Induction Treatment for HIV-Associated Cryptococcal Meningitis: Where Have We Been and Where Are We Going?
Abstract
:1. Introduction
2. Non-Standard or Previously Used Regimens
2.1. Fluconazole Monotherapy
2.2. Amphotericin Monotherapy
2.3. Amphotericin Plus Fluconazole
3. The ACTA Trial and Amphotericin Plus Flucytosine
- An oral regimen (fluconazole [1200 mg per day] plus flucytosine [100 mg per kilogram of body weight per day] for 2 weeks).
- One week of amphotericin B deoxycholate combination therapy (1 mg per kilogram per day).
- Two weeks of amphotericin B deoxycholate combination therapy (1 mg per kilogram per day).
4. AMBITION-cm
5. Adoption of ACTA/AMBITION-cm in Sub-Saharan Africa and Globally
6. Possible Future Regimens
6.1. Novel Agents
6.2. Repurposed Drugs
6.2.1. Dexamethasone
6.2.2. Tamoxifen
6.2.3. Sertraline
6.2.4. Other Possible Candidates
7. Non-Pharmaceutical Options
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maziarz, E.K.; Perfect, J.R. Cryptococcosis. Infect. Dis. Clin. N. Am. 2016, 30, 179–206. [Google Scholar] [CrossRef] [PubMed]
- Poplin, V.; Smith, C.; Caceres, D.H.; Herkert, P.F.; Jegede, O.; Thompson, G.R., 3rd; Baddley, J.W.; Schwartz, I.S.; Kubat, R.; Deka, M.A.; et al. Geographical distribution of the Cryptococcus gattii species complex: A systematic review. Lancet Microbe 2024, 5, 100921. [Google Scholar] [CrossRef] [PubMed]
- UNAIDS. Global HIV & AIDS Statistics—Fact Sheet. 2025. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 26 February 2025).
- Rajasingham, R.; Govender, N.P.; Jordan, A.; Loyse, A.; Shroufi, A.; Denning, D.W.; Meya, D.B.; Chiller, T.M.; Boulware, D.R. The global burden of HIV-associated cryptococcal infection in adults in 2020: A modelling analysis. Lancet Infect. Dis. 2022, 22, 1748–1755. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines Approved by the Guidelines Review Committee. In Guidelines for Diagnosing, Preventing and Managing Cryptococcal Disease Among Adults, Adolescents and Children Living with HIV; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- National Institutes of Health; HIV Medicine Association; Infectious Diseases Society of America. Panel on Guidelines for the Prevention and Treatment of Opportunistic Infections in Adults and Adolescents With HIV. In Guidelines for the Prevention and Treatment of Opportunistic Infections in Adults and Adolescents With HIV; Clinical INFO HIV: Rockville, MD, USA, 2024. [Google Scholar]
- Chang, C.C.; Harrison, T.S.; Bicanic, T.A.; Chayakulkeeree, M.; Sorrell, T.C.; Warris, A.; Hagen, F.; Spec, A.; Oladele, R.; Govender, N.P.; et al. Global guideline for the diagnosis and management of cryptococcosis: An initiative of the ECMM and ISHAM in cooperation with the ASM. Lancet Infect. Dis. 2024, 24, e495–e512. [Google Scholar] [CrossRef]
- Perfect, J.R.; Dismukes, W.E.; Dromer, F.; Goldman, D.L.; Graybill, J.R.; Hamill, R.J.; Harrison, T.S.; Larsen, R.A.; Lortholary, O.; Nguyen, M.H.; et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin. Infect. Dis. 2010, 50, 291–322. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (Ed.) DIFLUCAN® (Fluconazole Tablets, Fluconazole Injection, Fluconazole for Oral Suspension); FDA: Silver Spring, MD, USA, 2011. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/019949s051lbl.pdf (accessed on 7 April 2025).
- Bicanic, T.; Meintjes, G.; Wood, R.; Hayes, M.; Rebe, K.; Bekker, L.G.; Harrison, T. Fungal burden, early fungicidal activity, and outcome in cryptococcal meningitis in antiretroviral-naive or antiretroviral-experienced patients treated with amphotericin B or fluconazole. Clin. Infect. Dis. 2007, 45, 76–80. [Google Scholar] [CrossRef]
- Mwaba, P.; Mwansa, J.; Chintu, C.; Pobee, J.; Scarborough, M.; Portsmouth, S.; Zumla, A. Clinical presentation, natural history, and cumulative death rates of 230 adults with primary cryptococcal meningitis in Zambian AIDS patients treated under local conditions. Postgrad. Med. J. 2001, 77, 769–773. [Google Scholar] [CrossRef]
- Schaars, C.F.; Meintjes, G.A.; Morroni, C.; Post, F.A.; Maartens, G. Outcome of AIDS-associated cryptococcal meningitis initially treated with 200 mg/day or 400 mg/day of fluconazole. BMC Infect. Dis. 2006, 6, 118. [Google Scholar] [CrossRef]
- Gaskell, K.M.; Rothe, C.; Gnanadurai, R.; Goodson, P.; Jassi, C.; Heyderman, R.S.; Allain, T.J.; Harrison, T.S.; Lalloo, D.G.; Sloan, D.J.; et al. A prospective study of mortality from cryptococcal meningitis following treatment induction with 1200 mg oral fluconazole in Blantyre, Malawi. PLoS ONE 2014, 9, e110285. [Google Scholar] [CrossRef]
- Rothe, C.; Sloan, D.J.; Goodson, P.; Chikafa, J.; Mukaka, M.; Denis, B.; Harrison, T.; van Oosterhout, J.J.; Heyderman, R.S.; Lalloo, D.G.; et al. A prospective longitudinal study of the clinical outcomes from cryptococcal meningitis following treatment induction with 800 mg oral fluconazole in Blantyre, Malawi. PLoS ONE 2013, 8, e67311. [Google Scholar] [CrossRef]
- Longley, N.; Muzoora, C.; Taseera, K.; Mwesigye, J.; Rwebembera, J.; Chakera, A.; Wall, E.; Andia, I.; Jaffar, S.; Harrison, T.S. Dose response effect of high-dose fluconazole for HIV-associated cryptococcal meningitis in southwestern Uganda. Clin. Infect. Dis. 2008, 47, 1556–1561. [Google Scholar] [CrossRef]
- Nussbaum, J.C.; Jackson, A.; Namarika, D.; Phulusa, J.; Kenala, J.; Kanyemba, C.; Jarvis, J.N.; Jaffar, S.; Hosseinipour, M.C.; Kamwendo, D.; et al. Combination flucytosine and high-dose fluconazole compared with fluconazole monotherapy for the treatment of cryptococcal meningitis: A randomized trial in Malawi. Clin. Infect. Dis. 2010, 50, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Oladele, R.O.; Gago, S.; Moore, C.B.; Richardson, M.D. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus species. Mycoses 2018, 61, 290–297. [Google Scholar] [CrossRef]
- Molloy, S.F.; Kanyama, C.; Heyderman, R.S.; Loyse, A.; Kouanfack, C.; Chanda, D.; Mfinanga, S.; Temfack, E.; Lakhi, S.; Lesikari, S.; et al. Antifungal Combinations for Treatment of Cryptococcal Meningitis in Africa. N. Engl. J. Med. 2018, 378, 1004–1017. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (Ed.) AmBisome (Amphotericin B) Liposome for Injection; Gilead Sciences, Inc.: San Dimas, CA, USA, 2012. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/050740s021lbl.pdf (accessed on 7 April 2025).
- Brouwer, A.E.; Rajanuwong, A.; Chierakul, W.; Griffin, G.E.; Larsen, R.A.; White, N.J.; Harrison, T.S. Combination antifungal therapies for HIV-associated cryptococcal meningitis: A randomised trial. Lancet 2004, 363, 1764–1767. [Google Scholar] [CrossRef]
- Day, J.N.; Chau, T.T.H.; Wolbers, M.; Mai, P.P.; Dung, N.T.; Mai, N.H.; Phu, N.H.; Nghia, H.D.; Phong, N.D.; Thai, C.Q.; et al. Combination antifungal therapy for cryptococcal meningitis. N. Engl. J. Med. 2013, 368, 1291–1302. [Google Scholar] [CrossRef]
- van der Horst, C.M.; Saag, M.S.; Cloud, G.A.; Hamill, R.J.; Graybill, J.R.; Sobel, J.D.; Johnson, P.C.; Tuazon, C.U.; Kerkering, T.; Moskovitz, B.L.; et al. Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. National Institute of Allergy and Infectious Diseases Mycoses Study Group and AIDS Clinical Trials Group. N. Engl. J. Med. 1997, 337, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Bahr, N.C.; Rolfes, M.A.; Musubire, A.; Nabeta, H.; Williams, D.A.; Rhein, J.; Kambugu, A.; Meya, D.B.; Boulware, D.R. Standardized electrolyte supplementation and fluid management improves survival during amphotericin therapy for cryptococcal meningitis in resource-limited settings. Open Forum Infect. Dis. 2014, 1, ofu070. [Google Scholar] [CrossRef]
- Kimuda, S.; Kwizera, R.; Dai, B.; Kigozi, E.; Kasozi, D.; Rutakingirwa, M.K.; Tukundane, A.; Shifah, N.; Luggya, T.; Luswata, A.; et al. Comparison of Early Fungicidal Activity and Mortality Between Daily Liposomal Amphotericin B and Daily Amphotericin B Deoxycholate for Cryptococcal Meningitis. Clin. Infect. Dis. 2025, 80, 153–159. [Google Scholar] [CrossRef]
- Meya, D.B.; Boulware, D.R. Optimizing the Dose of Flucytosine for the Treatment of Cryptococcal Meningitis; ClinicalTrials.gov: Bethesda, MD, USA, 2024. Available online: https://clinicaltrials.gov/study/NCT06414512?term=NCT06414512&rank=1 (accessed on 1 March 2025).
- Gakuru, J.; Kagimu, E.; Dai, B.; Okurut, S.; Nsangi, L.; Bahr, N.C.; Okirwoth, M.; Namuju, O.C.; Jarvis, J.N.; Lawrence, D.S.; et al. Implementation of Single High-dose Liposomal Amphotericin B Based Induction Therapy for Treatment of HIV-associated Cryptococcal Meningitis in Uganda: A Comparative Prospective Cohort Study. Clin. Infect. Dis. 2025, 80, 417–424. [Google Scholar] [CrossRef]
- Jarvis, J.N.; Lawrence, D.S.; Meya, D.B.; Kagimu, E.; Kasibante, J.; Mpoza, E.; Rutakingirwa, M.K.; Ssebambulidde, K.; Tugume, L.; Rhein, J.; et al. Single-Dose Liposomal Amphotericin B Treatment for Cryptococcal Meningitis. N. Engl. J. Med. 2022, 386, 1109–1120. [Google Scholar] [CrossRef]
- Bahr, N.C.; Beekmann, S.E.; Polgreen, P.M.; Walker, J.B.; Spec, A.; Boulware, D.R.; Baddley, J.W. Infectious Diseases Physician Management of Cryptococcal Meningitis in North America-Is Single High-Dose Liposomal Amphotericin B Being Used? Open Forum Infect. Dis. 2024, 11, ofae120. [Google Scholar] [CrossRef]
- Matinas BioPharma Holdings, Inc. MAT2203. 2025. Available online: https://www.matinasbiopharma.com/lnc-technology/mat2203 (accessed on 7 April 2025).
- Boulware, D.R.; Atukunda, M.; Kagimu, E.; Musubire, A.K.; Akampurira, A.; Tugume, L.; Ssebambulidde, K.; Kasibante, J.; Nsangi, L.; Mugabi, T.; et al. Oral Lipid Nanocrystal Amphotericin B for Cryptococcal Meningitis: A Randomized Clinical Trial. Clin. Infect. Dis. 2023, 77, 1659–1667. [Google Scholar] [CrossRef] [PubMed]
- Skipper, C.P.; Atukunda, M.; Stadelman, A.; Engen, N.W.; Bangdiwala, A.S.; Hullsiek, K.H.; Abassi, M.; Rhein, J.; Nicol, M.R.; Laker, E.; et al. Phase I EnACT Trial of the Safety and Tolerability of a Novel Oral Formulation of Amphotericin B. Antimicrob. Agents Chemother. 2020, 64, e00838-20. [Google Scholar] [CrossRef] [PubMed]
- Giamberardino, C.D.; Schell, W.A.; Tenor, J.L.; Toffaletti, D.L.; Palmucci, J.R.; Marius, C.; Boua, J.K.; Soltow, Q.; Mansbach, R.; Moseley, M.A.; et al. Efficacy of APX2039 in a Rabbit Model of Cryptococcal Meningitis. mBio 2022, 13, e0234722. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Martinez, A.K.; Rodriguez-Durán, J.; Serrano-Martin, X.; Hernandez-Rodriguez, V.; Benaim, G. Mechanism of Action of Miltefosine on Leishmania donovani Involves the Impairment of Acidocalcisome Function and the Activation of the Sphingosine-Dependent Plasma Membrane Ca2+ Channel. Antimicrob. Agents Chemother. 2018, 62, e01614-17. [Google Scholar] [CrossRef]
- Shaw, K.J.; Schell, W.A.; Covel, J.; Duboc, G.; Giamberardino, C.; Kapoor, M.; Moloney, M.; Soltow, Q.A.; Tenor, J.L.; Toffaletti, D.L.; et al. In Vitro and In Vivo Evaluation of APX001A/APX001 and Other Gwt1 Inhibitors against Cryptococcus. Antimicrob. Agents Chemother. 2018, 62, e00523-18. [Google Scholar] [CrossRef]
- Hoenigl, M.; Sprute, R.; Egger, M.; Arastehfar, A.; Cornely, O.A.; Krause, R.; Lass-Flörl, C.; Prattes, J.; Spec, A.; Thompson, G.R., 3rd; et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021, 81, 1703–1729. [Google Scholar] [CrossRef]
- Matthews, R.C.; Rigg, G.; Hodgetts, S.; Carter, T.; Chapman, C.; Gregory, C.; Illidge, C.; Burnie, J. Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90. Antimicrob. Agents Chemother. 2003, 47, 2208–2216. [Google Scholar] [CrossRef]
- Cordeiro, R.A.; Evangelista, A.J.J.; Serpa, R.; Marques, F.J.F.; Melo, C.V.S.; Oliveira, J.S.; Franco, J.D.S.; Alencar, L.P.; Bandeira, T.; Brilhante, R.S.N.; et al. Inhibition of heat-shock protein 90 enhances the susceptibility to antifungals and reduces the virulence of Cryptococcus neoformans/Cryptococcus gattii species complex. Microbiol. Read. 2016, 162, 309–317. [Google Scholar] [CrossRef]
- Ngan, N.T.T.; Flower, B.; Day, J.N. Treatment of Cryptococcal Meningitis: How Have We Got Here and Where are We Going? Drugs 2022, 82, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Marcyk, P.T.; LeBlanc, E.V.; Kuntz, D.A.; Xue, A.; Ortiz, F.; Trilles, R.; Bengtson, S.; Kenney, T.M.G.; Huang, D.S.; Robbins, N.; et al. Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors: Optimization of Whole-Cell Anticryptococcal Activity and Insights into the Structural Origins of Cryptococcal Selectivity. J. Med. Chem. 2021, 64, 1139–1169. [Google Scholar] [CrossRef]
- Wiederhold, N.P.; Patterson, H.P.; Tran, B.H.; Yates, C.M.; Schotzinger, R.J.; Garvey, E.P. Fungal-specific Cyp51 inhibitor VT-1598 demonstrates in vitro activity against Candida and Cryptococcus species, endemic fungi, including Coccidioides species, Aspergillus species and Rhizopus arrhizus. J. Antimicrob. Chemother. 2018, 73, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Warrilow, A.G.; Parker, J.E.; Price, C.L.; Nes, W.D.; Garvey, E.P.; Hoekstra, W.J.; Schotzinger, R.J.; Kelly, D.E.; Kelly, S.L. The Investigational Drug VT-1129 Is a Highly Potent Inhibitor of Cryptococcus Species CYP51 but Only Weakly Inhibits the Human Enzyme. Antimicrob. Agents Chemother. 2016, 60, 4530–4538. [Google Scholar] [CrossRef]
- Rhein, J.; Morawski, B.M.; Hullsiek, K.H.; Nabeta, H.W.; Kiggundu, R.; Tugume, L.; Musubire, A.; Akampurira, A.; Smith, K.D.; Alhadab, A.; et al. Efficacy of adjunctive sertraline for the treatment of HIV-associated cryptococcal meningitis: An open-label dose-ranging study. Lancet Infect. Dis. 2016, 16, 809–818. [Google Scholar] [CrossRef]
- Ngan, N.T.T.; Thanh Hoang Le, N.; Vi Vi, N.N.; Van, N.T.T.; Mai, N.T.H.; Van Anh, D.; Trieu, P.H.; Lan, N.P.H.; Phu, N.H.; Chau, N.V.V.; et al. An open label randomized controlled trial of tamoxifen combined with amphotericin B and fluconazole for cryptococcal meningitis. eLife 2021, 10, e68929. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.C.; Edlind, T. beta-Tubulin genes and the basis for benzimidazole sensitivity of the opportunistic fungus Cryptococcus neoformans. Microbiol. Read. 1997, 143 Pt 6, 2003–2008. [Google Scholar] [CrossRef]
- Lu, R.; Hollingsworth, C.; Qiu, J.; Wang, A.; Hughes, E.; Xin, X.; Konrath, K.M.; Elsegeiny, W.; Park, Y.D.; Atakulu, L.; et al. Efficacy of Oral Encochleated Amphotericin B in a Mouse Model of Cryptococcal Meningoencephalitis. mBio 2019, 10, e00724-19. [Google Scholar] [CrossRef]
- Watanabe, N.A.; Miyazaki, M.; Horii, T.; Sagane, K.; Tsukahara, K.; Hata, K. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob. Agents Chemother. 2012, 56, 960–971. [Google Scholar] [CrossRef]
- Nooney, L.; Matthews, R.C.; Burnie, J.P. Evaluation of Mycograb, amphotericin B, caspofungin, and fluconazole in combination against Cryptococcus neoformans by checkerboard and time-kill methodologies. Diagn. Microbiol. Infect. Dis. 2005, 51, 19–29. [Google Scholar] [CrossRef]
- Pharmaceuticals, N. Efficacy and Safety of Mycograb as Adjunctive Therapy for Cryptococcal Meningitis in Patients with AIDS; ClinicalTrials.gov: Bethesda, MD, USA, 2009.
- Day, J.; Imran, D.; Ganiem, A.R.; Tjahjani, N.; Wahyuningsih, R.; Adawiyah, R.; Dance, D.; Mayxay, M.; Newton, P.; Phetsouvanh, R.; et al. CryptoDex: A randomised, double-blind, placebo-controlled phase III trial of adjunctive dexamethasone in HIV-infected adults with cryptococcal meningitis: Study protocol for a randomised control trial. Trials 2014, 15, 441. [Google Scholar] [CrossRef] [PubMed]
- Beardsley, J.; Wolbers, M.; Kibengo, F.M.; Ggayi, A.B.; Kamali, A.; Cuc, N.T.; Binh, T.Q.; Chau, N.V.; Farrar, J.; Merson, L.; et al. Adjunctive Dexamethasone in HIV-Associated Cryptococcal Meningitis. N. Engl. J. Med. 2016, 374, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Butts, A.; Koselny, K.; Chabrier-Roselló, Y.; Semighini, C.P.; Brown, J.C.; Wang, X.; Annadurai, S.; DiDone, L.; Tabroff, J.; Childers, W.E., Jr.; et al. Estrogen receptor antagonists are anti-cryptococcal agents that directly bind EF hand proteins and synergize with fluconazole in vivo. mBio 2014, 5, e00765-13. [Google Scholar] [CrossRef]
- Treviño-Rangel Rde, J.; Villanueva-Lozano, H.; Hernández-Rodríguez, P.; Martínez-Reséndez, M.F.; García-Juárez, J.; Rodríguez-Rocha, H.; González, G.M. Activity of sertraline against Cryptococcus neoformans: In vitro and in vivo assays. Med. Mycol. 2016, 54, 280–286. [Google Scholar] [CrossRef]
- Spadari, C.C.; Vila, T.; Rozental, S.; Ishida, K. Miltefosine Has a Postantifungal Effect and Induces Apoptosis in Cryptococcus Yeasts. Antimicrob. Agents Chemother. 2018, 62, e00312-18. [Google Scholar] [CrossRef]
- Widmer, F.; Wright, L.C.; Obando, D.; Handke, R.; Ganendren, R.; Ellis, D.H.; Sorrell, T.C. Hexadecylphosphocholine (miltefosine) has broad-spectrum fungicidal activity and is efficacious in a mouse model of cryptococcosis. Antimicrob. Agents Chemother. 2006, 50, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.A.; de Oliveira, H.C.; Agreda-Mellon, D.; Lucio, J.; Mendes-Giannini, M.J.S.; García-Cambero, J.P.; Zaragoza, O. Identification of Off-Patent Drugs That Show Synergism with Amphotericin B or That Present Antifungal Action against Cryptococcus neoformans and Candida spp. Antimicrob. Agents Chemother. 2020, 64, e01921-19. [Google Scholar] [CrossRef]
- Nixon, G.L.; McEntee, L.; Johnson, A.; Farrington, N.; Whalley, S.; Livermore, J.; Natal, C.; Washbourn, G.; Bibby, J.; Berry, N.; et al. Repurposing and Reformulation of the Antiparasitic Agent Flubendazole for Treatment of Cryptococcal Meningoencephalitis, a Neglected Fungal Disease. Antimicrob. Agents Chemother. 2018, 62, e01909-17. [Google Scholar] [CrossRef]
- Medical, M. Neurapheresis™ Cerebrospinal Fluid Treatment Platform. 2025. Available online: https://www.mneuro.com/the-neurapheresis-cerebrospinal-fluid-treatment-platform/#:~:text=Neurapheresis™%20Therapy%20is%20designed,of%20requiring%20endovascular%20procedures1 (accessed on 11 March 2025).
- Blackburn, S.L.; Grande, A.W.; Swisher, C.B.; Hauck, E.F.; Jagadeesan, B.; Provencio, J.J. Prospective Trial of Cerebrospinal Fluid Filtration After Aneurysmal Subarachnoid Hemorrhage via Lumbar Catheter (PILLAR). Stroke 2019, 50, 2558–2561. [Google Scholar] [CrossRef]
- Boulware, D.R.; Meya, D.B. Platform Trial for Cryptococcal Meningitis (PLATFORM-CM); ClinicalTrials.gov: Bethesda, MD, USA, 2024.
Regimen | WHO Guideline Endorsed (2022) [5] | IDSA Guideline Endorsed (2010) [8] | U.S. CDC/NIH/IDSA/HIVMA Guideline Endorsed (2024) [6] | ECCM/ISHAM/ASM Guideline Endorsed (2024) [7] |
---|---|---|---|---|
A single high dose (10 mg/kg) of liposomal AmB with 2 weeks of flucytosine (100 mg/kg per day divided into four doses per day) and fluconazole (1200 mg daily) | Primary Regimen a | No | Primary Regimen a,k | Primary Regimen a,k |
1 week of AmBd (1 mg/kg per day) and flucytosine (100 mg/kg per day, divided into four doses per day) followed by 1 week of fluconazole (1200 mg daily) | Alternative Regimen a | No | Alternative Regimen a | Alternative Regimen a |
2 weeks of liposomal AmB (3–4 mg/kg per day) plus flucytosine (100 mg/kg per day) d | No | Primary Regimen a,b | Primary Regimen a,j | Primary Regimen a,b,c,j |
2 weeks of AmBd (0.7–1.0 mg/kg per day) plus flucytosine (100 mg/kg per day) | No | Primary regimen a | No | Alternative Regimen b,c |
2 weeks of ABLC (5 mg/kg per day, with renal function concerns) plus flucytosine (100 mg/kg per day) | No | Primary Regimen a,b | No | Alternative Regimen a,b,c |
2 weeks of fluconazole (1200 mg daily) + flucytosine (100 mg/kg per day, divided into four doses per day) | Alternative Regimen a | No | No | Alternative Regimen a,b,c |
2 weeks of liposomal AmB (3–4 mg/kg per day) + fluconazole (1200 mg daily) | Alternative Regimen a | No | No | Alternative Regimen a |
2 weeks of AmBd (1 mg/kg per day) + fluconazole (1200 mg daily) | Alternative Regimen a | No | No | Alternative Regimen a |
2 weeks of ABLC (5 mg/kg per day) plus fluconazole (800–1200 mg per day) | No | No | No | Alternative Regimen a |
4–6 weeks of AmBd (0.7–1.0 mg/kg per day) or liposomal AmB (3–4 mg/kg per day) or ABLC (5 mg/kg per day, for flucytosine-intolerant patients) | No | Primary Regimen a | No | |
≥4 weeks of AmBd (0.7–1.0 mg/kg per day) plus flucytosine (100 mg/kg per day) f | No | Primary regimen c | No | |
≥6 weeks of AmBd (0.7–1.0 mg/kg per day) f,g | No | Primary regimen c | No | |
≥4 weeks of liposomal AmB (3–4 mg/kg per day) or ABLC (5 mg/kg per day) combined with flucytosine, if possible f,h | No | Primary regimen c | No | |
2 weeks of AmBd (0.7 mg/kg per day) plus flucytosine (100 mg/kg per day) i | No | Primary regimen c | No | Alternative Regimen a |
4–6 weeks of liposomal AmB (6 mg/kg per day) or ABLC (5 mg/kg per day) | No | Alternative Regimen) b | No | |
4–6 weeks of AmBd (0.7 mg/kg per day) e | No | Alternative Regimen) b | No | |
2 weeks of AmBd (0.7 mg/kg per day IV) plus fluconazole (800 mg per day orally), followed by a minimum of 8 weeks of fluconazole (800 mg per day orally) | No | Alternative Regimen a | No | |
6 weeks of fluconazole (≥800 mg per day orally; 1200 mg per day is favored) plus flucytosine (100 mg/kg per day orally) | No | Alternative Regimen a | No | |
10–12 weeks of fluconazole (800–2000 mg per day orally) | No | Alternative Regimen a | No | |
10–12 weeks of itraconazole (200 mg twice per day orally) | No | Alternative Regimen a | No | |
2 weeks of fluconazole (800–1200 mg daily) | Alternative Regimen a |
Therapy | Mechanism of Action/Formulation Information | Existing Evidence | Current or Planned Activity |
---|---|---|---|
Oral amphotericin B [29] | Novel encochleated amphotericin B deoxycholate formulation has oral bioavailability and minimal toxicity due to targeted drug delivery into macrophages, where intracellular fungi reside [30] | In vitro activity against Cryptococcus; synergistic with flucytosine [30] Phase I trial reported good tolerability and safety [31] Phase II EnACT trial: Similar efficacy, CSF fungal activity, similar survival, and less toxicity than IV amphotericin [30] | Phase III trial on hold |
APX2039 [32] | Gwt1 inhibitor | In vitro activity against Cryptococcus neoformans and various mammalian models of cryptococcosis | NA |
Fosmanogepix (APX001) | Gwt1 inhibitor prevents the appropriate localization of cell wall mannoproteins, compromising cell wall integrity, biofilm and germ tube formation, and fungal growth [33] | Effective in vitro against various pathogenic fungi and exhibits synergistic effects with fluconazole [34] and liposomal amphotericin B [35] Reduced cryptococcal loads in the lungs and brain [34] | NA |
Mycograb | Recombinant human antibody that specifically targets heat shock protein 90 (Hsp90) to disrupt normal cellular functions and compromise the structural integrity essential for fungal survival [36] | Hsp90 inhibition has demonstrated in vitro activity against Cryptococcus [37] All Hsp90 inhibitors developed to date have proven too immunosuppressive for antifungal use [38] | Variations in protein flexibility may enable the selective inhibition of fungal versus human Hsp90 isoforms [39] |
VT-1161 (oteseconazole), VT-1129 (quilseconazole), and VT-1598 | Inhibit CYP51 and block ergosterol biosynthesis in fungal cell membranes [40] | In a murine model of cryptococcal meningitis, these agents improved survival rates, reduced fungal burden, and demonstrated persistence in brain tissue [41] | NA |
Sertraline [42] | Selective serotonin reuptake inhibitor antidepressant | Demonstrated in vitro fungicidal activity against Cryptococcus neoformans and synergy with fluconazole ASTRO-cryptococcal meningitis pilot study assessed optimal sertraline dosing for HIV-associated cryptococcal meningitis and appeared to improve the rate of CSF cryptococcal clearance when compared to historical controls Phase III trial evaluating the efficacy of amphotericin B and fluconazole, with or without sertraline 400 mg for two weeks, in the treatment of HIV-associated cryptococcal meningitis. Did not demonstrate reduction in mortality or CSF fungal clearance and was halted for futility | NA |
Tamoxifen [43] | Selective estrogen receptor modulator that exhibits anti-cryptococcal effects and synergizes with amphotericin B and fluconazole in vitro | A phase II trial added tamoxifen (300 mg/day) to standard induction therapy for two weeks. No significant difference in CSF fungal clearance | NA |
Miltefosine | An antileishmanial agent. Mechanism not well understood; inhibits the synthesis of phosphatidylcholine and also affects the parasite mitochondrion, inhibiting the cytochrome c oxidase [33] | In vitro and murine models of disseminated cryptococcosis have shown effectiveness [38] | NA |
Antiprotozoal agents (i.e., Benzimidazoles) [44] | Disrupt microtubules through binding to the β-tubulin subunit | Potential in reducing fungal burden in infected murine models | NA |
Neuraphresis CSF filtration [38] | Filters CSF to remove pathogens and inflammatory mediators. Offers a potential one-time method to rapidly sterilize CSF in cryptococcal meningitis | Potential one-time method to rapidly sterilize CSF in cryptococcal meningitis, possibly reducing the need for prolonged antifungal therapy May help alleviate increased intracranial pressure and enhance antifungal treatment effectiveness by lowering the fungal load in CSF | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milsap, D.; Okuno, M.; Kigozi, E.; Mugabi, T.; Faizo, S.; Bajer, A.; Gakuru, J.; Bahr, N.C. Induction Treatment for HIV-Associated Cryptococcal Meningitis: Where Have We Been and Where Are We Going? Microorganisms 2025, 13, 847. https://doi.org/10.3390/microorganisms13040847
Milsap D, Okuno M, Kigozi E, Mugabi T, Faizo S, Bajer A, Gakuru J, Bahr NC. Induction Treatment for HIV-Associated Cryptococcal Meningitis: Where Have We Been and Where Are We Going? Microorganisms. 2025; 13(4):847. https://doi.org/10.3390/microorganisms13040847
Chicago/Turabian StyleMilsap, Dominique, Madison Okuno, Enos Kigozi, Timothy Mugabi, Ssekindi Faizo, Aleksandra Bajer, Jane Gakuru, and Nathan C. Bahr. 2025. "Induction Treatment for HIV-Associated Cryptococcal Meningitis: Where Have We Been and Where Are We Going?" Microorganisms 13, no. 4: 847. https://doi.org/10.3390/microorganisms13040847
APA StyleMilsap, D., Okuno, M., Kigozi, E., Mugabi, T., Faizo, S., Bajer, A., Gakuru, J., & Bahr, N. C. (2025). Induction Treatment for HIV-Associated Cryptococcal Meningitis: Where Have We Been and Where Are We Going? Microorganisms, 13(4), 847. https://doi.org/10.3390/microorganisms13040847