G.; Tranter, M.; Varliero, G.; Eloe-Fadrosh, E.A.; Sánchez-Baracaldo, P. Metagenomic insights into diazotrophic communities across Arctic glacier forefields. FEMS Microbiol. Ecol. 2018, 94, fiy114. [Google Scholar] [CrossRef]
- Jensen, L.Z.; Glasius, M.; Gryning, S.E.; Massling, A.; Finster, K.; Šantl-Temkiv, T. Seasonal variation of the atmospheric bacterial community in the Greenlandic High Arctic is influenced by weather events and local and distant sources. Front. Microbiol. 2022, 13, 909980. [Google Scholar] [CrossRef]
- Algora, C.; Vasileiadis, S.; Wasmund, K.; Trevisan, M.; Krüger, M.; Puglisi, E.; Adrian, L. Manganese and iron as structuring parameters of microbial communities in Arctic marine sediments from the Baffin Bay. FEMS Microbiol. Ecol. 2015, 91, fiv056. [Google Scholar] [CrossRef]
- Pérez-Pantoja, D.; Donoso, R.; Agulló, L.; Córdova, M.; Seeger, M.; Pieper, D.H.; González, B. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ. Microbiol. 2012, 14, 1091–1117. [Google Scholar] [CrossRef]
- Garrido-Benavent, I.; Pérez-Ortega, S.; Durán, J.; Ascaso, C.; Pointing, S.B.; Rodríguez-Cielos, R.; de Los Ríos, A. Differential colonization and succession of microbial communities in rock and soil substrates on a maritime antarctic glacier forefield. Front. Microbiol. 2020, 11, 126. [Google Scholar] [CrossRef]
- Newton, R.J.; Jones, S.E.; Eiler, A.; McMahon, K.D.; Bertilsson, S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 2011, 75, 14–49. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fu, B.; Yang, H.; Zhao, M.; He, B.; Zhang, X.H. Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: The potential impact of hypoxia and nutrients. Front. Microbiol. 2015, 6, 64. [Google Scholar] [CrossRef]
- Kim, E.H.; Jeong, H.J.; Lee, Y.K.; Moon, E.Y.; Cho, J.C.; Lee, H.L.; Hong, S.G. Actimicrobium antarcticum gen. nov.; sp. nov.; of the family Oxalobacteraceae, isolated from Antarctic coastal seawater. Curr. Microbiol. 2011, 63, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Miksch, S.; Meiners, M.; Meyerdierks, A.; Probandt, D.; Wegener, G.; Titschack, J.; Knittel, K. Bacterial communities in temperate and polar coastal sands are seasonally stable. ISME Commun. 2021, 1, 29. [Google Scholar] [CrossRef]
- Eisenlord, S.D.; Zak, D.R. Simulated atmospheric nitrogen deposition alters actinobacterial community composition in forest soils. Soil Sci. Soc. Am. J. 2010, 74, 1157–1166. [Google Scholar] [CrossRef]
- Jansson, J.K.; Tas, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 2014, 12, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Oter, R.; Nakano, R.T.; Dombrowski, N.; Ma, K.W.; McHardy, A.C.; Schulze-Lefert, P. Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 2018, 24, 155–167. [Google Scholar] [CrossRef]
- Shi, M.; Li, J.Y.; Zhou, Q.; Wang, G.B.; Zhang, W.G.; Zhang, Z.H.; Yan, S.H. Interactions between elevated CO2 levels and floating aquatic plants on the alteration of bacterial function in carbon assimilation and decomposition in eutrophic waters. Water Res. 2020, 171, 115398. [Google Scholar] [CrossRef]
- Freidman, B.L.; Gras, S.L.; Snape, I.; Stevens, G.W.; Mumford, K.A. The performance of ammonium exchanged zeolite for the biodegradation of petroleum hydrocarbons migrating in soil water. J. Hazard Mater. 2016, 313, 272–282. [Google Scholar] [CrossRef]
- Orschler, L.; Agrawal, S.; Lackner, S. Targeted metagenomics reveals extensive diversity of the denitrifying community in partial nitritation anammox and activated sludge systems. Biotechnol. Bioeng. 2021, 118, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Weng, R.; Zhu, J.; He, Y.; Cao, C.J.; Huang, M.S. Calcium nitrate as a bio-stimulant for anaerobic ammonium oxidation process. Sci. Total Environ. 2021, 760, 143331. [Google Scholar] [CrossRef]
- Bolot, M.; Legras, B.; Moyer, E.J. Modelling and interpreting the isotopic composition of water vapour in convective updrafts. Atmos. Chem. Phys. 2013, 13, 7903–7935. [Google Scholar] [CrossRef]
- Galewsky, J.; Steen-Larsen, H.C.; Field, R.D.; Worden, J.; Risi, C.; Schneider, M. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev. Geophys. 2016, 54, 809–865. [Google Scholar] [CrossRef] [PubMed]
- Thamban, M.; Rahaman, W.; Laluraj, C.M. Millennial to quasi-decadal variability in Antarctic climate system as evidenced from high-resolution ice core records. Curr. Sci. 2020, 119, 255–264. [Google Scholar] [CrossRef]
- Zhong, Z.P.; Zablocki, O.; Li, Y.F.; Van Etten, J.L.; Mosley-Thompson, E.; Rich, V.I.; Sullivan, M.B. Glacier-preserved Tibetan Plateau viral community probably linked to warm-cold climate variations. Nat. Geosci. 2024, 17, 912–919. [Google Scholar] [CrossRef]
- Logares, R.; Tesson, S.V.; Canbäck, B.; Pontarp, M.; Hedlund, K.; Rengefors, K. Contrasting prevalence of selection and drift in the community structuring of bacteria and microbial eukaryotes. Environ. Microbiol. 2018, 20, 2231–2240. [Google Scholar] [CrossRef]
- Pandit, S.N.; Kolasa, J.; Cottenie, K. Contrasts between habitat generalists and specialists: An empirical extension to the basic metacommunity framework. Ecology 2009, 90, 2253–2262. [Google Scholar] [CrossRef]
- Wu, W.; Logares, R.; Huang, B.; Hsieh, C.H. Abundant and rare picoeukaryotic sub-communities present contrasting patterns in the epipelagic waters of marginal seas in the northwestern Pacific Ocean. Environ. Microbiol. 2017, 19, 287–300. [Google Scholar] [CrossRef]
- Stegen, J.C.; Lin, X.J.; Fredrickson, J.K.; Konopka, A.E. Estimating and mapping ecological processes influencing microbial community assembly. Front. Microbiol. 2015, 6, 370. [Google Scholar] [CrossRef]
- Liu, W.; Graham, E.B.; Zhong, L.; Zhang, J.; Li, W.; Li, Z.; Lin, X.; Feng, Y. Dynamic microbial assembly processes correspond to soil fertility in sustainable paddy agroecosystems. Funct. Ecol. 2020, 34, 1244–1256. [Google Scholar] [CrossRef]
Sites\Estimators | OTU | Ace | Chao 1 | Shannon | Invsimpson |
---|---|---|---|---|---|
Mochou Lake | 244 | 285.36 | 281.24 | 2.65 | 6.96 |
Longquan Lake | 174 | 190.18 | 189.12 | 2.83 | 10.29 |
Progress Lake | 199 | 202.77 | 204.50 | 2.82 | 9.36 |
Qingcheng Lake | 256 | 271.44 | 266.56 | 2.82 | 11.59 |
135.3 mbsf (Ice) | 92 | 102.69 | 103.00 | 2.89 | 10.48 |
183 mbsf (Ice) | 116 | 122.21 | 122.43 | 3.00 | 11.20 |
200 mbsf (Ice) | 141 | 145.14 | 147.43 | 2.89 | 10.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Han, J.; Li, B.; Sun, Y.; Gong, D.; Fan, X.; Pavel, T.; Zhang, D.; Gao, L.; Jiang, H. Bacterial Distribution in the Glacier Borehole Meltwater on the Eastern Broknes Peninsula of the Larsemann Hills and Adjacent Lake Water, East Antarctica. Microorganisms 2025, 13, 679. https://doi.org/10.3390/microorganisms13030679
Cui H, Han J, Li B, Sun Y, Gong D, Fan X, Pavel T, Zhang D, Gao L, Jiang H. Bacterial Distribution in the Glacier Borehole Meltwater on the Eastern Broknes Peninsula of the Larsemann Hills and Adjacent Lake Water, East Antarctica. Microorganisms. 2025; 13(3):679. https://doi.org/10.3390/microorganisms13030679
Chicago/Turabian StyleCui, Hongpeng, Jibin Han, Bing Li, Youhong Sun, Da Gong, Xiaopeng Fan, Talalay Pavel, Dayi Zhang, Liang Gao, and Hongchen Jiang. 2025. "Bacterial Distribution in the Glacier Borehole Meltwater on the Eastern Broknes Peninsula of the Larsemann Hills and Adjacent Lake Water, East Antarctica" Microorganisms 13, no. 3: 679. https://doi.org/10.3390/microorganisms13030679
APA StyleCui, H., Han, J., Li, B., Sun, Y., Gong, D., Fan, X., Pavel, T., Zhang, D., Gao, L., & Jiang, H. (2025). Bacterial Distribution in the Glacier Borehole Meltwater on the Eastern Broknes Peninsula of the Larsemann Hills and Adjacent Lake Water, East Antarctica. Microorganisms, 13(3), 679. https://doi.org/10.3390/microorganisms13030679