Microbiome–Maternal Tract Interactions in Women with Recurrent Implantation Failure
Abstract
:1. Introduction
2. Methodology
3. Paternal Factors on the Microbiome
4. Maternal Factors Affecting the Microbiome
4.1. Maternal Age
4.2. Body Mass Index
4.3. Smoking
4.4. Stress
4.5. Disease
4.5.1. Chronic Endometritis
4.5.2. Endometriosis
Factors/Sample | Microorganisms | Population/Techniques/Database | Reference |
---|---|---|---|
Male Factor | |||
Urethral and penile skin | Genera Actinomyces, Anaerococcus, Atopobium, Aerococcus, Barnesiella, BVAB1, BVAB2, Dialister, Eggerthella, Gardnerella, Gemella, Lb. iners, Leptotrichia, Mycoplasma hominis (M. hominis), Parvimonas, Peptoniphilus, Peptostreptococcus, Porphyromonas, P. bivia, Prevotella disiens (P. disiens), and Sneathia. | Male partners of women with and without BV, N = 96 couples (96 vaginal, 94 urethral, and 93 penile skin), pyrosequencing. | [80] |
Coronal sulcus | Genera Anaerococcus, Corynebacteria, Delftia, Finegoldia, Peptoniphilus, Porphyromonas, Prevotella, Propionibacterium, and Staphylococcus. | Adolescent men, N = 18 (12 circumcised, 5 uncircumcised, 1 excluded). Pyrosequencing V1–V3, V3–V5, V6–V9. | [81] |
Seminal plasma | Genera Candida, Enterobacteria, Enterococci, Streptococci, and Staphylococci. | Men of infertile couples, N = 71 (all 71 infertile asymptomatic), culture. | [82] |
Semen | Genera Anaerococcus hydrogenalis (A. hydrogenalis), Acinetobacter johnsonii (A. johnsonii), A. vaginae, Bacteroides ureolyticus (B. ureolyticus, now Campylobacter ureolyticus), Campylobacter rectus (C. rectus), Corynebacterium seminale (C. seminale, now Corynebacterium glucuronolyticum), Enterobacter cowanii (E. cowanii, now Kosakonia cowanii), G. vaginalis, Janthinobacterium lividum (J. lividum), Lb. crispatus, Lb. iners, Peptostreptococcus anaerobius (P. anaerobius), Peptostreptococcus asaccharolyticus (P. asaccharolyticus), Pseudomonas veronii (P. veronii), Streptococcus infantis (S. infantis), and Varibaculum cambriense (V. cambriense). | Men with and without prostatitis, N = 67 (21 with prostatitis, 46 without prostatitis), sequencing at V6. | [83] |
Female Factor | |||
Vaginal | A. vaginae, G. vaginalis, genus Lactobacillus, and M. hominis. | IVF patients, N = 307 (with BV = 29, without BV = 278), qPCR. | [84] |
Cervicovaginal | C. trachomatis and N. gonorrhoeae. | N = 230, pregnant (N = 14) and non-pregnant (N = 194), PCR. | [85] |
Cervix | C. trachomatis, genus Gardnerella, genus Lactobacillus, N. gonorrhoeae, genus Prevotella, and genus Sneathia. | Women with or without infectious infertility, female sex workers and healthy controls, N = 190 (26 non-infectious infertility, 21 infectious infertility, 89 fertile and healthy, 54 female sexual workers). Sequencing at V3–V4. | [86] |
Endometrial | The endometrial genus Lactobacillus levels did not significantly differ between RIF and controls (51.2% ± 37.5% and 51.6% ± 38.3%, respectively). Higher endometrial microbiota in the RIF group than the control group: genera Atopobium, Bacillus, Bifidobacterium, Corynebacterium, Enhydrobacter, Exiguobacterium, Gardnerella, Megasphaera, Ochrobactrum, Prevotella, Pseudoalteromonas, Shewanella, Streptococcus, and Vibrio. | N = 145 (RIF) and N = 21 (control). | [26] |
Fallopian tubal flushing | Genus Mycoplasma. | Patients with tubo-peritoneal infertility and normal fertile patients, N = 60. (30 normal, 30 infertile), PCR. | [87] |
Follicular fluid | Genera Actinomyces, C. parapsilosis, C. aurimucosum, Fusobacterium, Lb. iners, P. asaccharolyticus, Peptostreptococcus, Prevotella, Propionibacterium, and Staphylococcus. | ART patients, N = 71 (18 fertile, 16 with endometriosis, 14 with PCOS, 9 genital tract infection, 14 idiopathic infertility), PCR. | [88] |
Peritoneal fluid | Mycoplasma genitalium (M. Genitalium) and M. hominis. | Women with and without endometriosis, N = 104 (73 with endometriosis, 31 without endometriosis), PCR. | [89] |
Female Age Factor | |||
Mid-vaginal | Genera Aerococcus, Anaerococcus, Atopobium, Dialister, Diaphorobacter, Finegoldia, Lb. crispatus, Lb. gasseri, Lb. jensenni, Lb. iners, Megasphaera, Parvimonas, Peptinophilus, Proteobacteria, Prevotella, Sneathia, Streptococcus, and Veillonella. | Premenopausal women, N = 30 (all premenopausal women), sequencing at V1–V2. | [90] |
Vaginal | Genera Atopobium, Dialister, Gardnerella, Lactobacillus, Megasphaera, and Prevotella. | Premenopausal women’s vaginal microbiome, N = 396 (all vaginal collections), sequencing. | [33] |
Female Disease Factor | |||
Chronic Endometritis (CE) | Genera Bifidobacteria, Chlamydia, E. coli, K. pneumoniae, Mycoplasma N. gonorrhoeae, Prevotella, Streptococcus, Staphylococcus, and Ureaplasma. | 113 patients with CE, sequencing of 16S rRNA V2–4–8, V3–6, V7–9 regions. | [68] |
Endometriosis (EM) | EM patients with a decrease in genus Lactobacillus and an increase in genera Pseudomonas, Acinetobacter, Vagococcus, and Sphingobium. Non-EM: genus Lactobacillus dominant. | EM (N = 36) and non-EM (N = 14) women, sequencing at V4–V5 region. | [91] |
Estrobolome | |||
Hormone factor | Genera Bacteroides, Bifidobacterium, Clostridium, Escherichia, and Lactobacillus. | Human Microbiome Project (HMP) gut-associated microbial genomes (N = 517) were indexed for the presence of β-glucuronidase (EC 3.2.1.31). Estrogen is metabolized by the β-glucuronidase between conjugate forms to the deconjugate form. | [92] |
Antibiotic Factor | |||
Metronidazole | Used for treatment of bacterial vaginosis. Effective against protozoa, Bacteroides fragilis (B. fragilis), Clostridium difficile (C. difficile, now Clostridioides difficile), and genus Fusobacterium, less effective against Lactobacillus strains. | N = 392 (all diagnosed with RIF). | [16] |
Stress Factor | |||
Chronic stress | Stressed females had increased Proteobacteria at gestation day 7.5, mainly from the Helicobacter genus. Stress reduced genus Lactobacillus in females at postnatal day 2. | Control (N = 5), treatment group (N = 8). | [58] |
Microorganisms | Pathological Condition | Reference |
---|---|---|
Acinetobacter, E. coli | Postpartum endometritis | [93] |
Aerococcus urinae (A. urinae) | Urinary tract infections (UTIs) | [94] |
Anaerococcus | Various infections (vaginal discharge, ovarian abscesses, skin infections, chronic wounds) | [95,96] |
Atopobium, Bacteroides | Bacterial vaginosis (BV) | [97] |
B. fragilis | Pelvic inflammatory disease (PID) | [98] |
C. trachomatis | Chlamydia trachomatis, the bacterium, is associated with the sexually transmitted disease, Chlamydia. | [99] |
Clostridium perfringens (C. perfringens) | Gas gangrene | [100] |
Desulfovibrio microaerophilic (D. microaerophilic) | Gynecological infections (Pyometra) | [101] |
E. coli | UTIs, PID, vaginal infections | [102,103,104] |
E. coli, B. fragilis, Peptostreptococcus | Tubo-ovarian abscess | [105] |
G. vaginalis | BV | [106] |
Haemophilus ducreyi (H. ducreyi) | Chancroid | [107] |
Herpes simplex virus | Genital herpes (STD) | [108] |
Human immunodeficiency virus (HIV) | Acquired immunodeficiency syndrome (STD) | [109] |
M. genitalium, N. gonorrhoeae | PID | [110,111] |
M. hominis | BV, cervicitis and endometritis | [112,113] |
N. gonorrhoeae | Gonorrhea (STD) | [114] |
Papillomavirus | Human papillomavirus (STD), genital warts, abnormal cervical cell changes, and an increased risk of cervical cancer | [115] |
Prevotella | Increased abundance in vaginal mucosa is associated with BV | [116] |
Propionibacterium | Chronic endometritis, BV(sometimes detected) | [68] |
Pseudomonas aeruginosa (P. aeruginosa) | PID, UTIs | [117,118] |
Sneathia amnii (S. amnii) | Bartholin’s gland cyst and also linked with BV, preterm labor, chorioamnionitis, stillbirth and peripartum bacteremia | [119,120,121] |
Streptococcus | Streptococcal vaginitis, PID | [122,123] |
S. aureus | PID, vaginitis, endometritis, Bartholin’s gland abscess | [124,125,126,127] |
Trichomonas vaginalis (T. vaginalis) | Trichomoniasis | [128] |
4.6. Gut Epithelial Integrity
4.7. Hormones
5. Bacterial Metabolites and the Microbiome
5.1. Short-Chain Fatty Acids
5.2. Endogenous Antimicrobial Substances
5.3. Antibiotics
6. Microbiome Modulation in Patients with Recurrent Implantation Failure
7. Future Prospectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ART | assisted reproductive technology |
BMI | body mass index |
BV | bacterial vaginosis |
CE | chronic endometritis |
CSTs | community state types |
EM | endometriosis |
HMP | human microbiome project |
IVF | in vitro fertilization |
LD | Lactobacillus dominant |
LPS | lipopolysaccharide |
NLD | non-Lactobacillus dominant |
PID | pelvic inflammatory disease |
RIF | recurrent implantation failure |
RPL | recurrent pregnancy loss |
SCFAs | short-chain fatty acids |
STD | sexually transmitted disease |
UTIs | urinary tract infections |
VM | vaginal microbiota |
References
- Gao, X.S.; Louwers, Y.V.; Laven, J.S.E.; Schoenmakers, S. Clinical Relevance of Vaginal and Endometrial Microbiome Investigation in Women with Repeated Implantation Failure and Recurrent Pregnancy Loss. Int. J. Mol. Sci. 2024, 25, 622. [Google Scholar] [CrossRef]
- Khodaverdi, S.; Mohammadbeigi, R.; Khaledi, M.; Mesdaghinia, L.; Sharifzadeh, F.; Nasiripour, S.; Gorginzadeh, M. Beneficial Effects of Oral Lactobacillus on Pain Severity in Women Suffering from Endometriosis: A Pilot Placebo-Controlled Randomized Clinical Trial. Int. J. Fertil. Steril. 2019, 13, 178–183. [Google Scholar] [CrossRef]
- Gill, P.; Ata, B.; Arnanz, A.; Cimadomo, D.; Vaiarelli, A.; Fatemi, H.M.; Ubaldi, F.M.; Garcia-Velasco, J.A.; Seli, E. Does recurrent implantation failure exist? Prevalence and outcomes of five consecutive euploid blastocyst transfers in 123 987 patients. Hum. Reprod. 2024, 39, 974–980. [Google Scholar] [CrossRef]
- Bashiri, A.; Halper, K.I.; Raoul, O. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. Reprod. Biol. Endocrinol. 2018, 16, 121. [Google Scholar] [CrossRef]
- Pirtea, P.; De Ziegler, D.; Tao, X.; Sun, L.; Zhan, Y.; Ayoubi, J.M.; Seli, E.; Franasiak, J.M.; Scott, R.T., Jr. Rate of true recurrent implantation failure is low: Results of three successive frozen euploid single embryo transfers. Fertil. Steril. 2021, 115, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Meldrum, D.R. Introduction: Examining the many potential reasons why euploid blastocysts do not always result in viable pregnancies: Part 1. Fertil. Steril. 2016, 105, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.; Laufer, N. Repeated implantation failure: Clinical approach. Fertil. Steril. 2012, 97, 1039–1043. [Google Scholar] [CrossRef]
- Inzunza, J.; Midtvedt, T.; Fartoo, M.; Norin, E.; Osterlund, E.; Persson, A.K.; Ahrlund-Richter, L. Germfree status of mice obtained by embryo transfer in an isolator environment. Lab. Anim. 2005, 39, 421–427. [Google Scholar] [CrossRef]
- Lamont, R.F.; Sobel, J.D.; Akins, R.A.; Hassan, S.S.; Chaiworapongsa, T.; Kusanovic, J.P.; Romero, R. The vaginal microbiome: New information about genital tract flora using molecular based techniques. Bjog 2011, 118, 533–549. [Google Scholar] [CrossRef]
- Pavlova, S.I.; Kilic, A.O.; Kilic, S.S.; So, J.S.; Nader-Macias, M.E.; Simoes, J.A.; Tao, L. Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. J. Appl. Microbiol. 2002, 92, 451–459. [Google Scholar] [CrossRef]
- Todorov, S.D.; Baretto Penna, A.L.; Venema, K.; Holzapfel, W.H.; Chikindas, M.L. Recommendations for the use of standardised abbreviations for the former Lactobacillus genera, reclassified in the year 2020. Benef. Microbes 2023, 15, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Codoñer, F.M.; Vilella, F.; Valbuena, D.; Martinez-Blanch, J.F.; Jimenez-Almazán, J.; Alonso, R.; Alamá, P.; Remohí, J.; Pellicer, A.; et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am. J. Obstet. Gynecol. 2016, 215, 684–703. [Google Scholar] [CrossRef]
- Van Teijlingen, N.H.; Helgers, L.C.; Zijlstra-Willems, E.M.; van Hamme, J.L.; Ribeiro, C.M.S.; Strijbis, K.; Geijtenbeek, T.B.H. Vaginal dysbiosis associated-bacteria Megasphaera elsdenii and Prevotella timonensis induce immune activation via dendritic cells. J. Reprod. Immunol. 2020, 138, 103085. [Google Scholar] [CrossRef] [PubMed]
- Swidsinski, A.; Verstraelen, H.; Loening-Baucke, V.; Swidsinski, S.; Mendling, W.; Halwani, Z. Presence of a polymicrobial endometrial biofilm in patients with bacterial vaginosis. PLoS ONE 2013, 8, e53997. [Google Scholar] [CrossRef]
- Kadogami, D.; Nakaoka, Y.; Morimoto, Y. Use of a vaginal probiotic suppository and antibiotics to influence the composition of the endometrial microbiota. Reprod. Biol. 2020, 20, 307–314. [Google Scholar] [CrossRef]
- Han, M.; Cheng, W.; Zhu, R.; Wu, H.; Ding, J.; Zhao, N.; Li, H.; Wang, F.X. The Cytokine Profiles in Follicular Fluid and Reproductive Outcomes in Women With Endometriosis. Am. J. Reprod. Immunol. 2022, 89, e13633. [Google Scholar] [CrossRef]
- Luecke, S.; Webb, E.M.; Dahlen, C.R.; Reynolds, L.P.; Amat, S. Seminal and Vagino-Uterine Microbiome and Their Individual and Interactive Effects on Cattle Fertility. Front. Microbiol. 2022, 13, 1029128. [Google Scholar] [CrossRef]
- Mändar, R.; Punab, M.; Borovkova, N.; Lapp, E.; Kiiker, R.; Korrovits, P.; Metspalu, A.; Krjutškov, K.; Nõlvak, H.; Preem, J.-K.; et al. Complementary seminovaginal microbiome in couples. Res. Microbiol. 2015, 166, 440–447. [Google Scholar] [CrossRef]
- Pasch, L.A.; Gregorich, S.E.; Katz, P.K.; Millstein, S.G.; Nachtigall, R.D.; Bleil, M.E.; Adler, N.E. Psychological distress and in vitro fertilization outcome. Fertil. Steril. 2012, 98, 459–464. [Google Scholar] [CrossRef]
- Weng, S.-L.; Chiu, C.-M.; Lin, F.-M.; Huang, W.-C.; Liang, C.; Yang, T.; Yang, T.-L.; Liu, C.-Y.; Wu, W.-Y.; Chang, Y.-A.; et al. Bacterial Communities in Semen from Men of Infertile Couples: Metagenomic Sequencing Reveals Relationships of Seminal Microbiota to Semen Quality. PLoS ONE 2014, 9, e110152. [Google Scholar] [CrossRef]
- Osadchiy, V.; Belarmino, A.; Kianian, R.; Sigalos, J.T.; Ancira, J.S.; Kanie, T.; Mangum, S.F.; Tipton, C.D.; Hsieh, T.M.; Mills, J.N.; et al. Semen microbiota are dramatically altered in men with abnormal sperm parameters. Sci. Rep. 2024, 14, 1068. [Google Scholar] [CrossRef]
- Baud, D.; Pattaroni, C.; Vulliemoz, N.; Castella, V.; Marsland, B.J.; Stojanov, M. Sperm Microbiota and Its Impact on Semen Parameters. Front. Microbiol. 2019, 10, 234. [Google Scholar] [CrossRef]
- Younes, J.A.; Lievens, E.; Hummelen, R.; van der Westen, R.; Reid, G.; Petrova, M.I. Women and Their Microbes: The Unexpected Friendship. Trends Microbiol. 2018, 26, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Shannon, B.; Gajer, P.; Yi, T.J.; Ma, B.; Humphrys, M.S.; Thomas-Pavanel, J.; Chieza, L.; Janakiram, P.; Saunders, M.; Tharao, W.; et al. Distinct Effects of the Cervicovaginal Microbiota and Herpes Simplex Type 2 Infection on Female Genital Tract Immunology. J. Infect. Dis. 2017, 215, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Ichiyama, T.; Kuroda, K.; Nagai, Y.; Urushiyama, D.; Ohno, M.; Yamaguchi, T.; Nagayoshi, M.; Sakuraba, Y.; Yamasaki, F.; Hata, K.; et al. Analysis of vaginal and endometrial microbiota communities in infertile women with a history of repeated implantation failure. Reprod. Med. Biol. 2021, 20, 334–344. [Google Scholar] [CrossRef]
- Takeshima, T.; Usui, K.; Mori, K.; Asai, T.; Yasuda, K.; Kuroda, S.; Yumura, Y. Oxidative Stress and Male Infertility. Reprod. Med. Biol. 2020, 20, 41–52. [Google Scholar] [CrossRef]
- Su, Q.; Zhang, Y.; Cui, Z.; Chang, S.; Zhao, P. Semen-Derived Exosomes Mediate Immune Escape and Transmission of Reticuloendotheliosis Virus. Front. Immunol. 2021, 12, 735280. [Google Scholar] [CrossRef]
- Fujii, S.; Oguchi, T. Age- and endometrial microbiota-related delay in development of endometrial receptivity. Reprod. Med. Biol. 2023, 22, e12523. [Google Scholar] [CrossRef]
- Knudsen, U.B.; Hansen, V.; Juul, S.; Secher, N.J. Prognosis of a new pregnancy following previous spontaneous abortions. Eur. J. Obstet. Gynecol. Reprod. Biol. 1991, 39, 31–36. [Google Scholar] [CrossRef]
- Blazheva, S.; Pachkova, S.; Bodurska, T.; Ivanov, P.; Blazhev, A.; Lukanov, T.; Konova, E. Unlocking the Uterine Code: Microbiota, Immune Cells, and Therapy for Recurrent Reproductive Failure. Microorganisms 2024, 12, 547. [Google Scholar] [CrossRef] [PubMed]
- Jiang, I.; Yong, P.J.; Allaire, C.; Bedaiwy, M.A. Intricate Connections between the Microbiota and Endometriosis. Int. J. Mol. Sci. 2021, 22, 5644. [Google Scholar] [CrossRef] [PubMed]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108, 4680–4687. [Google Scholar] [CrossRef]
- Farage, M.; Maibach, H. Lifetime changes in the vulva and vagina. Arch. Gynecol. Obstet. 2006, 273, 195–202. [Google Scholar] [CrossRef]
- Nuttall, F.Q. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef]
- Orvieto, R.; Meltcer, S.; Nahum, R.; Rabinson, J.; Anteby, E.Y.; Ashkenazi, J. The influence of body mass index on in vitro fertilization outcome. Int. J. Gynaecol. Obstet. 2009, 104, 53–55. [Google Scholar] [CrossRef]
- Asbury, M.R.; Butcher, J.; Copeland, J.K.; Unger, S.; Bando, N.; Comelli, E.M.; Forte, V.; Kiss, A.; LeMay-Nedjelski, L.; Sherman, P.M.; et al. Mothers of Preterm Infants Have Individualized Breast Milk Microbiota that Changes Temporally Based on Maternal Characteristics. Cell Host Microbe 2020, 28, 669–682.e664. [Google Scholar] [CrossRef]
- Rittenberg, V.; Seshadri, S.; Sunkara, S.K.; Sobaleva, S.; Oteng-Ntim, E.; El-Toukhy, T. Effect of body mass index on IVF treatment outcome: An updated systematic review and meta-analysis. Reprod. Biomed. Online 2011, 23, 421–439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, H.; Mao, X.; Chen, Q.; Fan, Y.; Xiao, Y.; Wang, Y.; Kuang, Y. Effect of body mass index on pregnancy outcomes in a freeze-all policy: An analysis of 22,043 first autologous frozen-thawed embryo transfer cycles in China. BMC Med. 2019, 17, 114. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, Y.; Chen, L.; Zeng, L.; Li, R. Association between body mass index and in vitro fertilization/intra-cytoplasmic sperm injection outcomes: An analysis of 15,124 normal ovarian responders in China. Chin. Med. J. 2024, 137, 837–845. [Google Scholar] [CrossRef]
- Bellver, J. BMI and miscarriage after IVF. Curr. Opin. Obstet. Gynecol. 2022, 34, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Allen, N.G.; Edupuganti, L.; Edwards, D.J.; Jimenez, N.R.; Buck, G.A.; Jefferson, K.K.; Strauss, J.F., 3rd; Wickham, E.P., 3rd; Fettweis, J.M. The vaginal microbiome in women of reproductive age with healthy weight versus overweight/obesity. Obesity 2022, 30, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, Y.; Wu, L.; Zhang, Y.; Guo, H.; Ji, Y. Correlation between uterine microbiota and pregnancy outcomes of embryo transfer in overweight and obese women. Front. Cell Infect. Microbiol. 2025, 15, 1515563. [Google Scholar] [CrossRef]
- Garg, A.; Ellis, L.B.; Love, R.L.; Grewal, K.; Bowden, S.; Bennett, P.R.; Kyrgiou, M. Vaginal microbiome in obesity and its impact on reproduction. Best. Pract. Res. Clin. Obstet. Gynaecol. 2023, 90, 102365. [Google Scholar] [CrossRef] [PubMed]
- Blancafort, C.; Llácer, J. Can Probiotics Enhance Fertility Outcome? Capacity of Probiotics as a Single Intervention to Improve the Feminine Genital Tract Microbiota in Non-Symptomatic Reproductive-Aged Women. Front. Endocrinol. 2023, 13, 1081830. [Google Scholar] [CrossRef]
- Gille, C.; Böer, B.; Marschal, M.; Urschitz, M.S.; Heinecke, V.; Hund, V.; Speidel, S.; Tarnow, I.; Mylonas, I.; Franz, A.; et al. Effect of Probiotics on Vaginal Health in Pregnancy. EFFPRO, a Randomized Controlled Trial. Am. J. Obstet. Gynecol. 2016, 215, 608.e601–608.e607. [Google Scholar] [CrossRef]
- Waylen, A.L.; Metwally, M.; Jones, G.L.; Wilkinson, A.J.; Ledger, W.L. Effects of cigarette smoking upon clinical outcomes of assisted reproduction: A meta-analysis. Hum. Reprod. Update 2009, 15, 31–44. [Google Scholar] [CrossRef]
- Marom-Haham, L.; Shulman, A. Cigarette smoking and hormones. Curr. Opin. Obstet. Gynecol. 2016, 28, 230–235. [Google Scholar] [CrossRef]
- Mattison, D.R.; Thorgeirsson, S.S. Smoking and industrial pollution, and their effects on menopause and ovarian cancer. Lancet 1978, 1, 187–188. [Google Scholar] [CrossRef]
- Cnattingius, S. The epidemiology of smoking during pregnancy: Smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine Tob. Res. 2004, 6, S125–S140. [Google Scholar] [CrossRef]
- Hernández, S.; Vives, M.J. Phages in Anaerobic Systems. Viruses 2020, 12, 1091. [Google Scholar] [CrossRef]
- Brotman, R.M.; He, X.; Gajer, P.; Fadrosh, D.; Sharma, E.; Mongodin, E.F.; Ravel, J.; Glover, E.D.; Rath, J.M. Association between cigarette smoking and the vaginal microbiota: A pilot study. BMC Infect. Dis. 2014, 14, 471. [Google Scholar] [CrossRef]
- Fettweis, J.M.; Serrano, M.G.; Girerd, P.H.; Jefferson, K.K.; Buck, G.A. A new era of the vaginal microbiome: Advances using next-generation sequencing. Chem. Biodivers. 2012, 9, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Nelson, T.M.; Borgogna, J.-L.C.; Michalek, R.D.; Roberts, D.W.; Rath, J.M.; Glover, E.D.; Ravel, J.; Shardell, M.; Yeoman, C.J.; Brotman, R.M. Cigarette Smoking Is Associated With an Altered Vaginal Tract Metabolomic Profile. Sci. Rep. 2018, 8, 852. [Google Scholar] [CrossRef]
- Corbett, G.A.; Moore, R.; Feehily, C.; Killeen, S.L.; O’Brien, E.C.; Sinderen, D.v.; Matthews, E.; O’Flaherty, R.; Rudd, P.M.; Saldova, R.; et al. Dietary Amino Acids, Macronutrients, Vaginal Birth, and Breastfeeding Are Associated With the Vaginal Microbiome in Early Pregnancy. Microbiol. Spectr. 2024, 12, e01130-24. [Google Scholar] [CrossRef] [PubMed]
- Rosen, E.M.; Martin, C.L.; Siega-Riz, A.M.; Dole, N.; Basta, P.V.; Serrano, M.G.; Fettweis, J.M.; Wu, M.C.; Sun, S.; Thorp, J.M.; et al. Is Prenatal Diet Associated With the Composition of the Vaginal Microbiome? Paediatr. Perinat. Epidemiol. 2021, 36, 243–253. [Google Scholar] [CrossRef]
- Nepomnaschy, P.A.; Welch, K.B.; McConnell, D.S.; Low, B.S.; Strassmann, B.I.; England, B.G. Cortisol levels and very early pregnancy loss in humans. Proc. Natl. Acad. Sci. USA 2006, 103, 3938–3942. [Google Scholar] [CrossRef]
- Jašarević, E.; Howard, C.D.; Misic, A.M.; Beiting, D.P.; Bale, T.L. Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner. Sci. Rep. 2017, 7, 44182. [Google Scholar] [CrossRef]
- Witkin, S.; Linhares, I. Why do lactobacilli dominate the human vaginal microbiota? BJOG Int. J. Obstet. Gynaecol. 2017, 124, 606–611. [Google Scholar] [CrossRef]
- Pauls, R.; Mutema, G.; Segal, J.; Silva, W.A.; Kleeman, S.; Dryfhout, V.; Karram, M. A Prospective Study Examining the Anatomic Distribution of Nerve Density in the Human Vagina. J. Sex. Med. 2006, 3, 979–987. [Google Scholar] [CrossRef]
- Rusch, J.; Layden, B.T.; Dugas, L.R. Signalling Cognition: The Gut Microbiota and Hypothalamic-Pituitary-Adrenal Axis. Front. Endocrinol. 2023, 14, 1130689. [Google Scholar] [CrossRef]
- Jašarević, E.; Howerton, C.L.; Howard, C.D.; Bale, T.L. Alterations in the Vaginal Microbiome by Maternal Stress Are Associated With Metabolic Reprogramming of the Offspring Gut and Brain. Endocrinology 2015, 156, 3265–3276. [Google Scholar] [CrossRef]
- Kitaya, K. Prevalence of chronic endometritis in recurrent miscarriages. Fertil. Steril. 2011, 95, 1156–1158. [Google Scholar] [CrossRef]
- Bouet, P.E.; El Hachem, H.; Monceau, E.; Gariépy, G.; Kadoch, I.J.; Sylvestre, C. Chronic endometritis in women with recurrent pregnancy loss and recurrent implantation failure: Prevalence and role of office hysteroscopy and immunohistochemistry in diagnosis. Fertil. Steril. 2016, 105, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Luncan, M.; Huniadi, A.; Bimbo-Szuhai, E.; Botea, M.; Zaha, I.; Stefan, L.; Beiusanu, C.; Romanescu, D.; Pallag, A.; Bodog, A.; et al. The effectiveness of intrauterine antibiotic infusion versus oral antibiotic therapy in the treatment of chronic endometritis in patients during IVF (in vitro fertilization) procedures. BMC Womens Health 2022, 22, 529. [Google Scholar] [CrossRef]
- Cicinelli, E.; Matteo, M.; Tinelli, R.; Lepera, A.; Alfonso, R.; Indraccolo, U.; Marrocchella, S.; Greco, P.; Resta, L. Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy. Hum. Reprod. 2015, 30, 323–330. [Google Scholar] [CrossRef]
- Quaas, A.; Dokras, A. Diagnosis and treatment of unexplained infertility. Rev. Obstet. Gynecol. 2008, 1, 69–76. [Google Scholar]
- Moreno, I.; Cicinelli, E.; Garcia-Grau, I.; Gonzalez-Monfort, M.; Bau, D.; Vilella, F.; De Ziegler, D.; Resta, L.; Valbuena, D.; Simon, C. The diagnosis of chronic endometritis in infertile asymptomatic women: A comparative study of histology, microbial cultures, hysteroscopy, and molecular microbiology. Am. J. Obstet. Gynecol. 2018, 218, 602.e601–602.e616. [Google Scholar] [CrossRef]
- Alkatout, I.; Mettler, L.; Beteta, C.; Hedderich, J.; Jonat, W.; Schollmeyer, T.; Salmassi, A. Combined surgical and hormone therapy for endometriosis is the most effective treatment: Prospective, randomized, controlled trial. J. Minim. Invasive Gynecol. 2013, 20, 473–481. [Google Scholar] [CrossRef]
- Máté, G.; Bernstein, L.R.; Török, A.L. Endometriosis Is a Cause of Infertility. Does Reactive Oxygen Damage to Gametes and Embryos Play a Key Role in the Pathogenesis of Infertility Caused by Endometriosis? Front. Endocrinol. 2018, 9, 725. [Google Scholar] [CrossRef]
- Zhong, C.; Gao, L.; Shu, L.; Hou, Z.; Cai, L.; Huang, J.; Liu, J.; Mao, Y. Analysis of IVF/ICSI Outcomes in Endometriosis Patients With Recurrent Implantation Failure: Influence on Cumulative Live Birth Rate. Front. Endocrinol. 2021, 12, 640288. [Google Scholar] [CrossRef]
- Khan, K.N.; Kitajima, M.; Hiraki, K.; Yamaguchi, N.; Katamine, S.; Matsuyama, T.; Nakashima, M.; Fujishita, A.; Ishimaru, T.; Masuzaki, H. Escherichia coli contamination of menstrual blood and effect of bacterial endotoxin on endometriosis. Fertil. Steril. 2010, 94, 2860–2863.e3. [Google Scholar] [CrossRef]
- Khan, K.N.; Fujishita, A.; Hiraki, K.; Kitajima, M.; Nakashima, M.; Fushiki, S.; Kitawaki, J. Bacterial contamination hypothesis: A new concept in endometriosis. Reprod. Med. Biol. 2018, 17, 125–133. [Google Scholar] [CrossRef]
- Khan, K.N.; Fujishita, A.; Masumoto, H.; Muto, H.; Kitajima, M.; Masuzaki, H.; Kitawaki, J. Molecular detection of intrauterine microbial colonization in women with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 199, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Cregger, M.; Lenz, K.; Leary, E.; Leach, R.; Fazleabas, A.; White, B.; Braundmeier, A. Reproductive Microbiomes: Using the microbiome as a novel diagnostic tool for endometriosis. Reprod. Immunol. Open Access 2017, 2, 36. [Google Scholar] [CrossRef]
- Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z.; Li, F.; Yu, X.; Feng, Q.; Wang, Z.; et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 2017, 8, 875. [Google Scholar] [CrossRef] [PubMed]
- Hernandes, C.; Silveira, P.; Rodrigues Sereia, A.F.; Christoff, A.P.; Mendes, H.; Valter de Oliveira, L.F.; Podgaec, S. Microbiome Profile of Deep Endometriosis Patients: Comparison of Vaginal Fluid, Endometrium and Lesion. Diagnostics 2020, 10, 163. [Google Scholar] [CrossRef]
- Mazza, E.; Troiano, E.; Mazza, S.; Ferro, Y.; Abbinante, A.; Agneta, M.T.; Montalcini, T.; Pujia, A. The Impact of Endometriosis on Dietary Choices and Activities of Everyday Life: A Cross-Sectional Study. Front. Nutr. 2023, 10, 1273976. [Google Scholar] [CrossRef]
- Norfuad, F.A.; Mokhtar, M.H.; Azurah, A.G.N. Beneficial Effects of Probiotics on Benign Gynaecological Disorders: A Review. Nutrients 2023, 15, 2733. [Google Scholar] [CrossRef]
- Zozaya, M.; Ferris, M.J.; Siren, J.D.; Lillis, R.; Myers, L.; Nsuami, M.J.; Eren, A.M.; Brown, J.; Taylor, C.M.; Martin, D.H. Bacterial communities in penile skin, male urethra, and vaginas of heterosexual couples with and without bacterial vaginosis. Microbiome 2016, 4, 16. [Google Scholar] [CrossRef]
- Nelson, D.E.; Dong, Q.; Van Der Pol, B.; Toh, E.; Fan, B.; Katz, B.P.; Mi, D.; Rong, R.; Weinstock, G.M.; Sodergren, E.; et al. Bacterial Communities of the Coronal Sulcus and Distal Urethra of Adolescent Males. PLoS ONE 2012, 7, e36298. [Google Scholar] [CrossRef]
- Godovalov, A.; Karpunina, T.I. Microbiological and morpho-functional features of ejaculate from infertile men with asymptomatic bacteriospermia. Meždunarodnyj Naučno-Issledovatelʹskij Žurnal 2016, 9, 34–38. [Google Scholar] [CrossRef]
- Mändar, R.; Punab, M.; Korrovits, P.; Türk, S.; Ausmees, K.; Lapp, E.; Preem, J.K.; Oopkaup, K.; Salumets, A.; Truu, J. Seminal microbiome in men with and without prostatitis. Int. J. Urol. 2017, 24, 211–216. [Google Scholar] [CrossRef]
- Mangot-Bertrand, J.; Fenollar, F.; Bretelle, F.; Gamerre, M.; Raoult, D.; Courbiere, B. Molecular diagnosis of bacterial vaginosis: Impact on IVF outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Borgdorff, H.; Jespers, V.; Francis, S.C.; Verhelst, R.; Mwaura, M.; Delany-Moretlwe, S.; Ndayisaba, G.; Kyongo, J.K.; Hardy, L.; et al. Correlates of the molecular vaginal microbiota composition of African women. BMC Infect. Dis. 2015, 15, 86. [Google Scholar] [CrossRef]
- Graspeuntner, S.; Bohlmann, M.K.; Gillmann, K.; Speer, R.; Kuenzel, S.; Mark, H.; Hoellen, F.; Lettau, R.; Griesinger, G.; König, I.R.; et al. Microbiota-based analysis reveals specific bacterial traits and a novel strategy for the diagnosis of infectious infertility. PLoS ONE 2018, 13, e0191047. [Google Scholar] [CrossRef]
- Costoya, A.; Morales, F.; Borda, P.; Vargas, R.; Fuhrer, J.; Salgado, N.; Cárdenas, H.; Velasquez, L. Mycoplasmateceae species are not found in Fallopian tubes of women with tubo-peritoneal infertility. Braz. J. Infect. Dis. 2012, 16, 273–278. [Google Scholar]
- Pelzer, E.S.; Allan, J.A.; Cunningham, K.; Mengersen, K.; Allan, J.M.; Launchbury, T.; Beagley, K.; Knox, C.L. Microbial colonization of follicular fluid: Alterations in cytokine expression and adverse assisted reproduction technology outcomes. Hum. Reprod. 2011, 26, 1799–1812. [Google Scholar] [CrossRef]
- Campos, G.B.; Marques, L.M.; Rezende, I.S.; Barbosa, M.S.; Abrão, M.S.; Timenetsky, J. Mycoplasma genitalium can modulate the local immune response in patients with endometriosis. Fertil. Steril. 2018, 109, 549–560.e544. [Google Scholar] [CrossRef]
- Brotman, R.M.; Shardell, M.D.; Gajer, P.; Fadrosh, D.; Chang, K.; Silver, M.I.; Viscidi, R.P.; Burke, A.E.; Ravel, J.; Gravitt, P.E. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause 2014, 21, 450–458. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, X.; Tang, H.; Zeng, L.; Wu, R. Microbiota composition and distribution along the female reproductive tract of women with endometriosis. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 15. [Google Scholar] [CrossRef]
- Kwa, M.; Plottel, C.S.; Blaser, M.J.; Adams, S. The Intestinal Microbiome and Estrogen Receptor-Positive Female Breast Cancer. J. Natl. Cancer Inst. 2016, 108, djw029. [Google Scholar] [CrossRef]
- Salmanov, A.G.; Vitiuk, A.D.; Zhelezov, D.M.; Bilokon, O.; Kornatska, A.G.; Dyndar, O.A.; Trokhymovych, O.V.; Bozhko, N.; Raksha, I.I.; Nykoniuk, T.R.; et al. Prevalence of Postpartum Endometritis and Antimicrobial Resistance of Responsible Pathogens in Ukraine: Results a Multicenter Study (2015–2017). Wiadomości Lek. 2020, 73, 1177–1183. [Google Scholar] [CrossRef]
- Hilt, E.E.; Putonti, C.; Thomas-White, K.; Lewis, A.L.; Visick, K.L.; Gilbert, N.M.; Wolfe, A.J. Aerococcus urinae Isolated from Women with Lower Urinary Tract Symptoms: In Vitro Aggregation and Genome Analysis. J. Bacteriol. 2020, 202, e00170-12. [Google Scholar] [CrossRef] [PubMed]
- Cobo, F.; Navarro-Marí, J.M. First description of Anaerococcus octavius as cause of bacteremia. Anaerobe 2020, 61, 102130. [Google Scholar] [CrossRef] [PubMed]
- Gontcharova, V.; Youn, E.; Sun, Y.; Wolcott, R.D.; Dowd, S.E. A comparison of bacterial composition in diabetic ulcers and contralateral intact skin. Open Microbiol. J. 2010, 4, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Abou Chacra, L.; Fenollar, F.; Diop, K. Bacterial Vaginosis: What Do We Currently Know? Front. Cell Infect. Microbiol. 2021, 11, 672429. [Google Scholar] [CrossRef]
- Paavonen, J.; Valtonen, V.V.; Kasper, D.L.; Malkamäki, M.; Mäkelä, P.H. Serological evidence for the role of Bacteroides fragilis and enterobacteriaceae in the pathogenesis of acute pelvic inflammatory disease. Lancet 1981, 1, 293–295. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, C.M.; Ferone, M.E. Chlamydia trachomatis Genital Infections. Microb. Cell 2016, 3, 390–403. [Google Scholar] [CrossRef]
- Preseau, T.; Deviendt, J.; Duttman, R.; Attou, R.; Franck, D.; Claeys, R.; Honoré, P.M.; De Bels, D. Clostridium Perfringens in Gas Gangrene: Still a Smoked Gun! J. Transl. Int. Med. 2020, 8, 54–56. [Google Scholar] [CrossRef]
- Kitagawa, H.; Tadera, K.; Omori, K.; Nomura, T.; Shigemoto, N.; Ohge, H. A case of bacteremia caused by Dialister micraerophilus with Enterocloster clostridioformis and Eggerthella lenta in a patient with pyometra. BMC Infect. Dis. 2024, 24, 128. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Z.; Zheng, L.; Gong, Z.; Li, Y.; Jin, Y.; Huang, Y.; Chi, M. Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. Int. J. Mol. Sci. 2023, 24, 10537. [Google Scholar] [CrossRef]
- King, A.L.; Stamatopoulos, N. Concurrent Escherichia coli tubo-ovarian abscess and Campylobacter jejuni gastroenteritis: A case report. Case Rep. Womens Health 2020, 26, e00192. [Google Scholar] [CrossRef]
- Safarpoor Dehkordi, F.; Tavakoli-Far, B.; Jafariaskari, S.; Momtaz, H.; Esmaeilzadeh, S.; Ranjbar, R.; Rabiei, M. Uropathogenic Escherichia coli in the high vaginal swab samples of fertile and infertile women: Virulence factors, O-serogroups, and phenotyping and genotyping characterization of antibiotic resistance. New Microbes New Infect. 2020, 38, 100824. [Google Scholar] [CrossRef]
- Gkrozou, F.; Tsonis, O.; Daniilidis, A.; Navrozoglou, I.; Paschopoulos, M. Tubo-ovarian abscess: Exploring optimal treatment options based on current evidence. J. Endometr. Pelvic Pain. Disord. 2021, 13, 10–19. [Google Scholar] [CrossRef]
- Morrill, S.; Gilbert, N.M.; Lewis, A.L. Gardnerella vaginalis as a Cause of Bacterial Vaginosis: Appraisal of the Evidence From in vivo Models. Front. Cell Infect. Microbiol. 2020, 10, 168. [Google Scholar] [CrossRef]
- Morse, S.A. Chancroid and Haemophilus ducreyi. Clin. Microbiol. Rev. 1989, 2, 137–157. [Google Scholar] [CrossRef]
- Sauerbrei, A. Herpes Genitalis: Diagnosis, Treatment and Prevention. Geburtshilfe Frauenheilkd. 2016, 76, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Simon, V.; Ho, D.D.; Abdool Karim, Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet 2006, 368, 489–504. [Google Scholar] [CrossRef]
- Haggerty, C.L.; Taylor, B.D. Mycoplasma genitalium: An emerging cause of pelvic inflammatory disease. Infect. Dis. Obstet. Gynecol. 2011, 2011, 959816. [Google Scholar] [CrossRef]
- Darville, T. Pelvic Inflammatory Disease Due to Neisseria gonorrhoeae and Chlamydia trachomatis: Immune Evasion Mechanisms and Pathogenic Disease Pathways. J. Infect. Dis. 2021, 224, S39–S46. [Google Scholar] [CrossRef] [PubMed]
- Deodhar, L.P.; Pandit, D.V. Mycoplasma hominis in women with bacterial vaginosis. Indian. J. Med. Res. 1992, 95, 144–147. [Google Scholar] [PubMed]
- Paavonen, J.; Miettinen, A.; Stevens, C.E.; Kiviat, N.; Kuo, C.C.; Stamm, W.E.; Holmes, K.K. Mycoplasma hominis in cervicitis and endometritis. Sex. Transm. Dis. 1983, 10, 276–280. [Google Scholar]
- Quillin, S.J.; Seifert, H.S. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat. Rev. Microbiol. 2018, 16, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Soheili, M.; Keyvani, H.; Soheili, M.; Nasseri, S. Human papilloma virus: A review study of epidemiology, carcinogenesis, diagnostic methods, and treatment of all HPV-related cancers. Med. J. Islam. Repub. Iran. 2021, 35, 65. [Google Scholar] [CrossRef]
- Si, J.; You, H.J.; Yu, J.; Sung, J.; Ko, G. Prevotella as a Hub for Vaginal Microbiota under the Influence of Host Genetics and Their Association with Obesity. Cell Host Microbe 2017, 21, 97–105. [Google Scholar] [CrossRef]
- King, J.A.; Olsen, T.G.; Lim, R.; Nycum, L.R. Pseudomonas aeruginosa-infected IUD associated with pelvic inflammatory disease. A case report. J. Reprod. Med. 2002, 47, 1035–1037. [Google Scholar]
- Narten, M.; Rosin, N.; Schobert, M.; Tielen, P. Susceptibility of Pseudomonas aeruginosa urinary tract isolates and influence of urinary tract conditions on antibiotic tolerance. Curr. Microbiol. 2012, 64, 7–16. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Z.; Xu, M.; Li, W.; Sun, Y.; Dai, Y.; Yang, X.; Lin, S. Bartholin’s gland cyst caused by Sneathia amnii: A case report. BMC Infect. Dis. 2023, 23, 333. [Google Scholar] [CrossRef]
- Duployez, C.; Le Guern, R.; Faure, E.; Wallet, F.; Loïez, C. Sneathia amnii, an unusual pathogen in spondylitis: A case report. Anaerobe 2020, 66, 102277. [Google Scholar] [CrossRef]
- Vitorino, P.; Varo, R.; Castillo, P.; Hurtado, J.C.; Fernandes, F.; Valente, A.M.; Mabunda, R.; Mocumbi, S.; Gary, J.M.; Jenkinson, T.G.; et al. Sneathia amnii and Maternal Chorioamnionitis and Stillbirth, Mozambique. Emerg. Infect. Dis. 2019, 25, 1614–1616. [Google Scholar] [CrossRef] [PubMed]
- Verstraelen, H.; Verhelst, R.; Vaneechoutte, M.; Temmerman, M. Group A streptococcal vaginitis: An unrecognized cause of vaginal symptoms in adult women. Arch. Gynecol. Obstet. 2011, 284, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Lemoyne, S.; Van Leemput, J.; Smet, D.; Desmedt, E.; Devos, H.; Van Schaeren, J.; Jeurissen, A. Pelvic inflammatory disease due to Streptococcus pneumoniae: A usual pathogen at an unusual place. Acta Clin. Belg. 2008, 63, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.H.; Umeh, P.O.; Irokanulo, E.; Baba, M.M.; Spencer, B.B.; Umar, A.I.; Ardzard, S.A.; Oderinde, S.; Onoja, O. Bacterial isolates associated with pelvic inflammatory disease among female patients attending some hospitals in abuja, Nigeria. Afr. J. Infect. Dis. 2014, 8, 9–13. [Google Scholar] [CrossRef]
- Ghiasi, M.; Fazaeli, H.; Kalhor, N.; Sheykh-Hasan, M.; Tabatabaei-Qomi, R. Assessing the prevalence of bacterial vaginosis among infertile women of Qom city. Iran. J. Microbiol. 2014, 6, 404–408. [Google Scholar]
- Gao, S.; Gao, Y.; Cai, L.; Qin, R. Luteolin attenuates Staphylococcus aureus induced endometritis through inhibiting ferroptosis and inflammation via activating the Nrf2/GPX4 signaling pathway. Microbiol. Spectr. 2024, 12, e03279-03223. [Google Scholar] [CrossRef]
- Oriji, P.C.; Allagoa, D.O.; Ubom, A.E.; Oriji, V.K. A 5-Year Review of Incidence, Presentation and Management of Bartholin Gland Cysts and Abscesses in a Tertiary Hospital, Yenagoa, South-South Nigeria. Asian Res. J. Gynaecol. Obstet. 2022, 5, 142–148. [Google Scholar]
- Kissinger, P.J.; Gaydos, C.A.; Seña, A.C.; Scott McClelland, R.; Soper, D.; Secor, W.E.; Legendre, D.; Workowski, K.A.; Muzny, C.A. Diagnosis and Management of Trichomonas vaginalis: Summary of Evidence Reviewed for the 2021 Centers for Disease Control and Prevention Sexually Transmitted Infections Treatment Guidelines. Clin. Infect. Dis. 2022, 74, S152–S161. [Google Scholar] [CrossRef]
- Patel, N.; Patel, N.; Pal, S.; Nathani, N.M.; Pandit, R.; Patel, M.; Patel, N.; Joshi, C.G.; Parekh, B. Distinct Gut and Vaginal Microbiota Profile in Women With Recurrent Implantation Failure and Unexplained Infertility. BMC Womens Health 2021, 22, 113. [Google Scholar] [CrossRef]
- Schreiber, K.; Hunt, B.J. Pregnancy and Antiphospholipid Syndrome. Semin. Thromb. Hemost. 2016, 42, 780–788. [Google Scholar] [CrossRef]
- Sheikhansari, G.; Soltani-Zangbar, M.S.; Pourmoghadam, Z.; Kamrani, A.; Azizi, R.; Aghebati-Maleki, L.; Danaii, S.; Koushaeian, L.; Hojat-Farsangi, M.; Yousefi, M. Oxidative stress, inflammatory settings, and microRNA regulation in the recurrent implantation failure patients with metabolic syndrome. Am. J. Reprod. Immunol. 2019, 82, e13170. [Google Scholar] [CrossRef] [PubMed]
- Ghaebi, M.; Abdolmohammadi-Vahid, S.; Ahmadi, M.; Eghbal-Fard, S.; Dolati, S.; Nouri, M.; Talebi, M.; Hamdi, K.; Marofi, F.; Aghebati-Maleki, L.; et al. T cell Subsets in Peripheral Blood of Women with Recurrent Implantation Failure. J. Reprod. Immunol. 2019, 131, 21–29. [Google Scholar] [CrossRef]
- Ng, S.C.; Gilman-Sachs, A.; Thaker, P.; Beaman, K.D.; Beer, A.E.; Kwak-Kim, J. Expression of intracellular Th1 and Th2 cytokines in women with recurrent spontaneous abortion, implantation failures after IVF/ET or normal pregnancy. Am. J. Reprod. Immunol. 2002, 48, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-K.; Lee, K.-E.; Lee, S.A.; Jang, H.-M.; Kim, D.-H. Interplay Between Human Gut Bacteria Escherichia Coli and Lactobacillus Mucosae in the Occurrence of Neuropsychiatric Disorders in Mice. Front. Immunol. 2020, 11, 273. [Google Scholar] [CrossRef]
- Yang, X.; He, Z.; Hu, R.; Yan, J.; Zhang, Q.; Li, B.; Yuan, X.; Zhang, H.; He, J.; Wu, S. Dietary Β-Carotene on Postpartum Uterine Recovery in Mice: Crosstalk Between Gut Microbiota and Inflammation. Front. Immunol. 2021, 12, 744425. [Google Scholar] [CrossRef]
- Deb, K.; Chaturvedi, M.M.; Jaiswal, Y.K. Role of Tumor Necrosis Factor-A in Gram-Negative Bacterial Lipopolysaccharides Induced Implantation Failure. Reprod. Med. Biol. 2005, 4, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dey, S.K. Roadmap to embryo implantation: Clues from mouse models. Nat. Rev. Genet. 2006, 7, 185–199. [Google Scholar] [CrossRef]
- Muhleisen, A.L.; Herbst-Kralovetz, M.M. Menopause and the vaginal microbiome. Maturitas 2016, 91, 42–50. [Google Scholar] [CrossRef]
- Plottel, C.S.; Blaser, M.J. Microbiome and malignancy. Cell Host Microbe 2011, 10, 324–335. [Google Scholar] [CrossRef]
- Amar, J.; Chabo, C.; Waget, A.; Klopp, P.; Vachoux, C.; Bermúdez-Humarán, L.G.; Smirnova, N.; Bergé, M.; Sulpice, T.; Lahtinen, S.; et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment. EMBO Mol. Med. 2011, 3, 559–572. [Google Scholar] [CrossRef]
- Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017, 103, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.S.; Wang, C.W.; Chen, C.H.; Tzeng, C.R. New horizon on successful management for a woman with repeated implantation failure due to unresponsive thin endometrium: Use of extended estrogen supplementation. J. Obstet. Gynaecol. Res. 2013, 39, 1092–1094. [Google Scholar] [CrossRef]
- De Ziegler, D.; Meldrum, D.R. From in vitro fertilization (IVF) to menopause: Physiologic hormone replacement adapted from donor egg IVF may be our best option for hormone therapy. Fertil. Steril. 2003, 80, 485–487. [Google Scholar] [CrossRef]
- Wu, J.; Ning, Y.; Tan, L.; Chen, Y.; Huang, X.; Zhuo, Y. Characteristics of the Vaginal Microbiome in Women With Premature Ovarian Insufficiency. J. Ovarian Res. 2021, 14, 172. [Google Scholar] [CrossRef] [PubMed]
- Micks, E.; Reed, S.D.; Mitchell, C.M. The Postmenopausal Vaginal Microbiome and Genitourinary Syndrome of Menopause. Clin. Obstet. Gynecol. 2023, 67, 79–88. [Google Scholar] [CrossRef]
- Zhao, C.; Wei, Z.; Yang, J.; Zhang, J.; Yu, C.; Yang, A.; Zhang, M.; Zhang, L.; Wang, Y.; Mu, X.; et al. Characterization of the Vaginal Microbiome in Women With Infertility and Its Potential Correlation With Hormone Stimulation During In Vitro Fertilization Surgery. Msystems 2020, 5, 10–128. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef]
- Leonov, G.E.; Varaeva, Y.R.; Livantsova, E.N.; Starodubova, A.V. The Complicated Relationship of Short-Chain Fatty Acids and Oral Microbiome: A Narrative Review. Biomedicines 2023, 11, 2749. [Google Scholar] [CrossRef]
- Macia, L.; Thorburn, A.N.; Binge, L.C.; Marino, E.; Rogers, K.E.; Maslowski, K.M.; Vieira, A.T.; Kranich, J.; Mackay, C.R. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol. Rev. 2012, 245, 164–176. [Google Scholar] [CrossRef]
- Le Poul, E.; Loison, C.; Struyf, S.; Springael, J.Y.; Lannoy, V.; Decobecq, M.E.; Brezillon, S.; Dupriez, V.; Vassart, G.; Van Damme, J.; et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 2003, 278, 25481–25489. [Google Scholar] [CrossRef]
- Brunkhorst, B.A.; Kraus, E.; Coppi, M.; Budnick, M.; Niederman, R. Propionate induces polymorphonuclear leukocyte activation and inhibits formylmethionyl-leucyl-phenylalanine-stimulated activation. Infect. Immun. 1992, 60, 2957–2968. [Google Scholar] [CrossRef] [PubMed]
- Menzel, T.; Lührs, H.; Zirlik, S.; Schauber, J.; Kudlich, T.; Gerke, T.; Gostner, A.; Neumann, M.; Melcher, R.; Scheppach, W. Butyrate inhibits leukocyte adhesion to endothelial cells via modulation of VCAM-1. Inflamm. Bowel Dis. 2004, 10, 122–128. [Google Scholar] [CrossRef]
- Ventura, M.; Turroni, F.; Canchaya, C.; Vaughan, E.E.; O’Toole, P.W.; van Sinderen, D. Microbial diversity in the human intestine and novel insights from metagenomics. Front. Biosci. 2009, 14, 3214–3221. [Google Scholar] [CrossRef]
- Hamer, H.M.; De Preter, V.; Windey, K.; Verbeke, K. Functional analysis of colonic bacterial metabolism: Relevant to health? Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G1–G9. [Google Scholar] [CrossRef]
- Hague, A.; Elder, D.J.; Hicks, D.J.; Paraskeva, C. Apoptosis in colorectal tumour cells: Induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int. J. Cancer 1995, 60, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Cai, S.; Wang, S.; Zeng, X.; Ye, C.; Chen, M.; Zeng, X.; Qiao, S. Maternal short and medium chain fatty acids supply during early pregnancy improves embryo survival through enhancing progesterone synthesis in rats. J. Nutr. Biochem. 2019, 69, 98–107. [Google Scholar] [CrossRef]
- Corrêa, R.O.; Vieira, A.; Sernaglia, E.M.; Lancellotti, M.; Vieira, A.T.; Avila-Campos, M.J.; Rodrigues, H.G.; Vinolo, M.A.R. Bacterial short-chain fatty acid metabolites modulate the inflammatory response against infectious bacteria. Cell. Microbiol. 2017, 19, e12720. [Google Scholar] [CrossRef]
- Ziętek, M.; Celewicz, Z.; Szczuko, M. Short-Chain Fatty Acids, Maternal Microbiota and Metabolism in Pregnancy. Nutrients 2021, 13, 1244. [Google Scholar] [CrossRef]
- Rodríguez-Carrio, J.; Salazar, N.; Margollés, A.; González, S.; Gueimonde, M.; Reyes-Gavilán, C.G.d.l.; Suárez, A. Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids. Front. Immunol. 2017, 8, 823. [Google Scholar] [CrossRef]
- Zeng, X.; Li, S.; Ye, Q.; Cai, S.; Shuang, Q.; Liu, L.; Zhang, S.; Chen, F.; Cai, C.; Wang, F.; et al. The Combined Use of Medium- And Short-Chain Fatty Acids Improves the Pregnancy Outcomes of Sows by Enhancing Ovarian Steroidogenesis and Endometrial Receptivity. Nutrients 2022, 14, 4405. [Google Scholar] [CrossRef]
- Hu, M.; Eviston, D.P.; Hsu, P.; Mariño, E.; Chidgey, A.P.; Santner-Nanan, B.; Wong, K.; Richards, J.L.; Yap, Y.A.; Collier, F.; et al. Decreased Maternal Serum Acetate and Impaired Fetal Thymic and Regulatory T Cell Development in Preeclampsia. Nat. Commun. 2019, 10, 3031. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Y.; Li, S.; Chang, Z.; Liu, H.; Zhang, D.; Wang, S.; Zhang, X.; Wang, J. Maternal Malic Acid May Ameliorate Oxidative Stress and Inflammation in Sows Through Modulating Gut Microbiota and Host Metabolic Profiles During Late Pregnancy. Antioxidants 2024, 13, 253. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Feng, L.; Zhang, J. Interactions Between Gut Microbiota and Metabolites Modulate Cytokine Network Imbalances in Women With Unexplained Miscarriage. NPJ Biofilms Microbiomes 2021, 7, 24. [Google Scholar] [CrossRef]
- Chen, S.; Li, J.; Ren, S.; Gao, Y.; Zhou, Y.; Xuan, R. Expression and Clinical Significance of Short-Chain Fatty Acids in Pregnancy Complications. Front. Cell. Infect. Microbiol. 2023, 12, 1071029. [Google Scholar] [CrossRef]
- Wira, C.R.; Fahey, J.V.; Rodriguez-Garcia, M.; Shen, Z.; Patel, M.V. Regulation of mucosal immunity in the female reproductive tract: The role of sex hormones in immune protection against sexually transmitted pathogens. Am. J. Reprod. Immunol. 2014, 72, 236–258. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, C.; Mangogna, A.; Bossi, F.; Ricci, G.; Kishore, U.; Bulla, R. Uterine Immunity and Microbiota: A Shifting Paradigm. Front. Immunol. 2019, 10, 2387. [Google Scholar] [CrossRef]
- Jeong, S.J.; Kim, S.S.; Bae, C.S.; Park, J.J.; Choi, B.D.; Wang, G.; Jung, M.J.; Jang, H.S.; Kim, B.O.; Lim, D.S.; et al. Delayed healing and induction of secretory leukocyte protease inhibitor in polycystic ovary syndrome rat skin wounds. Int. J. Mol. Med. 2012, 29, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Odaka, C.; Mizuochi, T.; Yang, J.; Ding, A. Murine macrophages produce secretory leukocyte protease inhibitor during clearance of apoptotic cells: Implications for resolution of the inflammatory response. J. Immunol. 2003, 171, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Azizieh, F.Y.; Raghupathy, R.G. Tumor necrosis factor-α and pregnancy complications: A prospective study. Med. Princ. Pract. 2015, 24, 165–170. [Google Scholar] [CrossRef]
- Devoogdt, N.; Revets, H.; Kindt, A.; Liu, Y.Q.; De Baetselier, P.; Ghassabeh, G.H. The Tumor-Promoting Effect of TNF-α Involves the Induction of Secretory Leukocyte Protease Inhibitor1. J. Immunol. 2006, 177, 8046–8052. [Google Scholar] [CrossRef]
- Fahey, J.V.; Wira, C.R. Effect of menstrual status on antibacterial activity and secretory leukocyte protease inhibitor production by human uterine epithelial cells in culture. J. Infect. Dis. 2002, 185, 1606–1613. [Google Scholar] [CrossRef]
- Müller, A.M.; Jun, E.; Conlon, H.; Sadiq, S.A. Inhibition of SLPI ameliorates disease activity in experimental autoimmune encephalomyelitis. BMC Neurosci. 2012, 13, 30. [Google Scholar] [CrossRef]
- Nakagawa, K.; Kwak-Kim, J.; Ota, K.; Kuroda, K.; Hisano, M.; Sugiyama, R.; Yamaguchi, K. Immunosuppression with tacrolimus improved reproductive outcome of women with repeated implantation failure and elevated peripheral blood TH1/TH2 cell ratios. Am. J. Reprod. Immunol. 2015, 73, 353–361. [Google Scholar] [CrossRef]
- Saito, S.; Saito, T.; Nakashima, A.; Inada, K.i.; Yokosuka, O. Role of Paternal Antigen-Specific Treg Cells in Successful Implantation. Am. J. Reprod. Immunol. 2015, 75, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Kyono, K. Does Dysbiotic Endometrium Affect Blastocyst Implantation in IVF Patients? J. Assist. Reprod. Genet. 2019, 36, 2471–2479. [Google Scholar] [CrossRef] [PubMed]
- Elkashif, A.; Seleem, M.N. Investigation of Auranofin and Gold-Containing Analogues Antibacterial Activity Against Multidrug-Resistant Neisseria Gonorrhoeae. Sci. Rep. 2020, 10, 5602. [Google Scholar] [CrossRef]
- Neri, C.; Serafino, E.; Morlando, M.; Familiari, A. Microbiome and Gestational Diabetes: Interactions With Pregnancy Outcome and Long-Term Infant Health. J. Diabetes Res. 2021, 2021, 9994734. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, P.; Liu, M.; Zheng, H.; He, Y.; Chen, M.-X.; Tang, W.; Yue, X.; Huang, Y.; Zhuang, L.; et al. Gut Dysbiosis Induces the Development of Pre-Eclampsia Through Bacterial Translocation. Gut 2020, 69, 513–522. [Google Scholar] [CrossRef]
- Maher, S.E.; O’Brien, E.C.; Moore, R.; Byrne, D.; Geraghty, A.A.; Saldova, R.; Murphy, E.F.; Sinderen, D.v.; Cotter, P.D.; McAuliffe, F.M. The Association Between the Maternal Diet and the Maternal and Infant Gut Microbiome: A Systematic Review. Br. J. Nutr. 2020, 129, 1491–1499. [Google Scholar] [CrossRef]
- Bookstaver, P.B.; Bland, C.M.; Griffin, B.; Stover, K.R.; Eiland, L.S.; McLaughlin, M.M. A Review of Antibiotic Use in Pregnancy. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015, 35, 1052–1062. [Google Scholar] [CrossRef]
- Kunz, G.; Leyendecker, G. Uterine peristaltic activity during the menstrual cycle: Characterization, regulation, function and dysfunction. Reprod. Biomed. Online 2002, 4, 5–9. [Google Scholar] [CrossRef]
- Yeruva, T.; Rajkumar, H.; Donugama, V. Vaginal lactobacilli profile in pregnant women with normal & abnormal vaginal flora. Indian. J. Med. Res. 2017, 146, 534–540. [Google Scholar] [CrossRef]
- Cicinelli, E.; Matteo, M.; Trojano, G.; Mitola, P.C.; Tinelli, R.; Vitagliano, A.; Crupano, F.M.; Lepera, A.; Miragliotta, G.; Resta, L. Chronic endometritis in patients with unexplained infertility: Prevalence and effects of antibiotic treatment on spontaneous conception. Am. J. Reprod. Immunol. 2018, 79, e12782. [Google Scholar] [CrossRef]
- Cox, L.M.; Yamanishi, S.; Sohn, J.; Alekseyenko, A.V.; Leung, J.M.; Cho, I.; Kim, S.G.; Li, H.; Gao, Z.; Mahana, D.; et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014, 158, 705–721. [Google Scholar] [CrossRef] [PubMed]
- Scott, F.I.; Horton, D.B.; Mamtani, R.; Haynes, K.; Goldberg, D.S.; Lee, D.Y.; Lewis, J.D. Administration of Antibiotics to Children Before Age 2 Years Increases Risk for Childhood Obesity. Gastroenterology 2016, 151, 120–129.e125. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, A.L.; Knight, A.K.; Satten, G.A.; Cutler, A.; Wright, M.L.; Mitchell, R.; Read, T.D.; Mullé, J.G.; Hertzberg, V.; Hill, C.C.; et al. Stability of the Vaginal, Oral, and Gut Microbiota Across Pregnancy Among African American Women: The Effect of Socioeconomic Status and Antibiotic Exposure. Peerj 2019, 7, e8004. [Google Scholar] [CrossRef]
- Fettweis, J.M.; Serrano, M.G.; Brooks, J.P.; Edwards, D.; Girerd, P.H.; Parikh, H.I.; Huang, B.; Arodz, T.; Edupuganti, L.; Glascock, A.; et al. The Vaginal Microbiome and Preterm Birth. Nat. Med. 2019, 25, 1012–1021. [Google Scholar] [CrossRef]
- Schoenmakers, S.; Steegers-Theunissen, R.P.M.; Faas, M.M. The Matter of the Reproductive Microbiome. Obstet. Med. 2018, 12, 107–115. [Google Scholar] [CrossRef]
- DiGiulio, D.B.; Callahan, B.J.; McMurdie, P.J.; Costello, E.K.; Lyell, D.J.; Robaczewska, A.; Sun, C.; Goltsman, D.S.A.; Wong, R.J.; Shaw, G.M.; et al. Temporal and Spatial Variation of the Human Microbiota During Pregnancy. Proc. Natl. Acad. Sci. USA 2015, 112, 11060–11065. [Google Scholar] [CrossRef]
- Gohir, W.; Whelan, F.; Surette, M.G.; Moore, C.M.; Schertzer, J.D.; Sloboda, D.M. Pregnancy-Related Changes in the Maternal Gut Microbiota Are Dependent Upon the Mother’s Periconceptional Diet. Gut Microbes 2015, 6, 310–320. [Google Scholar] [CrossRef]
- Comizzoli, P.; Power, M.L.; Bornbusch, S.L.; Muletz-Wolz, C.R. Interactions Between Reproductive Biology and Microbiomes in Wild Animal Species. Anim. Microbiome 2021, 3, 87. [Google Scholar] [CrossRef]
- Kashyap, P.C.; Chia, N.; Nelson, H.; Segal, E.; Elinav, E. Microbiome at the Frontier of Personalized Medicine. Mayo Clin. Proc. 2017, 92, 1855–1864. [Google Scholar] [CrossRef] [PubMed]
- Maretti, C.; Cavallini, G. The association of a probiotic with a prebiotic (Flortec, Bracco) to improve the quality/quantity of spermatozoa in infertile patients with idiopathic oligoasthenoteratospermia: A pilot study. Andrology 2017, 5, 439–444. [Google Scholar] [CrossRef]
- Valcarce, D.G.; Genovés, S.; Riesco, M.F.; Martorell, P.; Herráez, M.P.; Ramón, D.; Robles, V. Probiotic administration improves sperm quality in asthenozoospermic human donors. Benef. Microbes 2017, 8, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Selma-Royo, M.; Tarrazó, M.; García-Mantrana, I.; Gómez-Gallego, C.; Salminen, S.; Collado, M.C. Shaping Microbiota During the First 1000 Days of Life. Adv. Exp. Med. Biol. 2019, 1125, 3–24. [Google Scholar] [CrossRef] [PubMed]
- López-Moreno, A.; Aguilera, M. Probiotics Dietary Supplementation for Modulating Endocrine and Fertility Microbiota Dysbiosis. Nutrients 2020, 12, 757. [Google Scholar] [CrossRef]
- Chenoll, E.; Moreno, I.; Sánchez, M.; Garcia-Grau, I.; Silva, Á.; González-Monfort, M.; Genovés, S.; Vilella, F.; Seco-Durban, C.; Simón, C.; et al. Selection of New Probiotics for Endometrial Health. Front. Cell Infect. Microbiol. 2019, 9, 114. [Google Scholar] [CrossRef]
- Lopez-Tello, J.; Schofield, Z.; Kiu, R.; Dalby, M.J.; van Sinderen, D.; Le Gall, G.; Sferruzzi-Perri, A.N.; Hall, L.J. Maternal gut microbiota Bifidobacterium promotes placental morphogenesis, nutrient transport and fetal growth in mice. Cell Mol. Life Sci. 2022, 79, 386. [Google Scholar] [CrossRef]
- Dizzell, S.; Nazli, A.; Reid, G.; Kaushic, C. Protective Effect of Probiotic Bacteria and Estrogen in Preventing HIV-1-Mediated Impairment of Epithelial Barrier Integrity in Female Genital Tract. Cells 2019, 8, 1120. [Google Scholar] [CrossRef]
- Kyono, K.; Hashimoto, T.; Kikuchi, S.; Nagai, Y.; Sakuraba, Y. A pilot study and case reports on endometrial microbiota and pregnancy outcome: An analysis using 16S rRNA gene sequencing among IVF patients, and trial therapeutic intervention for dysbiotic endometrium. Reprod. Med. Biol. 2019, 18, 72–82. [Google Scholar] [CrossRef]
- Otsuki, K.; Imai, N. Effects of lactoferrin in 6 patients with refractory bacterial vaginosis. Biochem. Cell Biol. 2017, 95, 31–33. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, M.; Yan, Y.; Jiang, L.; Sze, C.-H.; Kodithuwakku, S.P.; Yeung, W.S.B.; Lee, K.-F. Microbiome–Maternal Tract Interactions in Women with Recurrent Implantation Failure. Microorganisms 2025, 13, 844. https://doi.org/10.3390/microorganisms13040844
Kumar M, Yan Y, Jiang L, Sze C-H, Kodithuwakku SP, Yeung WSB, Lee K-F. Microbiome–Maternal Tract Interactions in Women with Recurrent Implantation Failure. Microorganisms. 2025; 13(4):844. https://doi.org/10.3390/microorganisms13040844
Chicago/Turabian StyleKumar, Manish, Yang Yan, Luhan Jiang, Ching-Ho Sze, Suranga P. Kodithuwakku, William S. B. Yeung, and Kai-Fai Lee. 2025. "Microbiome–Maternal Tract Interactions in Women with Recurrent Implantation Failure" Microorganisms 13, no. 4: 844. https://doi.org/10.3390/microorganisms13040844
APA StyleKumar, M., Yan, Y., Jiang, L., Sze, C.-H., Kodithuwakku, S. P., Yeung, W. S. B., & Lee, K.-F. (2025). Microbiome–Maternal Tract Interactions in Women with Recurrent Implantation Failure. Microorganisms, 13(4), 844. https://doi.org/10.3390/microorganisms13040844