Structure, Function, and Regulation of LytA: The N-Acetylmuramoyl-l-alanine Amidase Driving the “Suicidal Tendencies” of Streptococcus pneumoniae—A Review
Abstract
:1. Introduction
- Streptococcus pneumoniae is a major pathogen that colonizes the upper respiratory tract and can cause serious invasive diseases. While vaccines have reduced disease burden, issues like serotype diversity, limited coverage, and antibiotic resistance remain. The WHO classifies it as a medium-priority pathogen. This review examines key biological aspects of the pneumococcal autolysin LytA, including its regulation and control, role in virulence, therapeutic potential, and evolutionary implications.
2. The “Suicidal Tendencies” of S. pneumoniae
- Streptococcus pneumoniae autolysis, first observed in the late 19th century, is primarily driven by LytA, a key enzyme responsible for cell lysis, virulence, biofilm formation, and immune evasion. LytA also facilitates the release of inflammatory molecules and extracellular DNA, aiding pathogenesis and genetic exchange. Additional autolysins, LytC and CbpD, contribute to antibiotic response and fratricide—a process enabling DNA uptake from sibling cells. LytA is essential for complete cell separation. Its inactivation increases immune detection and reduces inflammation.
3. Organization of the lytA Gene
- The lytA gene, encoding the major autolysin of S. pneumoniae, is part of a pathogenicity island alongside the ply gene and is co-transcribed with cinA, recA, and dinF. It is regulated by multiple promoters, including a competence-specific one activated by ComX. Transcription may also be influenced by upstream elements and small RNAs, such as SPD_sr95, and possibly by a small open reading frame (rio88/SPV_2546) located in the lytA promoter region. This sORF may encode a conserved 37-amino acid peptide found across pneumococcal strains and may have both coding and regulatory functions. Its role in LytA regulation and pneumococcal physiology remains to be clarified.
4. Structure and Function of the NAM-Amidase
4.1. LytA Requires Choline-Containing Cell Walls for Activity
4.2. Peculiarities of Cell Wall Degradation In Vitro an In Vivo
4.3. Funtional Domains of LytA and Three-Dimensional Structure
- LytA, the main autolysin of Streptococcus pneumoniae, is synthesized as an inactive form that transforms an active enzyme in the presence of choline-containing compounds. LytA specifically binds to P-Cho on WTAs and is essential for cell wall degradation. It has two domains: a Zn2+-dependent enzymatic domain (EAD) and a choline-binding domain (CBD) with six repeats, crucial for anchoring and dimerization. Structural studies show LytA forms a boomerang-shaped dimer.
5. Regulation and Control of LytA
5.1. Transcriptional Regulation
5.2. Post-Transcriptional Regulation
5.2.1. Two-Component Systems and LytA
5.2.2. Other Mechanisms of Regulation
5.2.3. Antibiotic Tolerance
5.3. Regulatory Molecules
5.3.1. LTA
5.3.2. Enzymatic Activation of LytA
5.4. Spatial Regulation
Capsular Polysaccharide, WTA and Autolysis Control
- LytA is tightly regulated to prevent premature lysis. Its activity is controlled at multiple levels, including transcriptional and post-transcriptional regulation, enzymatic activation via dimerization, spatial localization to the division septum, and modulation by two-component systems and surface structures like teichoic acids and capsule. Environmental cues, stress, and competence development also influence LytA expression. These complex regulatory networks ensure precise control of LytA during growth, autolysis, and pathogenesis.
6. The LytA Autolysin as a Virulence Factor
6.1. Interactions Between LytA and Host Defenses
6.2. LytA Cooperates in the Release of Additional Virulence Factors
6.3. Other Roles of LytA in Pneumococcal Pathogenesis
- LytA is a critical virulence factor in S. pneumoniae, with its role validated across diverse animal infection models. It facilitates immune evasion by inhibiting complement activation, recruiting host regulatory proteins, and limiting phagocytosis. LytA also binds to PSGL-1, a host selectin ligand, promoting bacterial clearance during systemic infection. Functionally, LytA mediates the release of intracellular virulence determinants, including pneumolysin (Ply) and non-classically secreted surface-associated proteins which contribute to tissue invasion and host immune modulation. Moreover, LytA is involved in capsule shedding. Autolysis-dependent DNA release activates KLF4, a transcription factor involved in modulating host pro- and anti-inflammatory responses. Under acidic stress, such as within macrophage phagolysosomes, LytA activity supports bacterial survival through pH-dependent regulation—likely mediated by the CiaRH and SirRH two-component systems—and potentially via translocation rather than increased transcription. Altogether, LytA functions as a multifaceted effector of pneumococcal virulence, contributing to immune evasion, toxin release, host interaction, and environmental adaptation.
7. Therapeutic Perspectives
- LytA shows strong therapeutic potential as an antimicrobial agent. Compared to phage lysins, LytA demonstrates superior bactericidal and antibiofilm activity in S. pneumoniae. Various compounds—including antimicrobial peptides, plant extracts, lipid mimetics, and ceragenins—exert LytA-dependent lytic effects, either by activating the enzyme or inducing its expression. These findings highlight LytA as a promising target for novel treatments against MDR pneumococcal isolates.
8. Evolutionary Considerations
- The lytA genes encoded by pneumococcal prophages (lytAPPH) show high similarity to the host lytASpn but exhibit greater sequence diversity. Studies have shown that recombination events between prophage and host DNA within the lytA locus can produce chimeric genes, contributing to chromosomal rearrangements and genetic diversity in S. pneumoniae. This highlights recombination, more than mutation, as a key driver of pneumococcal evolution.
9. Future Perspectives
- LytA is a promising antimicrobial and vaccine candidate due to its strong bactericidal and biofilm-disrupting activity, especially against antibiotic-resistant S. pneumoniae. Though effective in animal models and immunogenic in humans, further studies are needed to confirm its safety and efficacy. As polysaccharide vaccines face challenges like serotype replacement, protein-based alternatives—including LytA—are under active investigation. Human challenge models and clinical trials are aiding progress toward serotype-independent pneumococcal vaccines.
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | ATP-binding cassette |
CAMP | Cationic antimicrobial peptide |
CBD | Choline-binding domain |
CBP | Choline-binding protein |
CBR | Choline-binding repeat |
CBS | Choline-binding site |
CDM | Chemically defined medium |
CSF | Cerebrospinal fluid |
CSP | Competence-stimulating peptide |
csRNA | CiaR-dependent sRNA |
Doc | Sodium deoxycholate |
DPC | Dodecylphosphocholine |
EAD | Enzymatically active domain |
eDNA | Extracellular DNA |
IPD | Invasive pneumococcal disease(s) |
LTA | Lipoteichoic acid |
MDR | Multidrug-resistant |
MIC | Minimum inhibitory concentration |
NAM-amidase | N-acetylmuramoyl-l-alanine amidase |
ORF | Open reading frame |
P-Cho | Phosphocholine |
PCV | Pneumococcal conjugate vaccine(s) |
PEN | Penicillin |
PG | Peptidoglycan |
PGRP | PG recognition protein |
PPH | Pneumococcal prophage |
SMG | Streptococci of the Mitis group |
sORF | Small ORF |
sRNA | Small RNA |
TA | Teichoic acid |
TCS | Two-component regulatory system |
TSS | Transcription start site |
USLP | Ultrashort lipopeptides |
VAN | Vancomycin |
WHO | World Health Organization |
WTA | Wall teichoic acid |
References
- Bogaert, D.; de Groot, R.; Hermans, P.W.M. Streptococcus pneumoniae colonisation: The key to pneumococcal disease. Lancet Infect. Dis. 2004, 4, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Simell, B.; Auranen, K.; Käyhty, H.; Goldblatt, D.; Dagan, R.; O’Brien, K.L.; for the Pneumococcal Carriage Group. The fundamental link between pneumococcal carriage and disease. Expert Rev. Vaccines 2012, 11, 841–855. [Google Scholar] [CrossRef]
- Ercoli, G.; Fernandes, V.E.; Chung, W.Y.; Wanford, J.J.; Thomson, S.; Bayliss, C.D.; Straatman, K.; Crocker, P.R.; Dennison, A.; Martinez-Pomares, L.; et al. Intracellular replication of Streptococcus pneumoniae inside splenic macrophages serves as a reservoir for septicaemia. Nat. Microbiol. 2018, 3, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Brissac, T.; Martínez, E.; Kruckow Katherine, L.; Riegler Ashleigh, N.; Ganaie, F.; Im, H.; Bakshi, S.; Arroyo-Diaz Nicole, M.; Spencer Brady, L.; Saad Jamil, S.; et al. Capsule promotes intracellular survival and vascular endothelial cell translocation during invasive pneumococcal disease. mBio 2021, 12, e02516-21. [Google Scholar] [CrossRef]
- Hernandez-Morfa, M.; Olivero, N.B.; Zappia, V.E.; Piñas, G.E.; Reinoso-Vizcaino, N.M.; Cian, M.B.; Nuñez-Fernandez, M.; Cortes, P.R.; Echenique, J. The oxidative stress response of Streptococcus pneumoniae: Its contribution to both extracellular and intracellular survival. Front. Microbiol. 2023, 14, 1269843. [Google Scholar] [CrossRef]
- Ogawa, M.; Shizukuishi, S.; Akeda, Y.; Ohnishi, M. Molecular mechanism of Streptococcus pneumoniae-targeting xenophagy recognition and evasion: Reinterpretation of pneumococci as intracellular bacteria. Microbiol. Immunol. 2023, 67, 224–227. [Google Scholar] [CrossRef]
- Santra, S.; Nayak, I.; Paladhi, A.; Das, D.; Banerjee, A. Estimates of differential toxin expression governing heterogeneous intracellular lifespans of Streptococcus pneumoniae. J. Cell Sci. 2024, 137, jcs260891. [Google Scholar] [CrossRef]
- Hernandez-Morfa, M.; Reinoso-Vizcaino, N.M.; Zappia, V.E.; Olivero, N.B.; Cortes, P.R.; Stempin, C.C.; Perez, D.R.; Echenique, J. Intracellular Streptococcus pneumoniae develops enhanced fluoroquinolone persistence during influenza A coinfection. Front. Microbiol. 2024, 15, 1423995. [Google Scholar] [CrossRef]
- van Ettekoven, C.N.; Liechti, F.D.; Brouwer, M.C.; Bijlsma, M.W.; van de Beek, D. Global case fatality of bacterial meningitis during an 80-year period: A systematic review and meta-analysis. JAMA Netw. Open 2024, 7, e2424802. [Google Scholar] [CrossRef]
- Short, K.R.; Diavatopoulos, D.A. Nasopharyngeal colonization with Streptococcus pneumoniae. In Streptococcus pneumoniae: Molecular Mechanisms of Host-Pathogen Interactions; Brown, J., Hammerschmidt, S., Orihuela, C., Eds.; Academic Press: New York, NY, USA, 2015; pp. 279–289. [Google Scholar]
- GBD 2021 Lower Respiratory Infections and Antimicrobial Resistance Collaborators. Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021: A systematic analysis from the Global Burden of Disease Study 2021. Lancet Infect. Dis. 2024, 24, 974–1002. [Google Scholar] [CrossRef]
- Bennett, J.C.; Knoll, M.D.; Kagucia, E.W.; Garcia Quesada, M.; Zeger, S.L.; Hetrich, M.K.; Yang, Y.; Herbert, C.; Ogyu, A.; Cohen, A.L.; et al. Global impact of ten-valent and 13-valent pneumococcal conjugate vaccines on invasive pneumococcal disease in all ages (the PSERENADE project): A global surveillance analysis. Lancet Infect. Dis. 2025. [Google Scholar] [CrossRef] [PubMed]
- Jagne, I.; von Mollendorf, C.; Wee-Hee, A.; Ortika, B.; Satzke, C.; Russell, F.M. A systematic review of pneumococcal conjugate vaccine impact on pneumococcal nasopharyngeal colonisation density in children under 5 years of age. Vaccine 2023, 41, 3028–3037. [Google Scholar] [CrossRef] [PubMed]
- Mungall, B.A.; Hoet, B.; Nieto Guevara, J.; Soumahoro, L. A systematic review of invasive pneumococcal disease vaccine failures and breakthrough with higher-valency pneumococcal conjugate vaccines in children. Expert Rev. Vaccines 2022, 21, 201–214. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Immunization Coverage. Available online: https://www.who.int/news-room/fact-sheets/detail/immunization-coverage#:~:text=Pneumococcal%20vaccine%20had%20been%20introduced,the%20WHO%20Western%20Pacific%20Region (accessed on 26 February 2025).
- Loughran, A.J.; Orihuela, C.J.; Tuomanen, E.I. Streptococcus pneumoniae: Invasion and inflammation. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Rajput, P.; Nahar, K.S.; Rahman, K.M. Evaluation of antibiotic resistance mechanisms in Gram-positive bacteria. Antibiotics 2024, 13, 1197. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Bacterial Priority Pathogens List. 2024. Available online: https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf?sequence=1 (accessed on 26 February 2025).
- Engholm, D.H.; Kilian, M.; Goodsell, D.S.; Andersen, E.S.; Kjaergaard, R.S. A visual review of the human pathogen Streptococcus pneumoniae. FEMS Microbiol. Rev. 2017, 41, 854–879. [Google Scholar] [CrossRef] [PubMed]
- Brooks, L.R.K.; Mias, G.I. Streptococcus pneumoniae’s virulence and host immunity: Aging, diagnostics, and prevention. Front. Immunol. 2018, 9, 1366. [Google Scholar] [CrossRef]
- Santoro, F.; Iannelli, F.; Pozzi, G. Genomics and genetics of Streptococcus pneumoniae. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Subramanian, K.; Henriques-Normark, B.; Normark, S. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: From nasopharyngeal colonizer to intracellular pathogen. Cell. Microbiol. 2019, 21, e13077. [Google Scholar] [CrossRef]
- Morimura, A.; Hamaguchi, S.; Akeda, Y.; Tomono, K. Mechanisms underlying pneumococcal transmission and factors influencing host-pneumococcus interaction: A review. Front. Cell. Infect. Microbiol. 2021, 11, 639450. [Google Scholar] [CrossRef]
- Musher, D.M.; Anderson, R.; Feldman, C. The remarkable history of pneumococcal vaccination: An ongoing challenge. Pneumonia 2022, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Neal, E.F.G.; Chan, J.; Nguyen, C.D.; Russell, F.M. Factors associated with pneumococcal nasopharyngeal carriage: A systematic review. PLoS Glob. Public Health 2022, 2, e0000327. [Google Scholar] [CrossRef] [PubMed]
- Duke, J.A.; Avci, F.Y. Emerging vaccine strategies against the incessant pneumococcal disease. npj Vaccines 2023, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Martín-Galiano, A.J.; Ferrándiz, M.J.; de la Campa, A.G. The promoter of the operon encoding the F0F1 ATPase of Streptococcus pneumoniae is inducible by pH. Mol. Microbiol. 2001, 41, 1327–1338. [Google Scholar] [CrossRef]
- Li, L.; Ma, J.; Yu, Z.; Li, M.; Zhang, W.; Sun, H. Epidemiological characteristics and antibiotic resistance mechanisms of Streptococcus pneumoniae: An updated review. Microbiol. Res. 2023, 266, 127221. [Google Scholar] [CrossRef] [PubMed]
- Elias, C.; Nunes, M.C.; Saadatian-Elahi, M. Epidemiology of community-acquired pneumonia caused by Streptococcus pneumoniae in older adults: A narrative review. Curr. Opin. Infect. Dis. 2024, 37, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Ben Debba, L.; Derreumaux, D.; Lonnet, G.; Taddei, L.; Scherbakov, M. Clinical and economic burden of otitis media in children under 5 years of age in the United States: A retrospective study. Hum. Vaccines Immunother. 2024, 20, 2409510. [Google Scholar] [CrossRef]
- Johnson, C.N.; Wilde, S.; Tuomanen, E.; Rosch, J.W. Convergent impact of vaccination and antibiotic pressures on pneumococcal populations. Cell Chem. Biol. 2024, 31, 195–206. [Google Scholar] [CrossRef]
- Ricci Conesa, H.; Skroder, H.; Norton, N.; Bencina, G.; Tsoumani, E. Clinical and economic burden of acute otitis media caused by Streptococcus pneumoniae in European children, after widespread use of PCVs-A systematic literature review of published evidence. PLoS ONE 2024, 19, e0297098. [Google Scholar] [CrossRef]
- Vaughn, V.M.; Dickson, R.P.; Horowitz, J.K.; Flanders, S.A. Community-acquired pneumonia: A review. JAMA 2024, 332, 1282–1295. [Google Scholar] [CrossRef] [PubMed]
- Hiller, N.L.; Orihuela, C.J. Biological puzzles solved by using Streptococcus pneumoniae: A historical review of the pneumococcal studies that have impacted medicine and shaped molecular bacteriology. J. Bacteriol. 2024, 206, e0005924. [Google Scholar] [CrossRef] [PubMed]
- Narciso, A.R.; Dookie, R.; Nannapaneni, P.; Normark, S.; Henriques-Normark, B. Streptococcus pneumoniae epidemiology, pathogenesis and control. Nat. Rev. Microbiol. 2024, 23, 256–271. [Google Scholar] [CrossRef] [PubMed]
- Ganaie, F.A.; Beall, B.W.; Yu, J.; van der Linden, M.; McGee, L.; Satzke, C.; Manna, S.; Lo, S.W.; Bentley, S.D.; Ravenscroft, N.; et al. Update on the evolving landscape of pneumococcal capsule types: New discoveries and way forward. Clin. Microbiol. Rev. 2025, 38, e00175-24. [Google Scholar] [CrossRef] [PubMed]
- Pasteur, L.; Chamberland, C.; Roux, P.P.E. Sur une maladie nouvelle, provoquée par la salive d’un enfant mort de la rage. Compt. Rend. Acad. Sci. 1881, 92, 159–165. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k7351t/f158.item (accessed on 1 April 2025).
- Sternberg, G.M. A fatal form of septicaemia in the rabbit, produced by the subcutaneous injection of human saliva. An experimental research. Natl. Board Health Bull. 1881, 2, 781–783. [Google Scholar]
- Anonymous. Report of Dr. Welch’s remarks on the Diplococcus pneumoniae at the meeting of the John Hopkins Hospital Medical Society, on February 17, 1890. Johns Hopkins Hosp. Bull. 1890, I, 73–74. Available online: https://babel.hathitrust.org/cgi/pt?id=iau.31858029237678&seq=80 (accessed on 1 April 2025).
- Neufeld, F. Ueber eine specifische bakteriolystische wirkung der galle. Z. Hyg. Infektionskrankh. 1900, 34, 454–464. [Google Scholar] [CrossRef]
- White, B.; Robinson, E.S.; Barnes, L.A. The Biology of Pneumococcus: The Bacteriological, Biochemical, and Immunological Characters and Activities of Diplococcus pneumoniae; Harvard University Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Blaschke, A.J. Interpreting assays for the detection of Streptococcus pneumoniae. Clin. Infect. Dis. 2011, 52, S331–S337. [Google Scholar] [CrossRef]
- Satzke, C.; Turner, P.; Virolainen-Julkunen, A.; Adrian, P.V.; Antonio, M.; Hare, K.M.; Henao-Restrepo, A.M.; Leach, A.J.; Klugman, K.P.; Porter, B.D.; et al. Standard method for detecting upper respiratory carriage of Streptococcus pneumoniae: Updated recommendations from the World Health Organization Pneumococcal Carriage Working Group. Vaccine 2013, 32, 165–179. [Google Scholar] [CrossRef]
- Slotved, H.-C.; Facklam, R.R.; Fuursted, K. Assessment of a novel bile solubility test and MALDI-TOF for the differentiation of Streptococcus pneumoniae from other mitis group streptococci. Sci. Rep. 2017, 7, 7167. [Google Scholar] [CrossRef] [PubMed]
- Aupaix, A.; Verroken, A.; Rodriguez-Villalobos, H. Evaluation of a new protocol for rapid identification of Streptococcus pneumoniae in blood cultures using the modified bile solubility test: Gram staining is still standing. J. Clin. Microbiol. 2024, 63, e0122224. [Google Scholar] [CrossRef]
- Vidal, J.E.; Wier, M.N.; Angulo-Zamudio Uriel, A.; McDevitt, E.; Jop Vidal, A.G.; Alibayov, B.; Scasny, A.; Wong, S.M.; Akerley, B.J.; McDaniel, L.S. Prophylactic inhibition of colonization by Streptococcus pneumoniae with the secondary bile acid metabolite deoxycholic acid. Infect. Immun. 2021, 89, e0046321. [Google Scholar] [CrossRef]
- Rosenow, E.C. The autolysis of pneumococci and the effect of the injection of autolyzed pneumococci. JAMA 1910, 54, 1943. [Google Scholar] [CrossRef]
- Avery, O.T.; Cullen, G.E. Studies on the enzymes of pneumococcus. IV. Bacteriolytic enzyme. J. Exp. Med. 1923, 38, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Dubos, R.J. The autolytic system of pneumococci. J. Exp. Med. 1937, 65, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Tomasz, A. Biological consequences of the replacement of choline by ethanolamine in the cell wall of Pneumococcus: Chain formation, loss of transformability, and loss of autolysis. Proc. Natl. Acad. Sci. USA 1968, 59, 86–93. [Google Scholar] [CrossRef]
- Warrier, I.; Perry, A.; Hubbell, S.M.; Eichelman, M.; van Opijnen, T.; Meyer, M.M. RNA cis-regulators are important for Streptococcus pneumoniae in vivo success. PLoS Genet. 2024, 20, e1011188. [Google Scholar] [CrossRef]
- McCarty, M. The Transforming Principle. In Discovering That Genes Are Made of DNA; W. W. Norton & Co.: New York, NY, USA, 1985. [Google Scholar]
- Regev-Yochay, G.; Trzcinski, K.; Thompson, C.M.; Lipsitch, M.; Malley, R. SpxB Is a suicide gene of Streptococcus pneumoniae and confers a selective advantage in an in vivo competitive colonization model. J. Bacteriol. 2007, 189, 6532–6539. [Google Scholar] [CrossRef]
- Vasallo, F.J.; López-Miragaya, I.; Rodríguez, A.; Torres, J. Apparently false-positive blood cultures due to autolyzed Streptococcus pneumoniae. Clin. Microbiol. Infect. 2000, 6, 688–689. [Google Scholar] [CrossRef]
- Amano, M.; Matsumoto, M.; Sano, S.; Oyama, M.; Nagumo, H.; Watanabe-Okochi, N.; Tsuno Nelson, H.; Nakajima, K.; Muroi, K. Characteristics of false-positive alarms in the BacT/Alert 3D system. Microbiol. Spectr. 2022, 10, e00055-22. [Google Scholar] [CrossRef] [PubMed]
- Tomasz, A.; Albino, A.; Zanati, E. Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature 1970, 227, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Tomasz, A. The mechanism of the irreversible antimicrobial effects of penicillins: How the beta-lactam antibiotics kill and lyse bacteria. Annu. Rev. Microbiol. 1979, 33, 113–137. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Puelles, J.M.; Ronda, C.; García, J.L.; García, P.; López, R.; García, E. Searching for autolysin functions. Characterization of a pneumococcal mutant deleted in the lytA gene. Eur. J. Biochem. 1986, 158, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Ronda, C.; García, J.L.; García, E.; Sánchez-Puelles, J.M.; López, R. Biological role of the pneumococcal amidase. Cloning of the lytA gene in Streptococcus pneumoniae. Eur. J. Biochem. 1987, 164, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Okumura, R.; Hoshino, K.; Otani, T.; Yamamoto, T. Quinolones with enhanced bactericidal activity induce autolysis in Streptococcus pneumoniae. Chemotherapy 2009, 55, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, I.; Kanesaka, I.; Kanayama Katsuse, A.; Takahashi, H.; Okumura, R.; Nakanishi, Y.; Kaneko, A. Gene expression analysis in the potent bactericidal activity of sitafloxacin against Streptococcus pneumoniae. J. Infect. Chemother. 2019, 25, 322–324. [Google Scholar] [CrossRef]
- Brogan, O.; Garnett, P.A.; Fox, C.C.; McCabe, K.A. Evaluation of anaerobic culture and effect of culture medium supplementation with factor V on colonial morphology and efficacy of isolation of Streptococcus pneumoniae from sputum. J. Clin. Pathol. 1987, 40, 368. [Google Scholar] [CrossRef]
- Nagaoka, K.; Yamashita, Y.; Kimura, H.; Suzuki, M.; Konno, S.; Fukumoto, T.; Akizawa, K.; Morinaga, Y.; Yanagihara, K.; Nishimura, M. Effects of anaerobic culturing on pathogenicity and virulence-related gene-expression in pneumococcal pneumonia. J. Infect. Dis. 2018, 219, 1545–1553. [Google Scholar] [CrossRef]
- Mosser, J.L.; Tomasz, A. Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme. J. Biol. Chem. 1970, 245, 287–298. [Google Scholar] [CrossRef]
- Howard, L.V.; Gooder, H. Specificity of the autolysin of Streptococcus (Diplococcus) pneumoniae. J. Bacteriol. 1974, 117, 796–804. [Google Scholar] [CrossRef] [PubMed]
- García, E.; García, J.L.; Ronda, C.; García, P.; López, R. Cloning and expression of the pneumococcal autolysin gene in Escherichia coli. Mol. Gen. Genet. 1985, 201, 225–230. [Google Scholar] [CrossRef] [PubMed]
- García, P.; García, J.L.; García, E.; López, R. Nucleotide sequence and expression of the pneumococcal autolysin gene from its own promoter in Escherichia coli. Gene 1986, 43, 265–272. [Google Scholar] [CrossRef] [PubMed]
- García, E.; Rojo, J.M.; García, P.; Ronda, C.; López, R.; Tomasz, A. Preparation of antiserum against the pneumococcal autolysin—Inhibition of autolysin activity and some autolytic processes by the antibody. FEMS Microbiol. Lett. 1982, 14, 133–136. [Google Scholar] [CrossRef]
- Miellet, W.R.; Almeida, S.T.; Trzciński, K.; Sá-Leão, R. Streptococcus pneumoniae carriage studies in adults: Importance, challenges, and key issues to consider when using quantitative PCR-based approaches. Front. Microbiol. 2023, 14, 1122276. [Google Scholar] [CrossRef]
- García, P.; González, M.P.; García, E.; García, J.L.; López, R. The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. Mol. Microbiol. 1999, 33, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Monterroso, B.; Sáiz, J.L.; García, P.; García, J.L.; Menéndez, M. Insights into the structure-function relationships of pneumococcal cell wall lysozymes, LytC and Cpl-1. J. Biol. Chem. 2008, 283, 28618–28628. [Google Scholar] [CrossRef]
- Sánchez-Puelles, J.M.; Ronda, C.; García, E.; Méndez, E.; García, J.L.; López, R. A new peptidoglycan hydrolase in Streptococcus pneumoniae. FEMS Microbiol. Lett. 1986, 35, 163–166. [Google Scholar] [CrossRef]
- López, R.; Ronda, C.; García, E. Autolysins are direct involved in the bactericidal effect caused by penicillin in wild type and in tolerant pneumococci. FEMS Microbiol. Lett. 1990, 66, 317–322. [Google Scholar] [CrossRef]
- Lindemann, J.; Leiacker, R.; Rettinger, G.; Keck, T. Nasal mucosal temperature during respiration. Clin. Otolaryngol. Allied Sci. 2002, 27, 135–139. [Google Scholar] [CrossRef]
- Vázquez, R.; Briers, Y. What’s in a name? An overview of the proliferating nomenclature in the field of phage lysins. Cells 2023, 12, 2016. [Google Scholar] [CrossRef] [PubMed]
- Moscoso, M.; Claverys, J.-P. Release of DNA into the medium by competent Streptococcus pneumoniae: Kinetics, mechanism and stability of the liberated DNA. Mol. Microbiol. 2004, 54, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Guiral, S.; Mitchell, T.J.; Martin, B.; Claverys, J.-P. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: Genetic requirements. Proc. Natl. Acad. Sci. USA 2005, 102, 8710–8715. [Google Scholar] [CrossRef] [PubMed]
- Kausmally, L.; Johnsborg, O.; Lunde, M.; Knutsen, E.; Håvarstein, L.S. Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J. Bacteriol. 2005, 187, 4338–4345. [Google Scholar] [CrossRef] [PubMed]
- Eldholm, V.; Johnsborg, O.; Straume, D.; Ohnstad, H.S.; Berg, K.H.; Hermoso, J.A.; Håvarstein, L.S. Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide. Mol. Microbiol. 2010, 76, 905–917. [Google Scholar] [CrossRef] [PubMed]
- Håvarstein, L.S.; Martin, B.; Johnsborg, O.; Granadel, C.; Claverys, J.-P. New insights into the pneumococcal fratricide: Relationship to clumping and identification of a novel immunity factor. Mol. Microbiol. 2006, 59, 1297–1307. [Google Scholar] [CrossRef] [PubMed]
- Bergé, M.J.; Mercy, C.; Mortier-Barrière, I.; VanNieuwenhze, M.S.; Brun, Y.V.; Grangeasse, C.; Polard, P.; Campo, N. A programmed cell division delay preserves genome integrity during natural genetic transformation in Streptococcus pneumoniae. Nat. Commun. 2017, 8, 1621. [Google Scholar] [CrossRef]
- Eldholm, V.; Johnsborg, O.; Haugen, K.; Ohnstad, H.S.; Håvarstein, L.S. Fratricide in Streptococcus pneumoniae: Contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology 2009, 155, 2223–2234. [Google Scholar] [CrossRef]
- Straume, D.; Stamsås, G.A.; Håvarstein, L.S. Natural transformation and genome evolution in Streptococcus pneumoniae. Infect. Genet. Evol. 2015, 33, 371–380. [Google Scholar] [CrossRef]
- Wei, H.; Håvarstein, L.S. Fratricide is essential for efficient gene transfer between pneumococci in biofilms. Appl. Environ. Microbiol. 2012, 78, 5897–5905. [Google Scholar] [CrossRef]
- Zhu, L.; Lin, J.; Kuang, Z.; Vidal, J.E.; Lau, G.W. Deletion analysis of Streptococcus pneumoniae late competence genes distinguishes virulence determinants that are dependent or independent of competence induction. Mol. Microbiol. 2015, 97, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Tuomanen, E.; Liu, H.; Hengstler, B.; Zak, O.; Tomasz, A. The induction of meningeal inflammation by components of the pneumococcal cell wall. J. Infect. Dis. 1985, 151, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Tuomanen, E.; Tomasz, A.; Hengstler, B.; Zak, O. The relative role of bacterial cell wall and capsule in the induction of inflammation in pneumococcal meningitis. J. Infect. Dis. 1985, 151, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Tuomanen, E.; Hengstler, B.; Zak, O.; Tomasz, A. Induction of meningeal inflammation by diverse bacterial cell walls. Eur. J. Clin. Microbiol. 1986, 5, 682–684. [Google Scholar] [CrossRef] [PubMed]
- Giebink, G.S.; Ripley-Petzoldt, M.L.; Juhn, S.K.; Aeppli, D.; Tomasz, A.; Tuomanen, E. Contribution of pneumococcal cell wall to experimental otitis media pathogenesis. Ann. Otol. Rhinol. Laryngol. Suppl. 1988, 132, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Ripley-Petzoldt, M.L.; Giebink, G.S.; Juhn, S.K.; Aeppli, D.; Tomasz, A.; Tuomanen, E. The contribution of pneumococcal cell wall to the pathogenesis of experimental otitis media. J. Infect. Dis. 1988, 157, 245–255. [Google Scholar] [CrossRef]
- Sato, K.; Quartey, M.K.; Liebeler, C.L.; Le, C.T.; Giebink, G.S. Roles of autolysin and pneumolysin in middle ear inflammation caused by a type 3 Streptococcus pneumoniae strain in the chinchilla otitis media model. Infect. Immun. 1996, 64, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Majcherczyk, P.A.; Langen, H.; Heumann, D.; Fountoulakis, M.; Glauser, M.P.; Moreillon, P. Digestion of Streptococcus pneumoniae cell walls with its major peptidoglycan hydrolase releases branched stem peptides carrying proinflammatory activity. J. Biol. Chem. 1999, 274, 12537–12543. [Google Scholar] [CrossRef]
- Moore, L.J.; Pridmore, A.C.; Dower, S.K.; Read, R.C. Penicillin enhances the Toll-like receptor 2-mediated proinflammatory activity of Streptococcus pneumoniae. J. Infect. Dis. 2003, 188, 1040–1048. [Google Scholar] [CrossRef]
- Moreillon, P.; Majcherczyk, P.A. Proinflammatory activity of cell-wall constituents from gram-positive bacteria. Scand. J. Infect. Dis. 2003, 35, 632–641. [Google Scholar] [CrossRef]
- Steel, H.C.; Cockeran, R.; Anderson, R.; Feldman, C. Overview of community-acquired pneumonia and the role of inflammatory mechanisms in the immunopathogenesis of severe pneumococcal disease. Mediat. Inflamm. 2013, 2013, 490346. [Google Scholar] [CrossRef] [PubMed]
- Nagai, K.; Domon, H.; Maekawa, T.; Oda, M.; Hiyoshi, T.; Tamura, H.; Yonezawa, D.; Arai, Y.; Yokoji, M.; Tabeta, K.; et al. Pneumococcal DNA-binding proteins released through autolysis induce the production of proinflammatory cytokines via toll-like receptor 4. Cell. Immunol. 2018, 325, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Wall, E.C.; Brownridge, P.; Laing, G.; Terra, V.S.; Mlozowa, V.; Denis, B.; Nyirenda, M.; Allain, T.; Ramos-Sevillano, E.; Carrol, E.; et al. CSF levels of elongation factor Tu is associated with increased mortality in Malawian adults with Streptococcus pneumoniae meningitis. Front. Cell. Infect. Microbiol. 2020, 10, 603623. [Google Scholar] [CrossRef] [PubMed]
- Kruckow, K.L.; Zhao, K.; Bowdish, D.M.E.; Orihuela, C.J. Acute organ injury and long-term sequelae of severe pneumococcal infections. Pneumonia 2023, 15, 5. [Google Scholar] [CrossRef]
- Moscoso, M.; García, E.; López, R. Biofilm formation by Streptococcus pneumoniae: Role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J. Bacteriol. 2006, 188, 7785–7795. [Google Scholar] [CrossRef] [PubMed]
- Domenech, M.; García, E.; Moscoso, M. Biofilm formation in Streptococcus pneumoniae. Microb. Biotechnol. 2012, 5, 455–465. [Google Scholar] [CrossRef]
- Domenech, M.; García, E.; Prieto, A.; Moscoso, M. Insight into the composition of the intercellular matrix of Streptococcus pneumoniae biofilms. Environ. Microbiol. 2013, 15, 502–516. [Google Scholar] [CrossRef]
- Domenech, M.; Ruiz, S.; Moscoso, M.; García, E. In vitro biofilm development of Streptococcus pneumoniae and formation of choline-binding protein–DNA complexes. Environ. Microbiol. Rep. 2015, 7, 715–727. [Google Scholar] [CrossRef]
- Brown, L.R.; Caulkins, R.C.; Schartel, T.E.; Rosch, J.W.; Honsa, E.S.; Schultz-Cherry, S.; Meliopoulos, V.A.; Cherry, S.; Thornton, J.A. Increased zinc availability enhances initial aggregation and biofilm formation of Streptococcus pneumoniae. Front. Cell. Infect. Microbiol. 2017, 7, 233. [Google Scholar] [CrossRef]
- Vilhena, C.; Du, S.; Battista, M.; Westermann, M.; Kohler, T.; Hammerschmidt, S.; Zipfel, P.F. The choline-binding proteins PspA, PspC, and LytA of Streptococcus pneumoniae and their interaction with human endothelial and red blood cells. Infect. Immun. 2023, 91, e00154-23. [Google Scholar] [CrossRef]
- Martner, A.; Skovbjerg, S.; Paton, J.C.; Wold, A.E. Streptococcus pneumoniae autolysis prevents phagocytosis and production of phagocyte-activating cytokines. Infect. Immun. 2009, 77, 3826–3837. [Google Scholar] [CrossRef] [PubMed]
- Skovbjerg, S.; Nordén, R.; Martner, A.; Samuelsson, E.; Hynsjö, L.; Wold, A.E. Intact pneumococci trigger transcription of interferon-related genes in human monocytes, while fragmented, autolyzed bacteria subvert this response. Infect. Immun. 2017, 85, e00960-16. [Google Scholar] [CrossRef] [PubMed]
- Ronda-Lain, C.; Lopez, R.; Tapia, A.; Tomasz, A. Role of the pneumococcal autolysin (murein hydrolase) in the release of phage progeny bacteriophage and in the bacteriophage-induced lysis of the host cells. J. Virol. 1977, 21, 366–374. [Google Scholar] [CrossRef]
- Garcia, P.; Lopez, R.; Ronda, C.; Garcia, E.; Tomasz, A. Mechanism of phage-induced lysis in pneumococci. J. Gen. Microbiol. 1983, 129, 479–487. [Google Scholar] [CrossRef]
- Frias, M.J.; Melo-Cristino, J.; Ramirez, M. The autolysin LytA contributes to efficient bacteriophage progeny release in Streptococcus pneumoniae. J. Bacteriol. 2009, 191, 5428–5440. [Google Scholar] [CrossRef]
- Frias, M.J.R. Lysis Strategy of Streptococcus pneumoniae Bacteriophages: Mechanisms and Host Implication. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 2011. Available online: https://repositorio.ul.pt/bitstream/10451/4644/3/ulsd061521_td_Maria_Frias.pdf (accessed on 5 March 2025).
- Frias, M.J.; Melo-Cristino, J.; Ramirez, M. Export of the pneumococcal phage SV1 lysin requires choline-containing teichoic acids and is holin-independent. Mol. Microbiol. 2013, 87, 430–445. [Google Scholar] [CrossRef]
- Morales, M.; Martín-Galiano, A.J.; Domenech, M.; García, E. Insights into the evolutionary relationships of LytA autolysin and Ply pneumolysin-like genes in Streptococcus pneumoniae and related streptococci. Genome Biol. Evol. 2015, 7, 2747–2761. [Google Scholar] [CrossRef]
- Nishimoto, A.T.; Rosch, J.W.; Tuomanen, E.I. Pneumolysin: Pathogenesis and therapeutic target. Front. Microbiol. 2020, 11, 1543. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.M.; Xu, S.; Leong, J.M.; Sousa, S. The Yin and Yang of pneumolysin during pneumococcal infection. Front. Immunol. 2022, 13, 878244. [Google Scholar] [CrossRef]
- Masure, H.R.; Pearce, B.J.; Shio, H.; Spellerberg, B. Membrane targeting of RecA during genetic transformation. Mol. Microbiol. 1998, 27, 845–852. [Google Scholar] [CrossRef]
- Martin, B.; García, P.; Castanié, M.P.; Claverys, J.-P. The recA gene of Streptococcus pneumoniae is part of a competence-induced operon and controls lysogenic induction. Mol. Microbiol. 1995, 15, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Pearce, B.J.; Naughton, A.M.; Campbell, E.A.; Masure, H.R. The rec locus, a competence-induced operon in Streptococcus pneumoniae. J. Bacteriol. 1995, 177, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Tocci, N.; Iannelli, F.; Bidossi, A.; Ciusa, M.L.; Decorosi, F.; Viti, C.; Pozzi, G.; Ricci, S.; Oggioni, M.R. Functional analysis of pneumococcal drug efflux pumps associates the MATE DinF transporter with quinolone susceptibility. Antimicrob. Agents Chemother. 2013, 57, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Hava, D.L.; Camilli, A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 2002, 45, 1389–1406. [Google Scholar] [CrossRef]
- Díaz, E.; García, J.L. Characterization of the transcription unit encoding the major pneumococcal autolysin. Gene 1990, 90, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Mortier-Barrière, I.; de Saizieu, A.; Claverys, J.-P.; Martin, B. Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae. Mol. Microbiol. 1998, 27, 159–170. [Google Scholar] [CrossRef]
- Campbell, E.A.; Choi, S.Y.; Masure, H.R. A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Mol. Microbiol. 1998, 27, 929–939. [Google Scholar] [CrossRef]
- Pestova, E.V.; Morrison, D.A. Isolation and characterization of three Streptococcus pneumoniae transformation-specific loci by use of a lacZ reporter insertion vector. J. Bacteriol. 1998, 180, 2701–2710. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Morrison, D.A. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J. Bacteriol. 1999, 181, 5004–5016. [Google Scholar] [CrossRef]
- Luo, P.; Morrison, D.A. Transient association of an alternative sigma factor, ComX, with RNA polymerase during the period of competence for genetic transformation in Streptococcus pneumoniae. J. Bacteriol. 2003, 185, 349–358. [Google Scholar] [CrossRef]
- Solano-Collado, V.; Ruiz-Cruz, S.; Lorenzo-Díaz, F.; Pluta, R.; Espinosa, M.; Bravo, A. Recognition of streptococcal promoters by the pneumococcal SigA protein. Front. Mol. Biosci. 2021, 8, 666504. [Google Scholar] [CrossRef] [PubMed]
- Sung, C.K.; Morrison, D.A. Two distinct functions of ComW in stabilization and activation of the alternative sigma factor ComX in Streptococcus pneumoniae. J. Bacteriol. 2005, 187, 3052–3061. [Google Scholar] [CrossRef] [PubMed]
- Tovpeko, Y.; Bai, J.; Morrison, D.A. Competence for genetic transformation in Streptococcus pneumoniae: Mutations in σA bypass the ComW requirement for late gene expression. J. Bacteriol. 2016, 198, 2370–2378. [Google Scholar] [CrossRef] [PubMed]
- Inniss, N.L.; Prehna, G.; Morrison, D.A. The pneumococcal σX activator, ComW, is a DNA-binding protein critical for natural transformation. J. Biol. Chem. 2019, 294, 11101–11118. [Google Scholar] [CrossRef] [PubMed]
- Novak, R.; Henriques, B.; Charpentier, E.; Normark, S.; Tuomanen, E. Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature 1999, 399, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Olivares, A.; Olivares Trejo, J.; Arellano-Galindo, J.; Zuñiga, G.; Escalona, G.; Vigueras, J.C.; Marín, P.; Xicohtencatl, J.; Valencia, P.; Velázquez-Guadarrama, N. pep27 and lytA in vancomycin-tolerant pneumococci. J. Microbiol. Biotechnol. 2011, 21, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Flores-Kim, J.; Dobihal, G.S.; Fenton, A.; Rudner, D.Z.; Bernhardt, T.G. A switch in surface polymer biogenesis triggers growth-phase-dependent and antibiotic-induced bacteriolysis. eLife 2019, 8, e44912. [Google Scholar] [CrossRef]
- Sabelnikov, A.G.; Greenberg, B.; Lacks, S.A. An extended –10 promoter alone directs transcription of the DpnII operon of Streptococcus pneumoniae. J. Mol. Biol. 1995, 250, 144–155. [Google Scholar] [CrossRef]
- Slager, J.; Aprianto, R.; Veening, J.-W. Refining the pneumococcal competence regulon by RNA sequencing. J. Bacteriol. 2019, 201, e00780-18. [Google Scholar] [CrossRef]
- Janssen, A.B.; Gibson, P.S.; Bravo, A.M.; de Bakker, V.; Slager, J.; Veening, J.-W. PneumoBrowse 2: An integrated visual platform for curated genome annotation and multiomics data analysis of Streptococcus pneumoniae. Nucleic Acids Res. 2024, 53, D839–D851. [Google Scholar] [CrossRef]
- Sinha, D.; Zimmer, K.; Cameron, T.A.; Rusch, D.B.; Winkler, M.E.; De Lay, N.R. Redefining the small regulatory RNA transcriptome in Streptococcus pneumoniae serotype 2 strain D39. J. Bacteriol. 2019, 201, e00764-18. [Google Scholar] [CrossRef] [PubMed]
- Sinha, D.; Frick Jacob, P.; Clemons, K.; Winkler, M.E.; De Lay, N.R. Pivotal roles for ribonucleases in Streptococcus pneumoniae pathogenesis. mBio 2021, 12, e02385-21. [Google Scholar] [CrossRef]
- Mohsen, J.J.; Martel, A.A.; Slavoff, S.A. Microproteins—Discovery, structure, and function. Proteomics 2023, 23, 2100211. [Google Scholar] [CrossRef]
- Simoens, L.; Fijalkowski, I.; Van Damme, P. Exposing the small protein load of bacterial life. FEMS Microbiol. Rev. 2023, 47, fuad063. [Google Scholar] [CrossRef] [PubMed]
- Laczkovich, I.; Mangano, K.; Shao, X.; Hockenberry Adam, J.; Gao, Y.; Mankin, A.; Vázquez-Laslop, N.; Federle Michael, J. Discovery of unannotated small open reading frames in Streptococcus pneumoniae D39 involved in quorum sensing and virulence using ribosome profiling. mBio 2022, 13, e01247-22. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, J.J.; Storz, G. Two for one: Regulatory RNAs that encode small proteins. Trends Biochem. Sci. 2023, 48, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, S.; Brignoli, T.; Bertoni, G. Little reason to call them small noncoding RNAs. Front. Microbiol. 2023, 14, 1191166. [Google Scholar] [CrossRef]
- Jordan, B.; Weidenbach, K.; Schmitz, R.A. The power of the small: The underestimated role of small proteins in bacterial and archaeal physiology. Curr. Opin. Microbiol. 2023, 76, 102384. [Google Scholar] [CrossRef]
- Duan, Y.; Santos-Júnior, C.D.; Schmidt, T.S.; Fullam, A.; de Almeida, B.L.S.; Zhu, C.; Kuhn, M.; Zhao, X.-M.; Bork, P.; Coelho, L.P. A catalog of small proteins from the global microbiome. Nat. Commun. 2024, 15, 7563. [Google Scholar] [CrossRef]
- Tomasz, A.; Westphal, M. Abnormal autolytic enzyme in a pneumococcus with altered teichoic acid composition. Proc. Natl. Acad. Sci. USA 1971, 68, 2627–2630. [Google Scholar] [CrossRef]
- Höltje, J.V.; Tomasz, A. Purification of the pneumococcal N-acetylmuramyl-l-alanine amidase to biochemical homogeneity. J. Biol. Chem. 1976, 251, 4199–4207. [Google Scholar] [CrossRef] [PubMed]
- Giudicelli, S.; Tomasz, A. Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation. J. Bacteriol. 1984, 158, 1188–1190. [Google Scholar] [CrossRef] [PubMed]
- Briese, T.; Hakenbeck, R. Interaction of the pneumococcal amidase with lipoteichoic acid and choline. Eur. J. Biochem. 1985, 146, 417–427. [Google Scholar] [CrossRef]
- Sanz, J.M.; Lopez, R.; Garcia, J.L. Structural requirements of choline derivatives for ‘conversion’ of pneumococcal amidase. A new single-step procedure for purification of this autolysin. FEBS Lett. 1988, 232, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Rane, L.; Subbarow, Y. Choline, pantothenic acid, and nicotinic acid as essential growth factors for pneumococcus. J. Biol. Chem. 1940, 134, 455–456. [Google Scholar] [CrossRef]
- Denapaite, D.; Brückner, R.; Hakenbeck, R.; Vollmer, W. Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related species: Lessons from genomes. Microb. Drug Resist. 2012, 18, 344–358. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, W.; Massidda, O.; Tomasz, A. The cell wall of Streptococcus pneumoniae. Microbiol. Spectr. 2019, 7, 7. [Google Scholar] [CrossRef]
- Seo, H.S.; Cartee, R.T.; Pritchard, D.G.; Nahm, M.H. A new model of pneumococcal lipoteichoic acid structure resolves biochemical, biosynthetic, and serologic inconsistencies of the current model. J. Bacteriol. 2008, 190, 2379–2387. [Google Scholar] [CrossRef]
- Gisch, N.; Kohler, T.; Ulmer, A.J.; Müthing, J.; Pribyl, T.; Fischer, K.; Lindner, B.; Hammerschmidt, S.; Zähringer, U. Structural reevaluation of Streptococcus pneumoniae lipoteichoic acid and new insights into its immunostimulatory potency. J. Biol. Chem. 2013, 288, 15654–15667. [Google Scholar] [CrossRef]
- Garcia-Bustos, J.F.; Tomasz, A. Teichoic acid-containing muropeptides from Streptococcus pneumoniae as substrates for the pneumococcal autolysin. J. Bacteriol. 1987, 169, 447–453. [Google Scholar] [CrossRef]
- Severin, A.; Horne, D.; Tomasz, A. Autolysis and cell wall degradation in a choline-independent strain of Streptococcus pneumoniae. Microb. Drug Resist. 1997, 3, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Díaz, E.; Munthali, M.; Lunsdorf, H.; Höltje, J.-V.; Timmis, K.N. The two-step lysis system of pneumococcal bacteriophage EJ-1 is functional in Gram-negative bacteria: Triggering of the major pneumococcal autolysin in Escherichia coli. Mol. Microbiol. 1996, 19, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Bustos, J.; Tomasz, A. Mechanisms of pneumococcal cell wall degradation in vitro and in vivo. J. Bacteriol. 1989, 171, 114–119. [Google Scholar] [CrossRef]
- Blum, M.; Andreeva, A.; Florentino, L.C.; Chuguransky, S.R.; Grego, T.; Hobbs, E.; Lazaro Pinto, B.; Orr, A.; Paysan-Lafosse, T.; Ponamareva, I.; et al. InterPro: The protein sequence classification resource in 2025. Nucleic Acids Res. 2025, 53, D444–D456. [Google Scholar] [CrossRef]
- Wolf, A.J.; Underhill, D.M. Peptidoglycan recognition by the innate immune system. Nat. Rev. Immunol. 2018, 18, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Mellroth, P.; Steiner, H. PGRP-SB1: An N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochem. Biophys. Res. Commun. 2006, 350, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Dziarski, R.; Gupta, D. Mammalian PGRPs: Novel antibacterial proteins. Cell. Microbiol. 2006, 8, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ren, M.; Liu, X.; Xia, H.; Chen, K. Peptidoglycan recognition proteins in insect immunity. Mol. Immunol. 2019, 106, 69–76. [Google Scholar] [CrossRef]
- Hu, Z.; Cao, X.; Guo, M.; Li, C. Identification and characterization of a novel short-type peptidoglycan recognition protein in Apostichopus japonicus. Fish Shellfish Immunol. 2020, 99, 257–266. [Google Scholar] [CrossRef]
- Zhao, L.; Niu, J.; Feng, D.; Wang, X.; Zhang, R. Immune functions of pattern recognition receptors in Lepidoptera. Front. Immunol. 2023, 14, 1203061. [Google Scholar] [CrossRef]
- Hakenbeck, R.; Madhour, A.; Denapaite, D.; Brückner, R. Versatility of choline metabolism and choline-binding proteins in Streptococcus pneumoniae and commensal streptococci. FEMS Microbiol. Rev. 2009, 33, 572–586. [Google Scholar] [CrossRef] [PubMed]
- Frolet, C.; Beniazza, M.; Roux, L.; Gallet, B.; Noirclerc-Savoye, M.; Vernet, T.; Di Guilmi, A.M. New adhesin functions of surface-exposed pneumococcal proteins. BMC Microbiol. 2010, 10, 190. [Google Scholar] [CrossRef]
- Pérez-Dorado, I.; Galan-Bartual, S.; Hermoso, J.A. Pneumococcal surface proteins: When the whole is greater than the sum of its parts. Mol. Oral Microbiol. 2012, 27, 221–245. [Google Scholar] [CrossRef] [PubMed]
- Maestro, B.; Sanz, J.M. Choline binding proteins from Streptococcus pneumoniae: A dual role as enzybiotics and targets for the design of new antimicrobials. Antibiotics 2016, 5, 21. [Google Scholar] [CrossRef]
- Aceil, J.; Avci, F.Y. Pneumococcal surface proteins as virulence factors, immunogens, and conserved vaccine targets. Front. Cell. Infect. Microbiol. 2022, 12, 832254. [Google Scholar] [CrossRef] [PubMed]
- García, J.L.; García, E.; Arrarás, A.; García, P.; Ronda, C.; López, R. Cloning, purification, and biochemical characterization of the pneumococcal bacteriophage Cp-1 lysin. J. Virol. 1987, 61, 2573–2580. [Google Scholar] [CrossRef] [PubMed]
- García, P.; García, J.L.; García, E.; Sánchez-Puelles, J.M.; López, R. Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene 1990, 86, 81–88. [Google Scholar] [CrossRef]
- Díaz, E.; López, R.; García, J.L. Chimeric phage-bacterial enzymes: A clue to the modular evolution of genes. Proc. Natl. Acad. Sci. USA 1990, 87, 8125–8129. [Google Scholar] [CrossRef]
- Croux, C.; Ronda, C.; López, R.; García, J.L. Role of the C-terminal domain of the lysozyme of Clostridium acetobutylicum ATCC 824 in a chimeric pneumococcal-clostridial cell wall lytic enzyme. FEBS Lett. 1993, 336, 111–114. [Google Scholar] [CrossRef]
- Croux, C.; Ronda, C.; Lopez, R.; Garcia, J.L. Interchange of functional domains switches enzyme specificity: Construction of a chimeric pneumococcal-clostridial cell wall lytic enzyme. Mol. Microbiol. 1993, 9, 1019–1025. [Google Scholar] [CrossRef]
- Sánchez-Puelles, J.M.; Sanz, J.M.; García, J.L.; García, E. Cloning and expression of gene fragments encoding the choline-binding domain of pneumococcal murein hydrolases. Gene 1990, 89, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.L.; Diaz, E.; Romero, A.; Garcia, P. Carboxy-terminal deletion analysis of the major pneumococcal autolysin. J. Bacteriol. 1994, 176, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Usobiaga, P.; Medrano, F.J.; Gasset, M.; García, J.L.; Saiz, J.L.; Rivas, G.; Laynez, J.; Menéndez, M. Structural organization of the major autolysin from Streptococcus pneumoniae. J. Biol. Chem. 1996, 271, 6832–6838. [Google Scholar] [CrossRef] [PubMed]
- Maestro, B.; Santiveri, C.M.; Jiménez, M.A.; Sanz, J.M. Structural autonomy of a β-hairpin peptide derived from the pneumococcal choline-binding protein LytA. Protein Eng. Des. Sel. 2011, 24, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Maestro, B.; Zamora-Carreras, H.; Jiménez, M.Á.; Sanz, J.M. Inter-hairpin linker sequences determine the structure of the ββ-solenoid fold: A “bottom-up” study of pneumococcal LytA choline-binding module. Int. J. Biol. Macromol. 2021, 190, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Marianayagam, N.J.; Sunde, M.; Matthews, J.M. The power of two: Protein dimerization in biology. Trends Biochem. Sci. 2004, 29, 618–625. [Google Scholar] [CrossRef]
- Dang, D.T. Molecular approaches to protein dimerization: Opportunities for supramolecular chemistry. Front. Chem. 2022, 10, 829312. [Google Scholar] [CrossRef]
- Obregón, V.; García, P.; García, E.; Fenoll, A.; López, R.; García, J.L. Molecular peculiarities of the lytA gene isolated from clinical pneumococcal strains that are bile insoluble. J. Clin. Microbiol. 2002, 40, 2545–2554. [Google Scholar] [CrossRef] [PubMed]
- Arbique, J.C.; Poyart, C.; Trieu-Cuot, P.; Quesne, G.; Carvalho, M.d.G.S.; Steigerwalt, A.G.; Morey, R.E.; Jackson, D.; Davidson, R.J.; Facklam, R.R. Accuracy of phenotypic and genotypic testing for identification of Streptococcus pneumoniae and description of Streptococcus pseudopneumoniae sp. nov. J. Clin. Microbiol. 2004, 42, 4686–4696. [Google Scholar] [CrossRef]
- Llull, D.; López, R.; García, E. Characteristic signatures of the lytA gene provide a rapid and reliable diagnosis of Streptococcus pneumoniae infections. J. Clin. Microbiol. 2006, 44, 1250–1256. [Google Scholar] [CrossRef]
- Fernández-Tornero, C.; López, R.; García, E.; Giménez-Gallego, G.; Romero, A. A novel solenoid fold in the cell wall anchoring domain of the pneumococcal virulence factor LytA. Nat. Struct. Biol. 2001, 8, 1020–1024. [Google Scholar] [CrossRef]
- Fernández-Tornero, C.; García, E.; López, R.; Giménez-Gallego, G.; Romero, A. Two new crystal forms of the choline-binding domain of the major pneumococcal autolysin: Insights into the dynamics of the active homodimer. J. Mol. Biol. 2002, 321, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Mellroth, P.; Sandalova, T.; Kikhney, A.; Vilaplana, F.; Hesek, D.; Lee, M.; Mobashery, S.; Normark, S.; Svergun, D.; Henriques-Normark, B.; et al. Structural and functional insights into peptidoglycan access for the lytic amidase LytA of Streptococcus pneumoniae. mBio 2014, 5, e01120-13. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cheng, W.; Morlot, C.; Bai, X.-H.; Jiang, Y.-L.; Wang, W.; Roper, D.I.; Vernet, T.; Dong, Y.-H.; Chen, Y.; et al. Full-length structure of the major autolysin LytA. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 1373–1381. [Google Scholar] [CrossRef]
- Hermoso, J.A.; Lagartera, L.; González, A.; Stelter, M.; García, P.; Martínez-Ripoll, M.; García, J.L.; Menéndez, M. Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce. Nat. Struct. Mol. Biol. 2005, 12, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Do, T.; Page, J.E.; Walker, S. Uncovering the activities, biological roles, and regulation of bacterial cell wall hydrolases and tailoring enzymes. J. Biol. Chem. 2020, 295, 3347–3361. [Google Scholar] [CrossRef]
- Brogan, A.P.; Rudner, D.Z. Regulation of peptidoglycan hydrolases: Localization, abundance, and activity. Curr. Opin. Microbiol. 2023, 72, 102279. [Google Scholar] [CrossRef]
- López, R.; García, E. Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol. Rev. 2004, 28, 553–580. [Google Scholar] [CrossRef]
- Díaz, E.; García, E.; Ascaso, C.; Méndez, E.; López, R.; García, J.L. Subcellular localization of the major pneumococcal autolysin: A peculiar mechanism of secretion in Escherichia coli. J. Biol. Chem. 1989, 264, 1238–1244. [Google Scholar] [CrossRef]
- Zamora-Carreras, H.; Maestro, B.; Strandberg, E.; Ulrich, A.S.; Sanz, J.M.; Jiménez, M.Á. Micelle-triggered β-hairpin to α-helix transition in a 14-residue peptide from a choline-binding repeat of the pneumococcal autolysin LytA. Chemistry 2015, 21, 8076–8089. [Google Scholar] [CrossRef]
- Zamora-Carreras, H.; Maestro, B.; Strandberg, E.; Ulrich, A.S.; Sanz, J.M.; Jiménez, M.Á. Roles of amphipathicity and hydrophobicity in the micelle-driven structural switch of a 14-mer peptide core from a choline-binding repeat. Chem. Eur. J. 2018, 24, 5825–5839. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.V.; Ruiz-Castañeda, M.; Nitschke, P.; Gschwind, R.M.; Jiménez, M.A. Insights Into the micelle-induced β-hairpin-to-α-helix transition of a LytA-derived peptide by photo-CIDNP spectroscopy. Int. J. Mol. Sci. 2021, 22, 6666. [Google Scholar] [CrossRef]
- Lella, M.; Mahalakshmi, R. Metamorphic proteins: Emergence of dual protein folds from one primary sequence. Biochemistry 2017, 56, 2971–2984. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Carreras, H.; Maestro, B.; Sanz, J.M.; Jiménez, M.A. Turncoat polypeptides: We adapt to our environment. Chembiochem 2020, 21, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Roterman, I.; Slupina, M.; Stapor, K.; Konieczny, L.; Gądek, K.; Nowakowski, P. Chameleon sequences-Structural effects in proteins characterized by hydrophobicity disorder. ACS Omega 2024, 9, 38506–38522. [Google Scholar] [CrossRef]
- Porter, L.L.; Artsimovitch, I.; Ramírez-Sarmiento, C.A. Metamorphic proteins and how to find them. Curr. Opin. Struct. Biol. 2024, 86, 102807. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.T.; Park, S.S.; Rhee, D.K. Stress responses in Streptococcus species and their effects on the host. J. Microbiol. 2015, 53, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Alegría, Á.; Bron, P.A.; de Angelis, M.; Gobbetti, M.; Kleerebezem, M.; Lemos, J.A.; Linares, D.M.; Ross, P.; Stanton, C.; et al. Stress physiology of lactic acid bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 837–890. [Google Scholar] [CrossRef]
- Mueller, E.A.; Levin, P.A. Bacterial cell wall quality control during environmental stress. mBio 2020, 11, e02456-20. [Google Scholar] [CrossRef]
- Keck, T.; Leiacker, R.; Schick, M.; Rettinger, G.; Kühnemann, S. Temperatur- und feuchteprofil der nasenwege vor und nach schleimhautabschwellung durch xylometazolin. Laryngorhinootologie 2000, 79, 749–752. [Google Scholar] [CrossRef]
- Abbas, A.K.; Heimann, K.; Jergus, K.; Orlikowsky, T.; Leonhardt, S. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed. Eng. Online 2011, 10, 93. [Google Scholar] [CrossRef]
- Gazioglu, O.; Kareem, B.O.; Afzal, M.; Shafeeq, S.; Kuipers, O.P.; Ulijasz, A.T.; Andrew, P.W.; Yesilkaya, H. Glutamate dehydrogenase (GdhA) of Streptococcus pneumoniae is required for high temperature adaptation. Infect. Immun. 2021, 89, e0040021. [Google Scholar] [CrossRef] [PubMed]
- Sakai, F.; Talekar, S.J.; Lanata, C.F.; Grijalva, C.G.; Klugman, K.P.; Vidal, J.E.; for the RESPIRA PERU Group. Expression of virulence-related genes in the nasopharynx of healthy children. PLoS ONE 2013, 8, e67147. [Google Scholar] [CrossRef] [PubMed]
- Jusot, J.-F.; Neill, D.R.; Waters, E.M.; Bangert, M.; Collins, M.; Bricio Moreno, L.; Lawan, K.G.; Moussa, M.M.; Dearing, E.; Everett, D.B.; et al. Airborne dust and high temperatures are risk factors for invasive bacterial disease. J. Allergy Clin. Immunol. 2017, 139, 977–986.e972. [Google Scholar] [CrossRef] [PubMed]
- Maziero, M.; Lane, D.; Polard, P.; Bergé, M. Fever-like temperature bursts promote competence development via an HtrA-dependent pathway in Streptococcus pneumoniae. PLoS Genet. 2023, 19, e1010946. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Q.; Kohler, T.P.; Schulig, L.; Burchhardt, G.; Hammerschmidt, S. Pneumococcal extracellular serine proteases: Molecular analysis and impact on colonization and disease. Front. Cell. Infect. Microbiol. 2021, 11, 763152. [Google Scholar] [CrossRef] [PubMed]
- Eichner, H.; Karlsson, J.; Spelmink, L.; Pathak, A.; Sham, L.-T.; Henriques-Normark, B.; Loh, E. RNA thermosensors facilitate Streptococcus pneumoniae and Haemophilus influenzae immune evasion. PLoS Pathog. 2021, 17, e1009513. [Google Scholar] [CrossRef]
- Li-Korotky, H.-S.; Lo, C.-Y.; Zeng, F.-R.; Lo, D.; Banks, J.M. Interaction of phase variation, host and pressure/gas composition: Pneumococcal gene expression of PsaA, SpxB, Ply and LytA in simulated middle ear environments. Int. J. Pediatr. Otorhinolaryngol. 2009, 73, 1417–1422. [Google Scholar] [CrossRef]
- Prudhomme, M.; Johnston, C.H.G.; Soulet, A.-L.; Boyeldieu, A.; De Lemos, D.; Campo, N.; Polard, P. Pneumococcal competence is a populational health sensor driving multilevel heterogeneity in response to antibiotics. Nat. Commun. 2024, 15, 5625. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, S.; Li, Y.; Zhou, L.; Wu, Y. Competence regulation in Streptococcus pneumoniae and the competence-targeted anti-pneumococcal strategies. Curr. Med. Chem. 2024. [Google Scholar] [CrossRef] [PubMed]
- Veening, J.W.; Blokesch, M. Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat. Rev. Microbiol. 2017, 15, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Claverys, J.-P.; Prudhomme, M.; Martin, B. Induction of competence regulons as a general response to stress in Gram-positive bacteria. Annu. Rev. Microbiol. 2006, 60, 451–475. [Google Scholar] [CrossRef]
- Engelmoer, D.J.; Rozen, D.E. Competence increases survival during stress in Streptococcus pneumoniae. Evolution 2011, 65, 3475–3485. [Google Scholar] [CrossRef] [PubMed]
- De Lemos, D.; Soulet, A.-L.; Morales, V.; Berge, M.; Polard, P.; Johnston, C. Competence induction of homologous recombination genes protects pneumococcal cells from genotoxic stress. mBio 2024, 16, e03142-24. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Choi, P.J.; Li, G.-W.; Chen, H.; Babu, M.; Hearn, J.; Emili, A.; Xie, X.S. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 2010, 329, 533–538. [Google Scholar] [CrossRef]
- Ning, K.; Fermin, D.; Nesvizhskii, A.I. Comparative analysis of different label-free mass spectrometry based protein abundance estimates and their correlation with RNA-Seq gene expression data. J. Proteome Res. 2012, 11, 2261–2271. [Google Scholar] [CrossRef] [PubMed]
- Dagkessamanskaia, A.; Moscoso, M.; Hénard, V.; Guiral, S.; Overweg, K.; Reuter, M.; Martin, B.; Wells, J.; Claverys, J.-P. Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: Competence triggers stationary phase autolysis of ciaR mutant cells. Mol. Microbiol. 2004, 51, 1071–1086. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.N.; Sung, C.K.; Cline, R.; Desai, B.V.; Snesrud, E.C.; Luo, P.; Walling, J.; Li, H.; Mintz, M.; Tsegaye, G.; et al. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol. Microbiol. 2004, 51, 1051–1070. [Google Scholar] [CrossRef]
- Tomasz, A.; Mosser, J.L. On the nature of the pneumococcal activator substance. Proc. Natl. Acad. Sci. USA 1966, 55, 58–66. [Google Scholar] [CrossRef]
- Håvarstein, L.S.; Coomaraswamy, G.; Morrison, D.A. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 1995, 92, 11140–11144. [Google Scholar] [CrossRef]
- Aprianto, R.; Slager, J.; Holsappel, S.; Veening, J.-W. High-resolution analysis of the pneumococcal transcriptome under a wide range of infection-relevant conditions. Nucleic Acids Res. 2018, 46, 9990–10006. [Google Scholar] [CrossRef] [PubMed]
- Aprianto, R.; Slager, J.; Holsappel, S.; Veening, J.-W. Time-resolved dual RNA-seq reveals extensive rewiring of lung epithelial and pneumococcal transcriptomes during early infection. Genome Biol. 2016, 17, 198. [Google Scholar] [CrossRef] [PubMed]
- Minhas, V.; Domenech, A.; Synefiaridou, D.; Straume, D.; Brendel, M.; Cebrero, G.; Liu, X.; Costa, C.; Baldry, M.; Sirard, J.-C.; et al. Competence remodels the pneumococcal cell wall exposing key surface virulence factors that mediate increased host adherence. PLoS Biol. 2023, 21, e3001990. [Google Scholar] [CrossRef] [PubMed]
- Lavergne, J.-P.; Page, A.; Polard, P.; Campo, N.; Grangeasse, C. Quantitative phosphoproteomic reveals that the induction of competence modulates protein phosphorylation in Streptococcus pneumonaie. J. Proteom. 2025, 105399. [Google Scholar] [CrossRef]
- Zhu, L.; Lau, G.W. Inhibition of competence development, horizontal gene transfer and virulence in Streptococcus pneumoniae by a modified competence stimulating peptide. PLoS Pathog. 2011, 7, e1002241. [Google Scholar] [CrossRef]
- Turlan, C.; Prudhomme, M.; Fichant, G.; Martin, B.; Gutierrez, C. SpxA1, a novel transcriptional regulator involved in X-state (competence) development in Streptococcus pneumoniae. Mol. Microbiol. 2009, 73, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, X.-Y.; Zhu, M.; Deng, H.; Wang, J.; Zhang, J.-R. The SpxA1-TenA toxin-antitoxin system regulates epigenetic variations of Streptococcus pneumoniae by targeting protein synthesis. PLoS Pathog. 2024, 20, e1012801. [Google Scholar] [CrossRef]
- Chan, W.T.; Garcillán-Barcia, M.P.; Yeo, C.C.; Espinosa, M. Type II bacterial toxin–antitoxins: Hypotheses, facts, and the newfound plethora of the PezAT system. FEMS Microbiol. Rev. 2023, 47, fuad052. [Google Scholar] [CrossRef]
- Lin, J.; Park, P.; Li, H.; Oh, M.W.; Dobrucki, I.T.; Dobrucki, W.; Lau, G.W. Streptococcus pneumoniae elaborates persistent and prolonged competent state during pneumonia-derived sepsis. Infect. Immun. 2020, 88, e00919-19. [Google Scholar] [CrossRef]
- Chong, S.Y.; Lew, S.Q.; Alam, T.; Gaulke, C.A.; Lau, G.W. Comparative analysis of the Streptococcus pneumoniae competence development in vitro versus in vivo during pneumonia-derived sepsis. Front. Microbiol. 2025, 16, 1540511. [Google Scholar] [CrossRef]
- Schmidt, F.; Kakar, N.; Meyer, T.C.; Depke, M.; Masouris, I.; Burchhardt, G.; Gómez-Mejia, A.; Dhople, V.; Håvarstein, L.S.; Sun, Z.; et al. In vivo proteomics identifies the competence regulon and AliB oligopeptide transporter as pathogenic factors in pneumococcal meningitis. PLoS Pathog. 2019, 15, e1007987. [Google Scholar] [CrossRef]
- Jim, K.K.; Aprianto, R.; Koning, R.; Domenech, A.; Kurushima, J.; van de Beek, D.; Vandenbroucke-Grauls, C.M.J.E.; Bitter, W.; Veening, J.-W. Pneumolysin promotes host cell necroptosis and bacterial competence during pneumococcal meningitis as shown by whole-animal dual RNA-seq. Cell Rep. 2022, 41, 111851. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, A.T.; Brissac, T.; Gilley, R.P.; Kumar, N.; Wang, Y.; Gonzalez-Juarbe, N.; Hinkle, W.S.; Daugherty, S.C.; Shetty, A.C.; Ott, S.; et al. Streptococcus pneumoniae in the heart subvert the host response through biofilm-mediated resident macrophage killing. PLoS Pathog. 2017, 13, e1006582. [Google Scholar] [CrossRef]
- Shenoy, A.T.; Beno, S.M.; Brissac, T.; Bell, J.W.; Novak, L.; Orihuela, C.J. Severity and properties of cardiac damage caused by Streptococcus pneumoniae are strain dependent. PLoS ONE 2018, 13, e0204032. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, A.; Riegler, A.N.; Martínez, E.; Beno, S.M.; Ricketts, T.D.; Foxman, E.F.; Orihuela, C.J.; Tettelin, H. An in vivo atlas of host–pathogen transcriptomes during Streptococcus pneumoniae colonization and disease. Proc. Natl. Acad. Sci. USA 2020, 117, 33507–33518. [Google Scholar] [CrossRef]
- Orihuela, C.J.; Radin, J.N.; Sublett, J.E.; Gao, G.; Kaushal, D.; Tuomanen, E.I. Microarray analysis of pneumococcal gene expression during invasive disease. Infect. Immun. 2004, 72, 5582–5596. [Google Scholar] [CrossRef]
- Romao, S.; Memmi, G.; Oggioni, M.R.; Trombe, M.-C. LuxS impacts on LytA-dependent autolysis and on competence in Streptococcus pneumoniae. Microbiology 2006, 152, 333–341. [Google Scholar] [CrossRef]
- Rogers, P.D.; Liu, T.T.; Barker, K.S.; Hilliard, G.M.; English, B.K.; Thornton, J.; Swiatlo, E.; McDaniel, L.S. Gene expression profiling of the response of Streptococcus pneumoniae to penicillin. J. Antimicrob. Chemother. 2007, 59, 616–626. [Google Scholar] [CrossRef]
- Yadav, M.K.; Vidal, J.E.; Go, Y.Y.; Kim, S.H.; Chae, S.-W.; Song, J.-J. The LuxS/AI-2 quorum-sensing system of Streptococcus pneumoniae is required to cause disease, and to regulate virulence- and metabolism-related genes in a rat model of middle ear infection. Front. Cell. Infect. Microbiol. 2018, 8, 138. [Google Scholar] [CrossRef]
- Vidal, J.E.; Ludewick, H.P.; Kunkel, R.M.; Zähner, D.; Klugman, K.P. The LuxS-dependent quorum-sensing system regulates early biofilm formation by Streptococcus pneumoniae strain D39. Infect. Immun. 2011, 79, 4050–4060. [Google Scholar] [CrossRef]
- Yadav, M.K.; Go, Y.Y.; Chae, S.W.; Park, M.K.; Song, J.J. Asian sand dust particles increased pneumococcal biofilm formation in vitro and colonization in human middle ear epithelial cells and rat middle ear mucosa. Front. Genet. 2020, 11, 323. [Google Scholar] [CrossRef]
- Bagale, K.; Paudel, S.; Cagle, H.; Sigel, E.; Kulkarni, R. Electronic Cigarette (E-cigarette) vapor exposure alters Streptococcus pneumoniae transcriptome in a nicotine-dependent manner without affecting pneumococcal virulence. Appl. Environ. Microbiol. 2019, 86, e02125-19. [Google Scholar] [CrossRef]
- Domon, H.; Maekawa, T.; Yonezawa, D.; Nagai, K.; Oda, M.; Yanagihara, K.; Terao, Y. Mechanism of macrolide-induced inhibition of pneumolysin release involves impairment of autolysin release in macrolide-resistant Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2018, 62, e00161-18. [Google Scholar] [CrossRef] [PubMed]
- Domon, H.; Isono, T.; Hiyoshi, T.; Tamura, H.; Sasagawa, K.; Maekawa, T.; Hirayama, S.; Yanagihara, K.; Terao, Y. Clarithromycin inhibits pneumolysin production via downregulation of ply gene transcription despite autolysis activation. Microbiol. Spectr. 2021, 9, e0031821. [Google Scholar] [CrossRef]
- Hong, W.; Khampang, P.; Erbe, C.; Kumar, S.; Taylor, S.R.; Kerschner, J.E. Nontypeable Haemophilus influenzae inhibits autolysis and fratricide of Streptococcus pneumoniae in vitro. Microbes Infect. 2014, 16, 203–213. [Google Scholar] [CrossRef]
- McMahon, F.; Ware, R.S.; Grimwood, K.; Atack, J.M. Haemophilus influenzae and pneumococci: Co-colonization, interactions, cooperation and competition. Pediatr. Pulmonol. 2024, 60, e27318. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.F.; Georgellis, D. Environmental adaptation and diversification of bacterial two-component systems. Curr. Opin. Microbiol. 2023, 76, 102399. [Google Scholar] [CrossRef]
- Gómez-Mejia, A.; Gámez, G.; Hammerschmidt, S. Streptococcus pneumoniae two-component regulatory systems: The interplay of the pneumococcus with its environment. Int. J. Med. Microbiol. 2018, 308, 722–737. [Google Scholar] [CrossRef]
- Pettersen, J.S.; Nielsen, F.D.; Andreassen, P.R.; Møller-Jensen, J.; Jørgensen, M.G. A comprehensive analysis of pneumococcal two-component system regulatory networks. NAR Genom. Bioinform. 2024, 6, lqae039. [Google Scholar] [CrossRef]
- Mascher, T.; Heintz, M.; Zähner, D.; Merai, M.; Hakenbeck, R. The CiaRH system of Streptococcus pneumoniae prevents lysis during stress induced by treatment with cell wall inhibitors and by mutations in pbp2x involved in β-lactam resistance. J. Bacteriol. 2006, 188, 1959–1968. [Google Scholar] [CrossRef]
- Zähner, D.; Kaminski, K.; van der Linden, M.; Mascher, T.; Meral, M.; Hakenbeck, R. The ciaR/ciaH regulatory network of Streptococcus pneumoniae. J. Mol. Microbiol. Biotechnol. 2002, 4, 211–216. [Google Scholar] [PubMed]
- Halfmann, A.; Kovács, M.; Hakenbeck, R.; Brückner, R. Identification of the genes directly controlled by the response regulator CiaR in Streptococcus pneumoniae: Five out of 15 promoters drive expression of small non-coding RNAs. Mol. Microbiol. 2007, 66, 110–126. [Google Scholar] [CrossRef] [PubMed]
- Halfmann, A.; Schnorpfeil, A.; Müller, M.; Marx, P.; Günzler, U.; Hakenbeck, R.; Brückner, R. Activity of the two-component regulatory system CiaRH in Streptococcus pneumoniae R6. J. Mol. Microbiol. Biotechnol. 2011, 20, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Tsui, H.C.; Mukherjee, D.; Ray, V.A.; Sham, L.T.; Feig, A.L.; Winkler, M.E. Identification and characterization of noncoding small RNAs in Streptococcus pneumoniae serotype 2 strain D39. J. Bacteriol. 2010, 192, 264–279. [Google Scholar] [CrossRef]
- García, J.L.; Sánchez-Beato, A.R.; Medrano, F.J.; López, R. Versatility of choline-binding domain. Microb. Drug Resist. 1998, 4, 25–36. [Google Scholar] [CrossRef]
- Rodríguez Sánchez-Beato, A.I. Caracterización Molecular de Genes de Clostridium acetobutylicum y Streptococcus pneumoniae que codifican Para Proteínas con Dominios de Unión a Colina. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2005. Available online: https://docta.ucm.es/bitstreams/274074c1-1c65-4064-a70c-d34c568eb827/download (accessed on 5 March 2025).
- Eldholm, V.; Gutt, B.; Johnsborg, O.; Brückner, R.; Maurer, P.; Hakenbeck, R.; Mascher, T.; Håvarstein, L.S. The pneumococcal cell envelope stress-sensing system LiaFSR is activated by murein hydrolases and lipid II-interacting antibiotics. J. Bacteriol. 2010, 192, 1761–1773. [Google Scholar] [CrossRef]
- Molina, R.; González, A.; Stelter, M.; Pérez-Dorado, I.; Kahn, R.; Morales, M.; Moscoso, M.; Campuzano, S.; Campillo, N.E.; Mobashery, S.; et al. Crystal structure of CbpF, a bifunctional choline-binding protein and autolysis regulator from Streptococcus pneumoniae. EMBO Rep. 2009, 10, 246–251. [Google Scholar] [CrossRef]
- Blue, C.E.; Mitchell, T.J. Contribution of a response regulator to the virulence of Streptococcus pneumoniae is strain dependent. Infect. Immun. 2003, 71, 4405–4413. [Google Scholar] [CrossRef]
- Hirschmann, S.; Gómez-Mejia, A.; Mäder, U.; Karsunke, J.; Driesch, D.; Rohde, M.; Häussler, S.; Burchhardt, G.; Hammerschmidt, S. The two-component system 09 regulates pneumococcal carbohydrate metabolism and capsule expression. Microorganisms 2021, 9, 468. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, S.; Gómez-Mejia, A.; Kohler, T.P.; Voß, F.; Rohde, M.; Brendel, M.; Hammerschmidt, S. The two-component system 09 of Streptococcus pneumoniae is important for metabolic fitness and resistance during dissemination in the host. Microorganisms 2021, 9, 1365. [Google Scholar] [CrossRef]
- Kim, G.-L.; Luong, T.T.; Park, S.-S.; Lee, S.; Ha, J.A.; Nguyen, C.T.; Ahn, J.H.; Park, K.-T.; Paik, M.-J.; Pyo, S.; et al. Inhibition of autolysis by lipase LipA in Streptococcus pneumoniae sepsis. Mol. Cells 2017, 40, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Kovács, M.; Halfmann, A.; Fedtke, I.; Heintz, M.; Peschel, A.; Vollmer, W.; Hakenbeck, R.; Brückner, R. A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in Gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J. Bacteriol. 2006, 188, 5797–5805. [Google Scholar] [CrossRef] [PubMed]
- Wecke, J.; Perego, M.; Fischer, W. d-Alanine deprivation of Bacillus subtilis teichoic acids is without effect on cell growth and morphology but affects the autolytic activity. Microb. Drug Resist. 1996, 2, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Steen, A.; Palumbo, E.; Deghorain, M.; Cocconcelli, P.S.; Delcour, J.; Kuipers, O.P.; Kok, J.; Buist, G.; Hols, P. Autolysis of Lactococcus lactis is increased upon d-alanine depletion of peptidoglycan and lipoteichoic acids. J. Bacteriol. 2005, 187, 114–124. [Google Scholar] [CrossRef]
- Du, J.; Huang, S.; Wu, M.; Chen, S.; Zhou, W.; Zhan, L.; Huang, X. Dlt operon regulates physiological function and cariogenic virulence in Streptococcus mutans. Future Microbiol. 2023, 18, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Potter, A.J.; Paton, J.C. Spermidine biosynthesis and transport modulate pneumococcal autolysis. J. Bacteriol. 2014, 196, 3556–3561. [Google Scholar] [CrossRef]
- Balaban, N.Q.; Helaine, S.; Lewis, K.; Ackermann, M.; Aldridge, B.; Andersson, D.I.; Brynildsen, M.P.; Bumann, D.; Camilli, A.; Collins, J.J.; et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol 2019, 17, 441–448. [Google Scholar] [CrossRef]
- Dörr, T. Understanding tolerance to cell wall-active antibiotics. Ann. N. Y. Acad. Sci. 2021, 1496, 35–58. [Google Scholar] [CrossRef]
- Brauner, A.; Fridman, O.; Gefen, O.; Balaban, N.Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 2016, 14, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Zheng, J.; Chan, E.W.; Chen, S. Proton motive force and antibiotic tolerance in bacteria. Microb. Biotechnol. 2024, 17, e70042. [Google Scholar] [CrossRef]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.R.; Dörr, T. Bacterial metabolism and susceptibility to cell wall-active antibiotics. Adv. Microb. Physiol. 2023, 83, 181–219. [Google Scholar] [CrossRef] [PubMed]
- Dao, T.H.; Echlin, H.; McKnight, A.; Marr, E.S.; Junker, J.; Jia, Q.; Hayden, R.; van Opijnen, T.; Isberg, R.R.; Cooper, V.S.; et al. Streptococcus pneumoniae favors tolerance via metabolic adaptation over resistance to circumvent fluoroquinolones. mBio 2024, 15, e02828-23. [Google Scholar] [CrossRef] [PubMed]
- Lopez, R.; Ronda-Lain, C.; Tapia, A.; Waks, S.B.; Tomasz, A. Suppression of the lytic and bactericidal effects of cell wall-inhibitory antibiotics. Antimicrob. Agents Chemother. 1976, 10, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Goodell, E.W.; Lopez, R.; Tomasz, A. Suppression of lytic effect of beta lactams on Escherichia coli and other bacteria. Proc. Natl. Acad. Sci. USA 1976, 73, 3293–3297. [Google Scholar] [CrossRef]
- Ataee, R.A.; Habibian, S.; Mehrabi-Tavana, A.; Ahmadi, Z.; Jonaidi, N.; Salesi, M. Determination of vancomycin minimum inhibitory concentration for ceftazidime resistant Streptococcus pneumoniae in Iran. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 53. [Google Scholar] [CrossRef]
- Nazari Alam, A.; Rafiei Tabatabaii, S.; Hashemi, A.; Yousefi, M.; Hoseini Alfatemi, S.M. Characterization of 5 episodes of vancomycin nonsusceptible Streptococcus pneumoniae from clinical isolates in Tehran, Iran. Arch. Clin. Infect. Dis. 2017, 12, e57285. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. 2024. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf (accessed on 5 March 2025).
- Krčméry Jr, V.; Sefton, A. Vancomycin resistance in Gram-positive bacteria other than Enterococcus spp. Int. J. Antimicrob. Agents 2000, 14, 99–105. [Google Scholar] [CrossRef]
- Chochua, S.; Beall, B.; Lin, W.; Tran, T.; Rivers, J.; Li, Z.; Arvay, M.L.; Kobayashi, M.; Houston, J.; Arias, S.; et al. The emergent invasive serotype 4 ST10172 strain acquires vanG-type vancomycin-resistance element: A case of a 66-year-old with bacteremic pneumococcal pneumonia. J. Infect. Dis. 2024, 231, 746–750. [Google Scholar] [CrossRef]
- Moscoso, M.; Domenech, M.; García, E. Vancomycin tolerance in Gram-positive cocci. Environ. Microbiol. Rep. 2011, 3, 640–650. [Google Scholar] [CrossRef]
- Li, G.; Walker, M.J.; De Oliveira, D.M.P. Vancomycin resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Henriques Normark, B.; Normark, S. Antibiotic tolerance in pneumococci. Clin. Microbiol. Infect. 2002, 8, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, L.S.; Tuomanen, E.I. Molecular analysis of antibiotic tolerance in pneumococci. Int. J. Med. Microbiol. 2002, 292, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Levin-Reisman, I.; Ronin, I.; Gefen, O.; Braniss, I.; Shoresh, N.; Balaban, N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science 2017, 355, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gefen, O.; Ronin, I.; Bar-Meir, M.; Balaban, N.Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 2020, 367, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Whatmore, A.M.; King, S.J.; Doherty, N.C.; Sturgeon, D.; Chanter, N.; Dowson, C.G. Molecular characterization of equine isolates of Streptococcus pneumoniae: Natural disruption of genes encoding the virulence factors pneumolysin and autolysin. Infect. Immun. 1999, 67, 2776–2782. [Google Scholar] [CrossRef]
- Wong, H.E.; Tourlomousis, P.; Paterson, G.K.; Webster, S.; Bryant, C.E. Naturally-occurring serotype 3 Streptococcus pneumoniae strains that lack functional pneumolysin and autolysin have attenuated virulence but induce localized protective immune responses. PLoS ONE 2023, 18, e0282843. [Google Scholar] [CrossRef]
- Sung, H.; Shin, H.B.; Kim, M.-N.; Lee, K.; Kim, E.-C.; Song, W.; Jeong, S.H.; Lee, W.-G.; Park, Y.-J.; Eliopoulos, G.M. Vancomycin-tolerant Streptococcus pneumoniae in Korea. J. Clin. Microbiol. 2006, 44, 3524–3528. [Google Scholar] [CrossRef]
- Moscoso, M.; Domenech, M.; García, E. Vancomycin tolerance in clinical and laboratory Streptococcus pneumoniae isolates depends on reduced enzyme activity of the major LytA autolysin or cooperation between CiaH histidine kinase and capsular polysaccharide. Mol. Microbiol. 2010, 77, 1052–1064. [Google Scholar] [CrossRef]
- Novak, R.; Braun, J.S.; Charpentier, E.; Tuomanen, E. Penicillin tolerance genes of Streptococcus pneumoniae: The ABC-type manganese permease complex Psa. Mol. Microbiol. 1998, 29, 1285–1296. [Google Scholar] [CrossRef]
- Novak, R.; Charpentier, E.; Braun, J.S.; Park, E.; Murti, S.; Tuomanen, E.; Masure, R. Extracellular targeting of choline-binding proteins in Streptococcus pneumoniae by a zinc metalloprotease. Mol. Microbiol. 2000, 36, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Claverys, J.P.; Granadel, C.; Berry, A.M.; Paton, J.C. Penicillin tolerance in Streptococcus pneumoniae, autolysis and the Psa ATP-binding cassette (ABC) manganese permease. Mol. Microbiol. 1999, 32, 881–883. [Google Scholar] [CrossRef]
- Bergé, M.; García, P.; Iannelli, F.; Prère, M.F.; Granadel, C.; Polissi, A.; Claverys, J.P. The puzzle of zmpB and extensive chain formation, autolysis defect and non-translocation of choline-binding proteins in Streptococcus pneumoniae. Mol. Microbiol. 2001, 39, 1651–1660. [Google Scholar] [CrossRef]
- McAllister, L.J.; Tseng, H.-J.; Ogunniyi, A.D.; Jennings, M.P.; McEwan, A.G.; Paton, J.C. Molecular analysis of the psa permease complex of Streptococcus pneumoniae. Mol. Microbiol. 2004, 53, 889–901. [Google Scholar] [CrossRef]
- Charpentier, E.; Novak, R.; Tuomanen, E. Regulation of growth inhibition at high temperature, autolysis, transformation and adherence in Streptococcus pneumoniae by ClpC. Mol. Microbiol. 2000, 37, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.M.; Kerr, A.R.; Silva, N.A.; Mitchell, T.J. Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae. Infect. Immun. 2005, 73, 730–740. [Google Scholar] [CrossRef]
- Chastanet, A.; Prudhomme, M.; Claverys, J.-P.; Msadek, T. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J. Bacteriol. 2001, 183, 7295–7307. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.T.; Ng, W.-L.; Foley, J.; Gilmour, R.; Winkler, M.E. Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J. Bacteriol. 2002, 184, 3508–3520. [Google Scholar] [CrossRef]
- Novak, R.; Charpentier, E.; Braun, J.S.; Tuomanen, E. Signal transduction by a death signal peptide: Uncovering the mechanism of bacterial killing by penicillin. Mol. Cell 2000, 5, 49–57. [Google Scholar] [CrossRef]
- Robertson, G.T.; Zhao, J.; Desai, B.V.; Coleman, W.H.; Nicas, T.I.; Gilmour, R.; Grinius, L.; Morrison, D.A.; Winkler, M.E. Vancomycin tolerance induced by erythromycin but not by loss of vncRS, vex3, or pep27 function in Streptococcus pneumoniae. J. Bacteriol. 2002, 184, 6987–7000. [Google Scholar] [CrossRef] [PubMed]
- Haas, W.; Sublett, J.; Kaushal, D.; Tuomanen, E.I. Revising the role of the pneumococcal vex-vncRS locus in vancomycin tolerance. J. Bacteriol. 2004, 186, 8463–8471. [Google Scholar] [CrossRef] [PubMed]
- Haas, W.; Kaushal, D.; Sublett, J.; Obert, C.; Tuomanen, E.I. Vancomycin stress response in a sensitive and a tolerant strain of Streptococcus pneumoniae. J. Bacteriol. 2005, 187, 8205–8210. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-Y.; Xu, J.-Y.; Wei, Q.-X.; Sun, X.; He, Q.-Y. Comparative proteomics of Streptococcus pneumoniae response to vancomycin treatment. OMICS 2017, 21, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, J.-W.; Feng, Z.; Luo, Y.; Veening, J.-W.; Zhang, J.-R. Transcriptional repressor PtvR regulates phenotypic tolerance to vancomycin in Streptococcus pneumoniae. J. Bacteriol. 2017, 199, e00054-17. [Google Scholar] [CrossRef]
- Moreillon, P.; Tomasz, A. Penicillin resistance and defective lysis in clinical isolates of pneumococci: Evidence for two kinds of antibiotic pressure operating in the clinical environment. J. Infect. Dis. 1988, 157, 1150–1157. [Google Scholar] [CrossRef] [PubMed]
- Moreillon, P.; Markiewicz, Z.; Nachman, S.; Tomasz, A. Two bactericidal targets for penicillin in pneumococci: Autolysis-dependent and autolysis-independent killing mechanisms. Antimicrob. Agents Chemother. 1990, 34, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Filipe, S.R.; Severina, E.; Tomasz, A. The role of murMN operon in penicillin resistance and antibiotic tolerance of Streptococcus pneumoniae. Microb. Drug Resist. 2001, 7, 303–316. [Google Scholar] [CrossRef]
- Filipe, S.R.; Severina, E.; Tomasz, A. The murMN operon: A functional link between antibiotic resistance and antibiotic tolerance in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 2002, 99, 1550–1555. [Google Scholar] [CrossRef]
- Aggarwal, S.D.; Lloyd, A.J.; Yerneni, S.S.; Narciso, A.R.; Shepherd, J.; Roper, D.I.; Dowson, C.G.; Filipe, S.R.; Hiller, N.L. A molecular link between cell wall biosynthesis, translation fidelity, and stringent response in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 2021, 118, e2018089118. [Google Scholar] [CrossRef]
- Crisóstomo, M.I.; Vollmer, W.; Kharat, A.S.; Inhülsen, S.; Gehre, F.; Buckenmaier, S.; Tomasz, A. Attenuation of penicillin resistance in a peptidoglycan O-acetyl transferase mutant of Streptococcus pneumoniae. Mol. Microbiol. 2006, 61, 1497–1509. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, J.; Durmort, C.; Jacq, M.; Mortier-Barrière, I.; Campo, N.; VanNieuwenhze, M.S.; Brun, Y.V.; Arthaud, C.; Gallet, B.; Moriscot, C.; et al. Peptidoglycan O-acetylation is functionally related to cell wall biosynthesis and cell division in Streptococcus pneumoniae. Mol. Microbiol. 2017, 106, 832–846. [Google Scholar] [CrossRef] [PubMed]
- Fernebro, J.; Andersson, I.; Sublett, J.; Morfeldt, E.; Novak, R.; Tuomanen, E.; Normark, S.; Henriques Normark, B. Capsular expression in Streptococcus pneumoniae negatively affects spontaneous and antibiotic-induced lysis and contributes to antibiotic tolerance. J. Infect. Dis. 2004, 189, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, J.; Henriques, M.X.; Catalão, M.J.; Pinheiro, S.; Narciso, A.R.; Mesquita, F.; Saraiva, B.M.; Carido, M.; Cabanes, D.; Pinho, M.G.; et al. Encapsulation of the septal cell wall protects Streptococcus pneumoniae from its major peptidoglycan hydrolase and host defenses. PLoS Pathog. 2022, 18, e1010516. [Google Scholar] [CrossRef]
- Ghosh, P.; Shah, M.; Ravichandran, S.; Park, S.-S.; Iqbal, H.; Choi, S.; Kim, K.K.; Rhee, D.K. Pneumococcal VncR strain-specifically regulates capsule polysaccharide synthesis. Front. Microbiol. 2019, 10, 2279. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-S.; Lee, S.; Rhee, D.-K. Crystal structure of the pneumococcal vancomycin-resistance response regulator DNA-binding domain. Mol. Cells 2021, 44, 179–185. [Google Scholar] [CrossRef]
- Holtje, J.V.; Tomasz, A. Biological effects of lipoteichoic acids. J. Bacteriol. 1975, 124, 1023–1027. [Google Scholar] [CrossRef]
- Höltje, J.-V.; Tomasz, A. Lipoteichoic acid: A specific inhibitor of autolysin activity in pneumococcus. Proc. Natl. Acad. Sci. USA 1975, 72, 1690–1694. [Google Scholar] [CrossRef]
- Heß, N.; Waldow, F.; Kohler, T.P.; Rohde, M.; Kreikemeyer, B.; Gómez-Mejia, A.; Hain, T.; Schwudke, D.; Vollmer, W.; Hammerschmidt, S.; et al. Lipoteichoic acid deficiency permits normal growth but impairs virulence of Streptococcus pneumoniae. Nat. Commun. 2017, 8, 2093. [Google Scholar] [CrossRef]
- Wu, K.; Huang, J.; Zhang, Y.; Xu, W.; Xu, H.; Wang, L.; Cao, J.; Zhang, X.; Yin, Y. A novel protein RafX is important for common cell wall polysaccharide biosynthesis in Streptococcus pneumoniae: Implications for bacterial virulence. J. Bacteriol. 2014, 196, 3324–3334. [Google Scholar] [CrossRef]
- Waks, S.; Tomasz, A. Secretion of cell wall polymers into the growth medium of lysis-defective pneumococci during treatment with penicillin and other inhibitors of cell wall synthesis. Antimicrob. Agents Chemother. 1978, 13, 293–301. [Google Scholar] [CrossRef]
- Hakenbeck, R.; Waks, S.; Tomasz, A. Characterization of cell wall polymers secreted into the growth medium of lysis-defective pneumococci during treatment with penicillin and other inhibitors of cell wall synthesis. Antimicrob. Agents Chemother. 1978, 13, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.; Granadel, C.; Campo, N.; Hénard, V.; Prudhomme, M.; Claverys, J.-P. Expression and maintenance of ComD–ComE, the two-component signal-transduction system that controls competence of Streptococcus pneumoniae. Mol. Microbiol. 2010, 75, 1513–1528. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Wang, K.; Song, G.; Hu, Y.; Chen, J.; Li, T.; Liang, L.; Wu, J.; Xu, H.; Wang, L.; et al. Transcriptional regulation of TacL-mediated lipoteichoic acids biosynthesis by ComE during competence impacts pneumococcal transformation. Front. Cell. Infect. Microbiol. 2024, 14, 1375312. [Google Scholar] [CrossRef] [PubMed]
- Varea, J.; Saiz, J.L.; López-Zumel, C.; Monterroso, B.; Medrano, F.J.; Arrondo, J.L.R.; Iloro, I.; Laynez, J.; García, J.L.; Menéndez, M. Do sequence repeats play an equivalent role in the choline-binding module of pneumococcal LytA amidase? J. Biol. Chem. 2000, 275, 26842–26855. [Google Scholar] [CrossRef]
- Romero, P.; López, R.; García, E. Characterization of LytA-like N-acetylmuramoyl-l-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin. J. Bacteriol. 2004, 186, 8229–8239. [Google Scholar] [CrossRef] [PubMed]
- Erlendsson, S.; Teilum, K. Binding revisited-avidity in cellular function and signaling. Front. Mol. Biosci. 2020, 7, 615565. [Google Scholar] [CrossRef]
- Romero, P.; López, R.; García, E. Key role of amino acid residues in the dimerization and catalytic activation of the autolysin LytA, an important virulence factor in Streptococcus pneumoniae. J. Biol. Chem. 2007, 282, 17729–17737. [Google Scholar] [CrossRef]
- Carrasco-López, C.; Rojas-Altuve, A.; Zhang, W.; Hesek, D.; Lee, M.; Barbe, S.; André, I.; Ferrer, P.; Silva-Martin, N.; Castro, G.R.; et al. Crystal structures of bacterial peptidoglycan amidase AmpD and an unprecedented activation mechanism. J. Biol. Chem. 2011, 286, 31714–31722. [Google Scholar] [CrossRef]
- García, P.; González, M.P.; García, E.; López, R.; García, J.L. LytB, a novel pneumococcal murein hydrolase essential for cell separation. Mol. Microbiol. 1999, 31, 1275–1277. [Google Scholar] [CrossRef]
- De las Rivas, B.; García, J.L.; López, R.; García, P. Purification and polar localization of pneumococcal LytB, a putative endo-β-N-acetylglucosaminidase: The chain-dispersing murein hydrolase. J. Bacteriol. 2002, 184, 4988–5000. [Google Scholar] [CrossRef]
- Rico-Lastres, P.; Díez-Martínez, R.; Iglesias-Bexiga, M.; Bustamante, N.; Aldridge, C.; Hesek, D.; Lee, M.; Mobashery, S.; Gray, J.; Vollmer, W.; et al. Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence. Sci. Rep. 2015, 5, 16198. [Google Scholar] [CrossRef]
- Martínez-Caballero, S.; Freton, C.; Molina, R.; Bartual, S.G.; Gueguen-Chaignon, V.; Mercy, C.; Gago, F.; Mahasenan, K.V.; Muñoz, I.G.; Lee, M.; et al. Molecular basis of the final step of cell division in Streptococcus pneumoniae. Cell Rep. 2023, 42, 112756. [Google Scholar] [CrossRef]
- Mellroth, P.; Daniels, R.; Eberhardt, A.; Rönnlund, D.; Blom, H.; Widengren, J.; Normark, S.; Henriques-Normark, B. LytA, the major autolysin of Streptococcus pneumoniae, requires access to the nascent peptidoglycan. J. Biol. Chem. 2012, 287, 11018–11029. [Google Scholar] [CrossRef] [PubMed]
- Di Guilmi, A.M.; Bonnet, J.; Peiβert, S.; Durmort, C.; Gallet, B.; Vernet, T.; Gisch, N.; Wong, Y.-S. Specific and spatial labeling of choline-containing teichoic acids in Streptococcus pneumoniae by click chemistry. Chem. Commun. 2017, 53, 10572–10575. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, J.; Durmort, C.; Mortier-Barrière, I.; Campo, N.; Jacq, M.; Moriscot, C.; Straume, D.; Berg, K.H.; Håvarstein, L.; Wong, Y.S.; et al. Nascent teichoic acids insertion into the cell wall directs the localization and activity of the major pneumococcal autolysin LytA. Cell Surf. 2018, 2, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Briles, E.B.; Tomasz, A. Radioautographic evidence for equatorial wall growth in a Gram-positive bacterium. Segregation of choline-3H-labeled teichoic acid. J. Cell Biol. 1970, 47, 786–790. [Google Scholar] [CrossRef]
- Lopez, R.; Garcia, E.; Garcia, P.; Ronda, C.; Tomasz, A. Choline-containing bacteriophage receptors in Streptococcus pneumoniae. J. Bacteriol. 1982, 151, 1581–1590. [Google Scholar] [CrossRef]
- Llull, D.; López, R.; García, E. Genetic bases and medical relevance of capsular polysaccharide biosynthesis in pathogenic streptococci. Curr. Mol. Med. 2001, 1, 475–491. [Google Scholar] [CrossRef]
- Yother, J. Capsules of Streptococcus pneumoniae and other bacteria: Paradigms for polysaccharide biosynthesis and regulation. Annu. Rev. Microbiol. 2011, 65, 563–581. [Google Scholar] [CrossRef]
- Paton, J.C.; Trappetti, C. Streptococcus pneumoniae capsular polysaccharide. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Kawai, Y.; Marles-Wright, J.; Cleverley, R.M.; Emmins, R.; Ishikawa, S.; Kuwano, M.; Heinz, N.; Bui, N.K.; Hoyland, C.N.; Ogasawara, N.; et al. A widespread family of bacterial cell wall assembly proteins. EMBO J. 2011, 30, 4931–4941. [Google Scholar] [CrossRef] [PubMed]
- Stefanović, C.; Hager, F.F.; Schäffer, C. LytR-CpsA-Psr glycopolymer transferases: Essential bricks in Gram-positive bacterial cell wall assembly. Int. J. Mol. Sci. 2021, 22, 908. [Google Scholar] [CrossRef] [PubMed]
- Briggs, N.S.; Bruce, K.E.; Naskar, S.; Winkler, M.E.; Roper, D.I. The pneumococcal divisome: Dynamic control of Streptococcus pneumoniae cell division. Front. Microbiol. 2021, 12, 737396. [Google Scholar] [CrossRef]
- Nakamoto, R.; Bamyaci, S.; Blomqvist, K.; Normark, S.; Henriques-Normark, B.; Sham, L.-T. The divisome but not the elongasome organizes capsule synthesis in Streptococcus pneumoniae. Nat. Commun. 2023, 14, 3170. [Google Scholar] [CrossRef] [PubMed]
- Johnsborg, O.; Håvarstein, L.S. Pneumococcal LytR, a protein from the LytR-CpsA-Psr family, is essential for normal septum formation in Streptococcus pneumoniae. J. Bacteriol. 2009, 191, 5859–5864. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Zhang, J.; Shu, Z.; Yin, Y.; Zhang, X.; Wu, K. Pneumococcal LytR protein is required for the surface attachment of both capsular polysaccharide and teichoic acids: Essential for pneumococcal virulence. Front. Microbiol. 2018, 9, 1199. [Google Scholar] [CrossRef]
- Eberhardt, A.; Hoyland, C.N.; Vollmer, D.; Bisle, S.; Cleverley, R.M.; Johnsborg, O.; Håvarstein, L.S.; Lewis, R.J.; Vollmer, W. Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. Microb. Drug Resist. 2012, 18, 240–255. [Google Scholar] [CrossRef]
- Battaje, R.R.; Piyush, R.; Pratap, V.; Panda, D. Models versus pathogens: How conserved is the FtsZ in bacteria? Biosci. Rep. 2023, 43, BSR20221664. [Google Scholar] [CrossRef]
- Perez, A.J.; Villicana, J.B.; Tsui, H.-C.T.; Danforth, M.L.; Benedet, M.; Massidda, O.; Winkler, M.E. FtsZ-ring regulation and cell division are mediated by essential EzrA and accessory proteins ZapA and ZapJ in Streptococcus pneumoniae. Front. Microbiol. 2021, 12, 780864. [Google Scholar] [CrossRef]
- Flores-Kim, J.; Dobihal, G.S.; Bernhardt, T.G.; Rudner, D.Z. WhyD tailors surface polymers to prevent premature bacteriolysis and direct cell elongation in Streptococcus pneumoniae. eLife 2022, 11, e76392. [Google Scholar] [CrossRef]
- van der Linden, M.; Al-Lahham, A.; Nicklas, W.; Reinert, R.R. Molecular characterization of pneumococcal isolates from pets and laboratory animals. PLoS ONE 2009, 4, e8286. [Google Scholar] [CrossRef] [PubMed]
- Benson, C.E.; Sweeney, C.R. Isolation of Streptococcus pneumoniae type 3 from equine species. J. Clin. Microbiol. 1984, 20, 1028–1030. [Google Scholar] [CrossRef]
- Timoney, J.F. The pathogenic equine streptococci. Vet. Res. 2004, 35, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Chi, F.; Leider, M.; Leendertz, F.; Bergmann, C.; Boesch, C.; Schenk, S.; Pauli, G.; Ellerbrok, H.; Hakenbeck, R. New Streptococcus pneumoniae clones in deceased wild chimpanzees. J. Bacteriol. 2007, 189, 6085–6088. [Google Scholar] [CrossRef] [PubMed]
- Denapaite, D.; Hakenbeck, R. A new variant of the capsule 3 cluster occurs in Streptococcus pneumoniae from deceased wild chimpanzees. PLoS ONE 2011, 6, e25119. [Google Scholar] [CrossRef]
- Köndgen, S.; Calvignac-Spencer, S.; Grützmacher, K.; Keil, V.; Mätz-Rensing, K.; Nowak, K.; Metzger, S.; Kiyang, J.; Lübke-Becker, A.; Deschner, T.; et al. Evidence for human Streptococcus pneumoniae in wild and captive chimpanzees: A potential threat to wild populations. Sci. Rep. 2017, 7, 14581. [Google Scholar] [CrossRef]
- Dunay, E.; Apakupakul, K.; Leard, S.; Palmer, J.L.; Deem, S.L. Pathogen transmission from humans to great apes is a growing threat to primate conservation. Ecohealth 2018, 15, 148–162. [Google Scholar] [CrossRef]
- Grützmacher, K.S.; Keil, V.; Metzger, S.; Wittiger, L.; Herbinger, I.; Calvignac-Spencer, S.; Mätz-Rensing, K.; Haggis, O.; Savary, L.; Köndgen, S.; et al. Human respiratory syncytial virus and Streptococcus pneumoniae infection in wild bonobos. Ecohealth 2018, 15, 462–466. [Google Scholar] [CrossRef]
- Chiavolini, D.; Pozzi, G.; Ricci, S. Animal models of Streptococcus pneumoniae disease. Clin. Microbiol. Rev. 2008, 21, 666–685. [Google Scholar] [CrossRef]
- Borsa, N.; Di Pasquale, M.D.; Restrepo, M.I. Animal models of pneumococcal pneumonia. Int. J. Mol. Sci. 2019, 20, 4220. [Google Scholar] [CrossRef]
- Saralahti, A.K.; Harjula, S.-K.E.; Rantapero, T.; Uusi-Mäkelä, M.I.E.; Kaasinen, M.; Junno, M.; Piippo, H.; Nykter, M.; Lohi, O.; Rounioja, S.; et al. Characterization of the innate immune response to Streptococcus pneumoniae infection in zebrafish. PLoS Genet. 2023, 19, e1010586. [Google Scholar] [CrossRef] [PubMed]
- Balde, A.; Ramya, C.S.; Nazeer, R.A. A review on current advancement in zebrafish models to study chronic inflammatory diseases and their therapeutic targets. Heliyon 2024, 10, e31862. [Google Scholar] [CrossRef] [PubMed]
- Berry, A.M.; Lock, R.A.; Hansman, D.; Paton, J.C. Contribution of autolysin to virulence of Streptococcus pneumoniae. Infect. Immun. 1989, 57, 2324–2330. [Google Scholar] [CrossRef] [PubMed]
- Berry, A.M.; Paton, J.C.; Hansman, D. Effect of insertional inactivation of the genes encoding pneumolysin and autolysin on the virulence of Streptococcus pneumoniae type 3. Microb. Pathog. 1992, 12, 87–93. [Google Scholar] [CrossRef]
- Berry, A.M.; Paton, J.C. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect. Immun. 2000, 68, 133–140. [Google Scholar] [CrossRef]
- Canvin, J.R.; Marvin, A.P.; Sivakumaran, M.; Paton, J.C.; Boulnois, G.J.; Andrew, P.W.; Mitchell, T.J. The role of pneumolysin and autolysin in the pathology of pneumonia and septicemia in mice infected with a type 2 pneumococcus. J. Infect. Dis. 1995, 172, 119–123. [Google Scholar] [CrossRef]
- Balachandran, P.; Hollingshead, S.K.; Paton, J.C.; Briles, D.E. The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. J. Bacteriol. 2001, 183, 3108–3116. [Google Scholar] [CrossRef] [PubMed]
- Tomasz, A.; Moreillon, P.; Pozzi, G. Insertional inactivation of the major autolysin gene of Streptococcus pneumoniae. J. Bacteriol. 1988, 170, 5931–5934. [Google Scholar] [CrossRef]
- Benton, K.A.; Paton, J.C.; Briles, D.E. Differences in virulence for mice among Streptococcus pneumoniae strains of capsular types 2, 3, 4, 5, and 6 are not attributable to differences in pneumolysin production. Infect. Immun. 1997, 65, 1237–1244. [Google Scholar] [CrossRef]
- Ramos-Sevillano, E.; Rodríguez-Sosa, C.; Díez-Martínez, R.; Giménez, M.-J.; Olmedillas, E.; García, P.; García, E.; Aguilar, L.; Yuste, J. Macrolides and β-lactam antibiotics enhance C3b deposition on the surface of multidrug-resistant Streptococcus pneumoniae strains by a LytA autolysin-dependent mechanism. Antimicrob. Agents Chemother. 2012, 56, 5534–5540. [Google Scholar] [CrossRef]
- Ramos-Sevillano, E.; Urzainqui, A.; Campuzano, S.; Moscoso, M.; González-Camacho, F.; Domenech, M.; Rodríguez de Córdoba, S.; Sánchez-Madrid, F.; Brown, J.S.; García, E.; et al. Pleiotropic effects of the cell wall amidase LytA on Streptococcus pneumoniae sensitivity to the host immune response. Infect. Immun. 2015, 83, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Orihuela, C.J.; Gao, G.; Francis, K.P.; Yu, J.; Tuomanen, E.I. Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J. Infect. Dis. 2004, 190, 1661–1669. [Google Scholar] [CrossRef]
- Hirst, R.A.; Gosai, B.; Rutman, A.; Guerin, C.J.; Nicotera, P.; Andrew, P.W.; O’Callaghan, C. Streptococcus pneumoniae deficient in pneumolysin or autolysin has reduced virulence in meningitis. J. Infect. Dis. 2008, 197, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Saralahti, A.; Piippo, H.; Parikka, M.; Henriques-Normark, B.; Rämet, M.; Rounioja, S. Adult zebrafish model for pneumococcal pathogenesis. Dev. Comp. Immunol. 2014, 42, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Weiser, J.N.; Austrian, R.; Sreenivasan, P.K.; Masure, H.R. Phase variation in pneumococcal opacity: Relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 1994, 62, 2582–2589. [Google Scholar] [CrossRef]
- Ng, E.W.M.; Costa, J.R.; Samiy, N.; Ruoff, K.L.; Connolly, E.; Cousins, F.V.; D’Amico, D.J. Contribution of pneumolysin and autolysin to the pathogenesis of experimental pneumococcal endophthalmitis. Retina 2002, 22, 622–632. [Google Scholar] [CrossRef]
- Andre, G.O.; Converso, T.R.; Politano, W.R.; Ferraz, L.F.C.; Ribeiro, M.L.; Leite, L.C.C.; Darrieux, M. Role of Streptococcus pneumoniae proteins in evasion of complement-mediated immunity. Front. Microbiol. 2017, 8, 224. [Google Scholar] [CrossRef]
- Domenech, M.; Sempere, J.; de Miguel, S.; Yuste, J. Combination of antibodies and antibiotics as a promising strategy against multidrug-resistant pathogens of the respiratory tract. Front. Immunol. 2018, 9, 2700. [Google Scholar] [CrossRef] [PubMed]
- Gil, E.; Noursadeghi, M.; Brown, J.S. Streptococcus pneumoniae interactions with the complement system. Front. Cell. Infect. Microbiol. 2022, 12, 929483. [Google Scholar] [CrossRef]
- Somers, W.S.; Tang, J.; Shaw, G.D.; Camphausen, R.T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLeX and PSGL-1. Cell 2000, 103, 467–479. [Google Scholar] [CrossRef]
- Ramos-Sevillano, E.; Urzainqui, A.; de Andrés, B.; González-Tajuelo, R.; Domenech, M.; González-Camacho, F.; Sánchez-Madrid, F.; Brown, J.S.; García, E.; Yuste, J. PSGL-1 on leukocytes is a critical component of the host immune response against invasive pneumococcal disease. PLoS Pathog. 2016, 12, e1005500. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T.J.; Dalziel, C.E. The biology of pneumolysin. Subcell. Biochem. 2014, 80, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Cima Cabal, M.D.; Molina, F.; López-Sánchez, J.I.; Pérez-Santín, E.; García-Suárez, M.d.M. Pneumolysin as a target for new therapies against pneumococcal infections: A systematic review. PLoS ONE 2023, 18, e0282970. [Google Scholar] [CrossRef]
- Anderson, R.; Feldman, C. The global burden of community-acquired pneumonia in adults, encompassing invasive pneumococcal disease and the prevalence of its associated cardiovascular events, with a focus on pneumolysin and macrolide antibiotics in pathogenesis and therapy. Int. J. Mol. Sci 2023, 24, 11038. [Google Scholar] [CrossRef] [PubMed]
- Sanford, T.C.; Tweten, R.K.; Abrahamsen, H.L. Bacterial cholesterol-dependent cytolysins and their interaction with the human immune response. Curr. Opin. Infect. Dis. 2024, 37, 164–169. [Google Scholar] [CrossRef]
- Martner, A.; Dahlgren, C.; Paton, J.C.; Wold, A.E. Pneumolysin released during Streptococcus pneumoniae autolysis is a potent activator of intracellular oxygen radical production in neutrophils. Infect. Immun. 2008, 76, 4079–4087. [Google Scholar] [CrossRef]
- Jacques, L.C.; Panagiotou, S.; Baltazar, M.; Senghore, M.; Khandaker, S.; Xu, R.; Bricio-Moreno, L.; Yang, M.; Dowson, C.G.; Everett, D.B.; et al. Increased pathogenicity of pneumococcal serotype 1 is driven by rapid autolysis and release of pneumolysin. Nat. Commun. 2020, 11, 1892. [Google Scholar] [CrossRef]
- Price, K.E.; Greene, N.G.; Camilli, A. Export requirements of pneumolysin in Streptococcus pneumoniae. J. Bacteriol. 2012, 194, 3651–3660. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.C.; Dabbs, R.C.; Oswalt, K.L.; Brown, L.R.; Rosch, J.W.; Seo, K.S.; Donaldson, J.R.; McDaniel, L.S.; Thornton, J.A. Pyruvate oxidase of Streptococcus pneumoniae contributes to pneumolysin release. BMC Microbiol. 2016, 16, 271. [Google Scholar] [CrossRef]
- Bazant, J.; Ott, B.; Hudel, M.; Hain, T.; Lucas, R.; Mraheil, M.A. Impact of endogenous pneumococcal hydrogen peroxide on the activity and release of pneumolysin. Toxins 2023, 15, 593. [Google Scholar] [CrossRef]
- Rigel, N.W.; Braunstein, M. A new twist on an old pathway-accessory Sec systems. Mol. Microbiol. 2008, 69, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Braunstein, M.; Bensing, B.; Sullam, P.M. The two distinct types of SecA2-dependent export systems. Microbiol. Spectr. 2019, 7, 3. [Google Scholar] [CrossRef]
- Bandara, M.; Skehel, J.M.; Kadioglu, A.; Collinson, I.; Nobbs, A.H.; Blocker, A.J.; Jenkinson, H.F. The accessory Sec system (SecY2A2) in Streptococcus pneumoniae is involved in export of pneumolysin toxin, adhesion and biofilm formation. Microbes Infect. 2017, 19, 402–412. [Google Scholar] [CrossRef]
- Zheng, X.; Sheya, X.M.; St. John, A.; Torres, V.J. The major autolysin Atl regulates the virulence of Staphylococcus aureus by controlling the sorting of LukAB. Infect. Immun. 2022, 90, e0005622. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Tong, H.; Wang, J.; Ge, P.; Zhu, L.; Liu, C.; Zhang, J.-r.; Dong, X. A novel aquaporin subfamily imports oxygen and contributes to pneumococcal virulence by controlling the production and release of virulence factors. mBio 2021, 12, e01309-21. [Google Scholar] [CrossRef] [PubMed]
- Satala, D.; Bednarek, A.; Kozik, A.; Rapala-Kozik, M.; Karkowska-Kuleta, J. The recruitment and activation of plasminogen by bacteria–The involvement in chronic infection development. Int. J. Mol. Sci. 2023, 24, 10436. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, C.J. Protein moonlighting: What is it, and why is it important? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160523. [Google Scholar] [CrossRef]
- Gupta, M.N.; Uversky, V.N. Moonlighting enzymes: When cellular context defines specificity. Cell. Mol. Life Sci. 2023, 80, 130. [Google Scholar] [CrossRef]
- Liu, D.; Bhunia, A.K. Anchorless bacterial moonlighting metabolic enzymes modulate the immune system and contribute to pathogenesis. ACS Infect. Dis. 2024, 10, 2551–2566. [Google Scholar] [CrossRef]
- Rodríguez-Bolaños, M.; Perez-Montfort, R. Medical and veterinary importance of the moonlighting functions of triosephosphate isomerase. Curr. Protein Pept. Sci. 2019, 20, 304–315. [Google Scholar] [CrossRef]
- Hirayama, S.; Domon, H.; Hiyoshi, T.; Isono, T.; Tamura, H.; Sasagawa, K.; Takizawa, F.; Terao, Y. Triosephosphate isomerase of Streptococcus pneumoniae is released extracellularly by autolysis and binds to host plasminogen to promote its activation. FEBS Open Bio. 2022, 12, 1206–1219. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, S.; Hiyoshi, T.; Yasui, Y.; Domon, H.; Terao, Y. C-terminal lysine residue of pneumococcal triosephosphate isomerase contributes to its binding to host plasminogen. Microorganisms 2023, 11, 1198. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, S.; Rohde, M.; Hammerschmidt, S. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect. Immun. 2004, 72, 2416–2419. [Google Scholar] [CrossRef] [PubMed]
- Attali, C.; Durmort, C.; Vernet, T.; Di Guilmi, A.M. The interaction of Streptococcus pneumoniae with plasmin mediates transmigration across endothelial and epithelial monolayers by intercellular junction cleavage. Infect. Immun. 2008, 76, 5350–5356. [Google Scholar] [CrossRef]
- Terrasse, R.; Amoroso, A.; Vernet, T.; Di Guilmi, A.M. Streptococcus pneumoniae GAPDH is released by cell lysis and interacts with peptidoglycan. PLoS ONE 2015, 10, e0125377. [Google Scholar] [CrossRef] [PubMed]
- Marquart, M.E. Pathogenicity and virulence of Streptococcus pneumoniae: Cutting to the chase on proteases. Virulence 2021, 12, 766–787. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Sroka, M.; Fulde, M.; Bergmann, S.; Riesbeck, K.; Blom, A.M. Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence. J. Biol. Chem. 2014, 289, 15833–15844. [Google Scholar] [CrossRef] [PubMed]
- Harvey, K.L.; Jarocki, V.M.; Charles, I.G.; Djordjevic, S.P. The diverse functional roles of elongation factor Tu (EF-Tu) in microbial pathogenesis. Front. Microbiol. 2019, 10, 2351. [Google Scholar] [CrossRef]
- Wang, G.; Chen, H.; Xia, Y.; Cui, J.; Gu, Z.; Song, Y.; Chen, Y.Q.; Zhang, H.; Chen, W. How are the non-classically secreted bacterial proteins released into the extracellular milieu? Curr. Microbiol. 2013, 67, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Hertweck, C.; Dudda, A.; Hammerschmidt, S.; Skerka, C.; Hallstrom, T.; Zipfel, P.F. Tuf of Streptococcus pneumoniae is a surface displayed human complement regulator binding protein. Mol. Immunol. 2014, 62, 249–264. [Google Scholar] [CrossRef]
- Kietzman, C.C.; Gao, G.; Mann, B.; Myers, L.; Tuomanen, E.I. Dynamic capsule restructuring by the main pneumococcal autolysin LytA in response to the epithelium. Nat. Commun. 2016, 7, 10859. [Google Scholar] [CrossRef] [PubMed]
- Ridyard, K.E.; Overhage, J. The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent. Antibiotics 2021, 10, 650. [Google Scholar] [CrossRef]
- Souza Guerra, M.E.; Vieira, B.; Carvalho Thiers Calazans, A.P.; Destro, G.V.; Melo, K.; Rodrigues, E.; Waz, N.T.; Girardello, R.; Darrieux, M.; Converso, T.R. Recent advances in the therapeutic potential of cathelicidins. Front. Microbiol. 2024, 15, 1405760. [Google Scholar] [CrossRef]
- Hammerschmidt, S.; Wolff, S.; Hocke, A.; Rosseau, S.; Müller, E.; Rohde, M. Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect. Immun. 2005, 73, 4653–4667. [Google Scholar] [CrossRef] [PubMed]
- Llobet, E.; Tomás, J.M.; Bengoechea, J.A. Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology 2008, 154, 3877–3886. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, R.I.; Lu, W. β-Defensins in human innate immunity. Immunol. Rev. 2012, 245, 84–112. [Google Scholar] [CrossRef]
- Fu, J.; Zong, X.; Jin, M.; Min, J.; Wang, F.; Wang, Y. Mechanisms and regulation of defensins in host defense. Signal Transduct. Target Ther. 2023, 8, 300. [Google Scholar] [CrossRef] [PubMed]
- Beiter, K.; Wartha, F.; Hurwitz, R.; Normark, S.; Zychlinsky, A.; Henriques-Normark, B. The capsule sensitizes Streptococcus pneumoniae to α-defensins human neutrophil proteins 1 to 3. Infect. Immun. 2008, 76, 3710–3716. [Google Scholar] [CrossRef]
- Zahlten, J.; Herta, T.; Kabus, C.; Steinfeldt, M.; Kershaw, O.; García, P.; Hocke, A.C.; Gruber, A.D.; Hübner, R.-H.; Steinicke, R.; et al. Role of pneumococcal autolysin for KLF4 expression and chemokine secretion in lung epithelium. Am. J. Respir. Cell Mol. Biol. 2015, 53, 544–554. [Google Scholar] [CrossRef]
- Zahlten, J.; Kim, Y.-J.; Doehn, J.-M.; Pribyl, T.; Hocke, A.C.; García, P.; Hammerschmidt, S.; Suttorp, N.; Hippenstiel, S.; Hübner, R.-H. Streptococcus pneumoniae-induced oxidative stress in lung epithelial cells depends on pneumococcal autolysis and is reversible by resveratrol. J. Infect. Dis. 2015, 211, 1822–1830. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, J.; Dai, T.; Li, X.; Chen, L.; He, Z.; Guo, M.; Zhao, J.; Xu, L. A review of KLF4 and inflammatory disease: Current status and future perspective. Pharmacol. Res. 2024, 207, 107345. [Google Scholar] [CrossRef] [PubMed]
- Yuce, K.; Ozkan, A.I. The kruppel-like factor (KLF) family, diseases, and physiological events. Gene 2024, 895, 148027. [Google Scholar] [CrossRef] [PubMed]
- Herta, T.; Bhattacharyya, A.; Bollensdorf, C.; Kabus, C.; García, P.; Suttorp, N.; Hippenstiel, S.; Zahlten, J. DNA-release by Streptococcus pneumoniae autolysin LytA induced Krueppel-like factor 4 expression in macrophages. Sci. Rep. 2018, 8, 5723. [Google Scholar] [CrossRef] [PubMed]
- Herta, T.; Bhattacharyya, A.; Rosolowski, M.; Conrad, C.; Gurtner, C.; Gruber, A.D.; Ahnert, P.; Gutbier, B.; Frey, D.; Suttorp, N.; et al. Krueppel-like factor 4 expression in phagocytes regulates early inflammatory response and disease severity in pneumococcal pneumonia. Front. Immunol. 2021, 12, 726135. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Herta, T.; Conrad, C.; Frey, D.; García, P.; Suttorp, N.; Hippenstiel, S.; Zahlten, J. Induction of Krüppel-like factor 4 mediates polymorphonuclear neutrophil activation in Streptococcus pneumoniae infection. Front. Microbiol. 2021, 11, 582070. [Google Scholar] [CrossRef]
- Horn, K.J.; Fulte, S.; Yang, M.; Lorenz, B.P.; Clark, S.E. Neutrophil responsiveness to IL-10 impairs clearance of Streptococcus pneumoniae from the lungs. J. Leukoc. Biol. 2024, 115, 4–15. [Google Scholar] [CrossRef]
- McPeek, M.K.; Gomez, J.C.; Doerschuk, C.M. Neutrophils sing “IL[-10] be seeing you” in the lungs during pneumonia. J. Leukoc. Biol. 2024, 115, 1–3. [Google Scholar] [CrossRef]
- Cortes, P.R.; Piñas, G.E.; Cian, M.B.; Yandar, N.; Echenique, J. Stress-triggered signaling affecting survival or suicide of Streptococcus pneumoniae. Int. J. Med. Microbiol. 2015, 305, 157–169. [Google Scholar] [CrossRef]
- Martín-Galiano, A.J.; Overweg, K.; Ferrándiz, M.J.; Reuter, M.; Wells, J.M.; de la Campa, A.G. Transcriptional analysis of the acid tolerance response in Streptococcus pneumoniae. Microbiology 2005, 151, 3935–3946. [Google Scholar] [CrossRef]
- Piñas, G.E.; Cortes, P.R.; Albarracín Orio, A.G.; Echenique, J. Acidic stress induces autolysis by a CSP-independent ComE pathway in Streptococcus pneumoniae. Microbiology 2008, 154, 1300–1308. [Google Scholar] [CrossRef]
- Piñas, G.E.; Reinoso-Vizcaino, N.M.; Yandar Barahona, N.Y.; Cortes, P.R.; Duran, R.; Badapanda, C.; Rathore, A.; Bichara, D.R.; Cian, M.B.; Olivero, N.B.; et al. Crosstalk between the serine/threonine kinase StkP and the response regulator ComE controls the stress response and intracellular survival of Streptococcus pneumoniae. PLoS Pathog. 2018, 14, e1007118. [Google Scholar] [CrossRef] [PubMed]
- Reinoso-Vizcaíno, N.M.; Cian, M.B.; Cortes, P.R.; Olivero, N.B.; Hernandez-Morfa, M.; Piñas, G.E.; Badapanda, C.; Rathore, A.; Perez, D.R.; Echenique, J. The pneumococcal two-component system SirRH is linked to enhanced intracellular survival of Streptococcus pneumoniae in influenza-infected pulmonary cells. PLoS Pathog. 2020, 16, e1008761. [Google Scholar] [CrossRef]
- Cremelie, E.; Vázquez, R.; Briers, Y. A comparative guide to expression systems for phage lysin production. Essays Biochem. 2024, 68, 645–659. [Google Scholar] [CrossRef]
- Martín-Galiano, A.J.; García, E. Streptococcus pneumoniae: A plethora of temperate bacteriophages with a role in host genome rearrangement. Front. Cell. Infect. Microbiol. 2021, 11, 775402. [Google Scholar] [CrossRef]
- Vázquez, R.; García, E.; García, P. Phage lysins for fighting bacterial respiratory infections: A new generation of antimicrobials. Front. Immunol. 2018, 9, 2252. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Li, M.; Yang, Y.; Lu, S.; Rao, X. Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria. J. Biomed. Sci. 2023, 30, 29. [Google Scholar] [CrossRef] [PubMed]
- Tomasz, A.; Waks, S. Mechanism of action of penicillin: Triggering of the pneumococcal autolytic enzyme by inhibitors of cell wall synthesis. Proc. Natl Acad. Sci. USA 1975, 72, 4162–4166. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cerrato, V.; García, P.; del Prado, G.; García, E.; Gracia, M.; Huelves, L.; Ponte, C.; López, R.; Soriano, F. In vitro interactions of LytA, the major pneumococcal autolysin, with two bacteriophage lytic enzymes (Cpl-1 and Pal), cefotaxime and moxifloxacin against antibiotic-susceptible and -resistant Streptococcus pneumoniae strains. J. Antimicrob. Chemother. 2007, 60, 1159–1162. [Google Scholar] [CrossRef]
- Rodríguez-Cerrato, V.; García, P.; Huelves, L.; García, E.; del Prado, G.; Gracia, M.; Ponte, C.; López, R.; Soriano, F. Pneumococcal LytA autolysin, a potent therapeutic agent in experimental peritonitis-sepsis caused by highly β-lactam-resistant Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2007, 51, 3371–3373. [Google Scholar] [CrossRef]
- Domenech, M.; García, E.; Moscoso, M. In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases. Antimicrob. Agents Chemother. 2011, 55, 4144–4148. [Google Scholar] [CrossRef]
- Díaz, E.; López, R.; García, J.L. EJ-1, a temperate bacteriophage of Streptococcus pneumoniae with a Myoviridae morphotype. J. Bacteriol. 1992, 174, 5516–5525. [Google Scholar] [CrossRef] [PubMed]
- Romero, P.; López, R.; García, E. Genomic organization and molecular analysis of the inducible prophage EJ-1, a mosaic myovirus from an atypical pneumococcus. Virology 2004, 322, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Le, C.-F.; Yusof, M.Y.M.; Hassan, M.A.A.; Lee, V.S.; Isa, D.M.; Sekaran, S.D. In vivo efficacy and molecular docking of designed peptide that exhibits potent antipneumococcal activity and synergises in combination with penicillin. Sci. Rep. 2015, 5, 11886. [Google Scholar] [CrossRef]
- Hernández-Ortiz, N.; Sánchez-Murcia, P.A.; Gil-Campillo, C.; Domenech, M.; Lucena-Agell, D.; Hortigüela, R.; Velázquez, S.; Camarasa, M.J.; Bustamante, N.; de Castro, S.; et al. Design, synthesis and structure-activity relationship (SAR) studies of an unusual class of non-cationic fatty amine-tripeptide conjugates as novel synthetic antimicrobial agents. Front. Pharmacol. 2024, 15, 1428409. [Google Scholar] [CrossRef]
- Tafroji, W.; Margyaningsih, N.I.; Khoeri, M.M.; Paramaiswari, W.T.; Winarti, Y.; Salsabila, K.; Putri, H.F.M.; Siregar, N.C.; Soebandrio, A.; Safari, D. Antibacterial activity of medicinal plants in Indonesia on Streptococcus pneumoniae. PLoS ONE 2022, 17, e0274174. [Google Scholar] [CrossRef]
- Lee, E.-B.; Lee, K. Coptis rhizome extract influence on Streptococcus pneumoniae through autolysin activation. AMB Express 2024, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Reithuber, E.; Nannapaneni, P.; Rzhepishevska, O.; Lindgren Anders, E.G.; Ilchenko, O.; Normark, S.; Almqvist, F.; Henriques-Normark, B.; Mellroth, P. The bactericidal fatty acid mimetic 2CCA-1 selectively targets pneumococcal extracellular polyunsaturated fatty acid metabolism. mBio 2020, 11, e03027-20. [Google Scholar] [CrossRef] [PubMed]
- Lamar, R.V. Chemo-immunological studies on localized infections. Fist paper: Action on the pneumococcus and its experimental infections of combined sodium oleate and antipneumococcal serum. J. Exp. Med. 1911, 13, 1–23. [Google Scholar] [CrossRef]
- Kabara, J.J.; Swieczkowski, D.M.; Conley, A.J.; Truant, J.P. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 1972, 2, 23–28. [Google Scholar] [CrossRef]
- Llull, D.; Rivas, L.; García, E. In vitro bactericidal activity of the antiprotozoal drug miltefosine against Streptococcus pneumoniae and other pathogenic streptococci. Antimicrob. Agents Chemother. 2007, 51, 1844–1848. [Google Scholar] [CrossRef]
- Falk, S.P.; Noah, J.W.; Weisblum, B. Screen for inducers of autolysis in Bacillus subtilis. Antimicrob. Agents Chemother. 2010, 54, 3723–3729. [Google Scholar] [CrossRef] [PubMed]
- Blake, M.J.; Page, E.F.; Smith, M.E.; Calhoun, T.R. Miltefosine impacts small molecule transport in Gram-positive bacteria. RSC Chem. Biol. 2024, 5, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Bucki, R.; Niemirowicz, K.; Wnorowska, U.; Byfield, F.J.; Piktel, E.; Wątek, M.; Janmey, P.A.; Savage, P.B. Bactericidal activity of ceragenin CSA-13 in cell culture and in an animal model of peritoneal infection. Antimicrob. Agents Chemother. 2015, 59, 6274–6282. [Google Scholar] [CrossRef] [PubMed]
- Moscoso, M.; Esteban-Torres, M.; Menéndez, M.; García, E. In vitro bactericidal and bacteriolytic activity of ceragenin CSA-13 against planktonic cultures and biofilms of Streptococcus pneumoniae and other pathogenic streptococci. PLoS ONE 2014, 9, e101037. [Google Scholar] [CrossRef]
- Leszczyńska, K.; Namiot, D.; Byfield, F.J.; Cruz, K.; Żendzian-Piotrowska, M.; Fein, D.E.; Savage, P.B.; Diamond, S.; McCulloch, C.A.; Janmey, P.A.; et al. Antibacterial activity of the human host defence peptide LL-37 and selected synthetic cationic lipids against bacteria associated with oral and upper respiratory tract infections. J. Antimicrob. Chemother. 2013, 68, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Oyardi, O.; Savage, P.B.; Guzel, C.B. Effects of ceragenins and antimicrobial peptides on the A549 cell line and an in vitro co-culture model of A549 cells and Pseudomonas aeruginosa. Pathogens 2022, 11, 1044. [Google Scholar] [CrossRef]
- Karasiński, M.; Wnorowska, U.; Durnaś, B.; Król, G.; Daniluk, T.; Skłodowski, K.; Głuszek, K.; Piktel, E.; Okła, S.; Bucki, R. Ceragenins and ceragenin-based core-shell nanosystems as new antibacterial agents against Gram-negative rods causing nosocomial infections. Pathogens 2023, 12, 1346. [Google Scholar] [CrossRef]
- Morales, M.; García, P.; de la Campa, A.G.; Liñares, J.; Ardanuy, C.; García, E. Evidence of localized prophage-host recombination in the lytA gene encoding the major pneumococcal autolysin. J. Bacteriol. 2010, 192, 2624–2632. [Google Scholar] [CrossRef]
- Whatmore, A.M.; Dowson, C.G. The autolysin-encoding gene (lytA) of Streptococcus pneumoniae displays restricted allelic variation despite localized recombination events with genes of pneumococcal bacteriophage encoding cell wall lytic enzymes. Infect. Immun. 1999, 67, 4551–4556. [Google Scholar] [CrossRef]
- Romero, A.; Lopez, R.; Garcia, P. Sequence of the Streptococcus pneumoniae bacteriophage HB-3 amidase reveals high homology with the major host autolysin. J. Bacteriol. 1990, 172, 5064–5070. [Google Scholar] [CrossRef]
- Didelot, X.; Davison, C.; Tallman, S.; de Ste-Croix, M.; Antonio, M.; Oggioni, M.R.; Kwambana-Adams, B.; Freund, F.; Beleza, S. Long-term evolution of Streptococcus mitis and Streptococcus pneumoniae leads to higher genetic diversity within rather than between human populations. PLoS Genet. 2024, 20, e1011317. [Google Scholar] [CrossRef]
- Cho, J.Y.; Lee, H.; Wannaadisai, W.; Vietri, J.; Chaiyakunapruk, N. Systematic literature review of cost-effectiveness analyses of adult 15- and 20-valent pneumococcal vaccines. Vaccine 2025, 46, 126656. [Google Scholar] [CrossRef] [PubMed]
- Sempere, J.; Llamosí, M.; del Río Menéndez, I.; López Ruiz, B.; Domenech, M.; González-Camacho, F. Pneumococcal choline-binding proteins involved in virulence as vaccine candidates. Vaccines 2021, 9, 181. [Google Scholar] [CrossRef]
- Silva, P.H.; Vázquez, Y.; Campusano, C.; Retamal-Díaz, A.; Lay, M.K.; Muñoz, C.A.; González, P.A.; Kalergis, A.M.; Bueno, S.M. Non-capsular based immunization approaches to prevent Streptococcus pneumoniae infection. Front. Cell. Infect. Microbiol. 2022, 12, 949469. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liang, H.; Zhao, S.H.; Yang, X.Y.; Guo, Z. Recent progress in pneumococcal protein vaccines. Front. Immunol. 2023, 14, 1278346. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, G.; Wang, X.; Xie, Z.; Gou, J.; Huang, L.; Huang, H.; You, W.; Wang, R.; Yang, Y.; et al. Preliminary evaluation of the safety and immunogenicity of a novel protein-based pneumococcal vaccine in healthy adults aged 18–49: A phase Ia randomized, double blind, placebo-controlled clinical study. Vaccines 2024, 12, 827. [Google Scholar] [CrossRef] [PubMed]
- Lock, R.A.; Hansman, D.; Paton, J.C. Comparative efficacy of autolysin and pneumolysin as immunogens protecting mice against infection by Streptococcus pneumoniae. Microb. Pathog. 1992, 12, 137–143. [Google Scholar] [CrossRef]
- Yuan, Z.Q.; Lv, Z.Y.; Gan, H.Q.; Xian, M.; Zhang, K.X.; Mai, J.Y.; Yu, X.B.; Wu, Z.D. Intranasal immunization with autolysin (LytA) in mice model induced protection against five prevalent Streptococcus pneumoniae serotypes in China. Immunol. Res. 2011, 51, 108–115. [Google Scholar] [CrossRef]
- Corsini, B.; Aguinagalde, L.; Ruiz, S.; Domenech, M.; Yuste, J. Vaccination with LytA, LytC, or Pce of Streptococcus pneumoniae protects against sepsis by inducing IgGs that activate the complement system. Vaccines 2021, 9, 186. [Google Scholar] [CrossRef]
- Afshar, D.; Rafiee, F.; Kheirandish, M.; Ohadian Moghadam, S.; Azarsa, M. Autolysin (lytA) recombinant protein: A potential target for developing vaccines against pneumococcal infections. Clin. Exp. Vaccine Res. 2020, 9, 76–80. [Google Scholar] [CrossRef]
- van Dalen, R.; Elsherbini, A.M.A.; Harms, M.; Alber, S.; Stemmler, R.; Peschel, A. Secretory IgA impacts the microbiota density in the human nose. Microbiome 2023, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Orihuela, C.J.; Maus, U.A.; Brown, J.S. Can animal models really teach us anything about pneumonia? Pro. Eur. Respir. J. 2020, 55, 1901539. [Google Scholar] [CrossRef] [PubMed]
- Metersky, M.; Waterer, G. Can animal models really teach us anything about pneumonia? Con. Eur. Respir. J. 2020, 55, 1901525. [Google Scholar] [CrossRef] [PubMed]
- McCool, T.L.; Cate, T.R.; Moy, G.; Weiser, J.N. The immune response to pneumococcal proteins during experimental human carriage. J. Exp. Med. 2002, 195, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.M.; Jambo, K.C.; Gordon, S.B. Experimental human pneumococcal carriage models for vaccine research. Trends Microbiol. 2011, 19, 464–470. [Google Scholar] [CrossRef]
- Doherty, K.; Dula, D.; Chirwa, A.; Nsomba, E.; Nkhoma, V.S.; Toto, N.; Chikaonda, T.; Kamng’ona, R.; Phiri, J.; Reiné, J.; et al. Experimental pneumococcal carriage in people living with HIV in Malawi: The first controlled human infection model in a key at-risk population. Wellcome Open Res. 2024, 9, 2. [Google Scholar] [CrossRef]
- Hazenberg, P.; Robinson, R.E.; Farrar, M.; Solorzano, C.; Hyder-Wright, A.; Liatsikos, K.; Brunning, J.; Fleet, H.; Bettam, A.; Howard, A.; et al. Serotype 3 Experimental Human Pneumococcal Challenge (EHPC) study protocol: Dose ranging and reproducibility in a healthy volunteer population (challenge 3). BMJ Open 2024, 14, e075948. [Google Scholar] [CrossRef]
- Masomian, M.; Ahmad, Z.; Gew, L.T.; Poh, C.L. Development of next generation Streptococcus pneumoniae vaccines conferring broad protection. Vaccines 2020, 8, 132. [Google Scholar] [CrossRef]
Factor | Description a | References |
---|---|---|
LytA deficiency | Failure to express enzymatically active LytA autolysin leads to AT. Only one clinical isolate has been identified as a true lytA mutant. | [51,57] |
psaBCAD mutation | Mutation in psaBCAD locus, coding for an ATP-binding cassette Mn2+-permease complex, results in failure to synthesize LytA and AT. | [298] |
zmpB mutation | Mutation in zmpB, encoding a Zn2+ metalloprotease, results in failure to synthesize LytA and AT. | [299] |
Controversial results | Neither psaBCAD nor zmpB are involved in AT. | [300,301,302] |
clpC mutation | Mutation in clpC leads to long chains of cells and failure to lyse after PEN or VAN reatment. Effects are strain-dependent. | [303,304] |
clpC mutants exhibit a non-tolerant phenotype and do not form long chains of cells. | [305,306] | |
vncS/vncR mutations | Mutation in vncS, encoding a histidine kinase, confers VAN tolerance and extends to other antibiotics like β-lactams, aminoglycosides, and quinolones. No detectable changes in LytA production. Mutation in vncR does not lead to a tolerant phenotype. | [131] |
Pep27 secretion b | Pep27 secretion was proposed to trigger multiple cell death mechanisms, but later studies failed to replicate these findings. | [307] |
Other studies did not confirm the contribution of vncS, vex3, vncR, or pep27 in AT. | [308,309] | |
Other factors | TCS03, TCS11, and CiaRH and carbohydrate metabolism-related proteins may also be involved in VAN tolerance | [310,311] |
PtvR regulation | PtvR regulates the ptvRABC operon, enhancing VAN tolerance. PtvR mutants exhibited reduced susceptibility to VAN. No effect on PEN tolerance. | [312] |
Cid (Tol) phenotype | Cid⁻ (Tol−) mutants showed reduced lysis in response to cell wall-active antibiotics, suggesting two killing mechanisms: one LytA-dependent and one LytA-independent. | [74,313,314] |
murMN operon | Mutants lacking murMN displayed increased susceptibility to lysis when exposed to antibiotics, affecting PG structure. | [315,316,317] |
O-acetylation of PG | O-acetylation of PG may modify stationary-phase lysis. | [318,319] |
Host | Disease | Route a | Strain Tested (Serotype) | Virulence b | References |
---|---|---|---|---|---|
Mouse | Bacteremia | ip | D39 (2); ND (3) | ↓ | [371,372] |
Pneumonia | in | D39 (2) | ↓ | [371,373,374] | |
Bacteremia | ip; iv | WU2 (3) | No change | [375] | |
Bacteremia | ip | A66 (3); A112 (6A) | No change | [376] | |
Bacteremia | ip | D39 (2); GB05 (3) | ↓ | [377] | |
Bacteremia/pneumonia | in; ip | D39 (2); 1515/97 (6B); S3 (23F); | ↓ | [378,379] | |
Bacteremia/pneumonia | in; it; iv | D39 Xen7 (2) | ↓ | [380] | |
Meningitis | ic | D39 (2) | ↓ | [381] | |
Adult zebrafish | Bacteremia/meningitis | im; ip | TIGR4 (4) | ↓ | [382] |
Chinchilla | Otitis media | me | WT3 (3) | ↓ | [92] |
Rat | Nasal colonization | in | D39 (2); WT (3) | No change | [383] |
Endophthalmitis | ivt | D39 (2) | ↓ | [384] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, E. Structure, Function, and Regulation of LytA: The N-Acetylmuramoyl-l-alanine Amidase Driving the “Suicidal Tendencies” of Streptococcus pneumoniae—A Review. Microorganisms 2025, 13, 827. https://doi.org/10.3390/microorganisms13040827
García E. Structure, Function, and Regulation of LytA: The N-Acetylmuramoyl-l-alanine Amidase Driving the “Suicidal Tendencies” of Streptococcus pneumoniae—A Review. Microorganisms. 2025; 13(4):827. https://doi.org/10.3390/microorganisms13040827
Chicago/Turabian StyleGarcía, Ernesto. 2025. "Structure, Function, and Regulation of LytA: The N-Acetylmuramoyl-l-alanine Amidase Driving the “Suicidal Tendencies” of Streptococcus pneumoniae—A Review" Microorganisms 13, no. 4: 827. https://doi.org/10.3390/microorganisms13040827
APA StyleGarcía, E. (2025). Structure, Function, and Regulation of LytA: The N-Acetylmuramoyl-l-alanine Amidase Driving the “Suicidal Tendencies” of Streptococcus pneumoniae—A Review. Microorganisms, 13(4), 827. https://doi.org/10.3390/microorganisms13040827