Isolation, Antimicrobial Susceptibility, and Genotypes of Three Pasteurellaeae Species Prevalent on Pig Farms in China Between 2021 and 2023
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Bacterial Isolation
2.2. Antimicrobial Susceptibility Testing
2.3. Illumina Sequencing and Bioinformatical Analysis
2.4. Statistical Analyses
3. Results
3.1. Bacterial Isolation and Distribution of Serotypes/Genotypes
3.2. Antimicrobial-Resistant Phenotypes
3.3. Distribution of Antimicrobial Resistance Genes and Their Associations with the Resistant Phenotypes
3.4. Distribution of Genes Associated with Bacterial Fitness and Virulence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APP | Actinobacillus pleuropneumoniae |
ARG | Antimicrobial resistance genes |
AST | Antimicrobial susceptibility testing |
GPS | Glaesserella parasuis |
MIC | Minimum inhibitory concentration |
PM | Pasteurella multocida |
VFG | Virulence factor gene |
References
- Zhang, B.; Ku, X.; Yu, X.; Sun, Q.; Wu, H.; Chen, F.; Zhang, X.; Guo, L.; Tang, X.; He, Q. Prevalence and antimicrobial susceptibilities of bacterial pathogens in Chinese pig farms from 2013 to 2017. Sci. Rep. 2019, 9, 9908. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.A.; Ho, M. Pasteurella multocida: From zoonosis to cellular microbiology. Clin. Microbiol. Rev. 2013, 26, 631–655. [Google Scholar] [CrossRef]
- Register, K.B.; Brockmeier, S.L. Pasteurellosis. In Diseases of Swine, 11th ed.; Wiley: Hoboken, NJ, USA, 2019; pp. 884–897. [Google Scholar]
- Townsend, K.M.; Boyce, J.D.; Chung, J.Y.; Frost, A.J.; Adler, B. Genetic organization of Pasteurella multocida cap Loci and development of a multiplex capsular PCR typing system. J. Clin. Microbiol. 2001, 39, 924–929. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, X.; Zhou, R.; Chen, H.; Wilson, B.A.; Wu, B. Pasteurella multocida: Genotypes and Genomics. Microbiol. Mol. Biol. Rev. 2019, 83, 10–1108. [Google Scholar] [CrossRef]
- Liu, S.; Lin, L.; Yang, H.; Wu, W.; Guo, L.; Zhang, Y.; Wang, F.; Wang, X.; Song, W.; Hua, L.; et al. Pasteurella multocida capsular: Lipopolysaccharide types D:L6 and A:L3 remain to be the main epidemic genotypes of pigs in China. Anim. Dis. 2021, 1, 26. [Google Scholar] [CrossRef]
- Kielstein, P.; Rapp-Gabrielson, V.J. Designation of 15 serovars of Haemophilus parasuis on the basis of immunodiffusion using heat-stable antigen extracts. J. Clin. Microbiol. 1992, 30, 862–865. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Chen, H.; Blackall, P.J.; Yin, Z.; Wang, L.; Liu, Z.; Jin, M. Serological characterization of Haemophilus parasuis isolates from China. Vet. Microbiol. 2005, 111, 231–236. [Google Scholar] [CrossRef]
- Aragon, V.; Segalés, J.; (Dan) Tucker, A.W. Glässer’s Disease. In Diseases of Swine, 11th ed.; Wiley: Hoboken, NJ, USA, 2019; pp. 844–853. [Google Scholar]
- Gottschalk, M.; Broes, A. Actinobacillosis. In Diseases of Swine, 11th ed.; Wiley: Hoboken, NJ, USA, 2019; pp. 749–766. [Google Scholar]
- Soto Perezchica, M.M.; Guerrero Barrera, A.L.; Avelar Gonzalez, F.J.; Quezada Tristan, T.; Macias Marin, O. Actinobacillus pleuropneumoniae, surface proteins and virulence: A review. Front. Vet. Sci. 2023, 10, 1276712. [Google Scholar] [CrossRef] [PubMed]
- May, B.J.; Zhang, Q.; Li, L.L.; Paustian, M.L.; Whittam, T.S.; Kapur, V. Complete genomic sequence of Pasteurella multocida, Pm70. Proc. Natl. Acad. Sci. USA 2001, 98, 3460–3465. [Google Scholar] [CrossRef]
- Xu, Z.; Yue, M.; Zhou, R.; Jin, Q.; Fan, Y.; Bei, W.; Chen, H. Genomic characterization of Haemophilus parasuis SH0165, a highly virulent strain of serovar 5 prevalent in China. PLoS ONE 2011, 6, e19631. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, Y.; Li, L.; Zhou, R.; Xiao, S.; Wan, Y.; Zhang, S.; Wang, K.; Li, W.; Li, L.; et al. Genome biology of Actinobacillus pleuropneumoniae JL03, an isolate of serotype 3 prevalent in China. PLoS ONE 2008, 3, e1450. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Liang, W.; Liu, W.; Wu, B.; Tang, B.; Tan, C.; Zhou, R.; Chen, H. Genomic characterization of Pasteurella multocida HB01, a serotype A bovine isolate from China. Gene 2016, 581, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhu, Z.; Shang, Y.; Song, W.; Yang, J.; Bi, H.; Wang, Z.; Xie, R.; Zhao, M.; Hua, L.; et al. Discovery of the tigecycline resistance gene cluster tmexCD3-toprJ1 in Pasteurella multocida strains isolated from pigs in China. Vet. Microbiol. 2024, 292, 110046. [Google Scholar] [CrossRef] [PubMed]
- Holmer, I.; Salomonsen, C.M.; Jorsal, S.E.; Astrup, L.B.; Jensen, V.F.; Høg, B.B.; Pedersen, K. Antibiotic resistance in porcine pathogenic bacteria and relation to antibiotic usage. BMC Vet. Res. 2019, 15, 449. [Google Scholar] [CrossRef]
- Somogyi, Z.; Mag, P.; Simon, R.; Kerek, Á.; Makrai, L.; Biksi, I.; Jerzsele, Á. Susceptibility of Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis Isolated from Pigs in Hungary between 2018 and 2021. Antibiotics 2023, 12, 1298. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, J.; Zhao, Z.; Guo, L.; Zhang, B.; Feng, S.; Zhang, L.; Liao, M. Antimicrobial susceptibility and PFGE genotyping of Haemophilus parasuis isolates from pigs in South China (2008–2010). J. Vet. Med. Sci. 2011, 73, 1061–1065. [Google Scholar] [CrossRef]
- Dayao, D.; Gibson, J.S.; Blackall, P.J.; Turni, C. Antimicrobial resistance genes in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs. Aust. Vet. J. 2016, 94, 227–231. [Google Scholar] [CrossRef]
- CLSI VET01SEd7E; CLSI: Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 7th ed. CLSI: Malvern, PA, USA, 2024.
- Prüller, S.; Turni, C.; Blackall, P.J.; Beyerbach, M.; Klein, G.; Kreienbrock, L.; Strutzberg-Minder, K.; Kaspar, H.; Meemken, D.; Kehrenberg, C. Towards a Standardized Method for Broth Microdilution Susceptibility Testing of Haemophilus parasuis. J. Clin. Microbiol. 2017, 55, 264–273. [Google Scholar] [CrossRef]
- Brogden, S.; Pavlović, A.; Tegeler, R.; Kaspar, H.; De Vaan, N.; Kehrenberg, C. Antimicrobial susceptibility of Haemophilus parasuis isolates from Germany by use of a proposed standard method for harmonized testing. Vet. Microbiol. 2018, 217, 32–35. [Google Scholar] [CrossRef]
- Feßler, A.T.; Wang, Y.; Burbick, C.R.; Diaz-Campos, D.; Fajt, V.R.; Lawhon, S.D.; Li, X.Z.; Lubbers, B.V.; Maddock, K.; Miller, R.A.; et al. Antimicrobial susceptibility testing in veterinary medicine: Performance, interpretation of results, best practices and pitfalls. One Health Adv. 2023, 1, 26. [Google Scholar] [CrossRef]
- Lindgreen, S. AdapterRemoval: Easy cleaning of next-generation sequencing reads. BMC Res. Notes 2012, 5, 337. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1, 18. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022, 50, D912–D917. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhao, Z.; Hu, J.; Wu, B.; Cai, X.; He, Q.; Chen, H. Isolation, antimicrobial resistance, and virulence genes of Pasteurella multocida strains from swine in China. J. Clin. Microbiol. 2009, 47, 951–958. [Google Scholar] [CrossRef]
- Sun, Q.; Yu, X.; He, D.; Ku, X.; Hong, B.; Zeng, W.; Zhang, H.; He, Q. Investigation and analysis of etiology associated with porcine respiratory disease complex in China from 2017 to 2021. Front. Vet. Sci. 2022, 9, 960033. [Google Scholar] [CrossRef]
- Kim, B.; Hur, J.; Lee, J.Y.; Choi, Y.; Lee, J.H. Molecular serotyping and antimicrobial resistance profiles of Actinobacillus pleuropneumoniae isolated from pigs in South Korea. Vet. Q. 2016, 36, 137–144. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.W.; Oh, S.I.; So, B.; Kim, W.I.; Kim, H.Y. Characterisation of Pasteurella multocida isolates from pigs with pneumonia in Korea. BMC Vet. Res. 2019, 15, 119. [Google Scholar] [CrossRef]
- Macedo, N.; Gottschalk, M.; Strutzberg-Minder, K.; Van, C.N.; Zhang, L.; Zou, G.; Zhou, R.; Marostica, T.; Clavijo, M.J.; Tucker, A.; et al. Molecular characterization of Glaesserella parasuis strains isolated from North America, Europe and Asia by serotyping PCR and LS-PCR. Vet. Res. 2021, 52, 68. [Google Scholar] [CrossRef] [PubMed]
- Schuwerk, L.; Hoeltig, D.; Waldmann, K.H.; Strutzberg-Minder, K.; Valentin-Weigand, P.; Rohde, J. Serotyping and pathotyping of Glaesserella parasuis isolated 2012–2019 in Germany comparing different PCR-based methods. Vet. Res. 2020, 51, 137. [Google Scholar] [CrossRef]
- Dazzi, C.C.; Guizzo, J.A.; Prigol, S.R.; Kreutz, L.C.; Driemeier, D.; Chaudhuri, S.; Schryvers, A.B.; Frandoloso, R. New Pathological Lesions Developed in Pigs by a “Non-virulent” Strain of Glaesserella parasuis. Front. Vet. Sci. 2020, 7, 98. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Wang, H.; Liang, W.; Chen, Y.; Tang, X.; Chen, H.; Wu, B. A capsule/lipopolysaccharide/MLST genotype D/L6/ST11 of Pasteurella multocida is likely to be strongly associated with swine respiratory disease in China. Arch. Microbiol. 2018, 200, 107–118. [Google Scholar] [CrossRef]
- Truswell, A.; Laird, T.J.; Jones, S.; O’Dea, M.; Blinco, J.; Abraham, R.; Morison, D.; Jordan, D.; Hampson, D.J.; Pang, S.; et al. Antimicrobial Resistance of and Genomic Insights into Pasteurella multocida Strains Isolated from Australian Pigs. Microbiol. Spectr. 2023, 11, e0378422. [Google Scholar] [CrossRef]
- El Garch, F.; de Jong, A.; Simjee, S.; Moyaert, H.; Klein, U.; Ludwig, C.; Marion, H.; Haag-Diergarten, S.; Richard-Mazet, A.; Thomas, V.; et al. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe, 2009–2012: VetPath results. Vet. Microbiol. 2016, 194, 11–22. [Google Scholar] [CrossRef]
- Siteavu, M.I.; Drugea, R.I.; Pitoiu, E.; Ciobotaru-Pirvu, E. Antimicrobial Resistance of Actinobacillus pleuropneumoniae, Streptococcus suis, and Pasteurella multocida Isolated from Romanian Swine Farms. Microorganisms 2023, 11, 2410. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.H.; Lai, P.Y.; Hsu, F.Y.; Hsueh, P.R.; Chiou, M.T.; Lin, C.N. Antimicrobial susceptibility and resistome of Actinobacillus pleuropneumoniae in Taiwan: A next-generation sequencing analysis. Vet. Q. 2024, 44, 1–13. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Petrocchi-Rilo, M.; Gutiérrez-Martín, C.B.; Pérez-Fernández, E.; Vilaró, A.; Fraile, L.; Martínez-Martínez, S. Antimicrobial Resistance Genes in Porcine Pasteurella multocida Are Not Associated with Its Antimicrobial Susceptibility Pattern. Antibiotics 2020, 9, 614. [Google Scholar] [CrossRef]
- Michael, G.B.; Bossé, J.T.; Schwarz, S. Antimicrobial Resistance in Pasteurellaceae of Veterinary Origin. Microbiol. Spectr. 2018, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Krachler, A.M.; Orth, K. Targeting the bacteria-host interface: Strategies in anti-adhesion therapy. Virulence 2013, 4, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Rasko, D.A.; Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 2010, 9, 117–128. [Google Scholar] [CrossRef] [PubMed]
Regions | PM 1 | GPS | APP | ||||||
---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2023 | 2021 | 2022 | 2023 | 2021 | 2022 | 2023 | |
Xinjiang | 6.67% (2/30) | 3.13% (1/32) | 0 (0/18) | 10.00% (3/30) | 0 (0/32) | 0 (0/18) | 3.33% (1/30) | 3.13% (1/32) | 0 (0/18) |
Sichuan | 0.75% (1/134) | 0.67% (1/149) | 3.49% (3/86) | 0.75% (1/134) | 0 (0/149) | 3.49% (3/86) | 1.50% (2/134) | 0 (0/149) | 2.32% (2/86) |
Hunan | 0 (0/216) | 0.45% (1/221) | 0.81% (2/246) | 0.46% (1/216) | 0.45% (1/221) | 0.41% (1/246) | 0 (0/216) | 0 (0/221) | 0.41% (1/246) |
Guangxi | 1.67% (2/120) | 0.87% (1/115) | 0.83% (1/120) | 0.83% (1/120) | 1.74% (2/115) | 0.83% (1/120) | 0.83% (1/120) | 0.87% (1/115) | 0 (0/120) |
Shandong | 2.63% (5/190) | 0 (0/171) | 1.85% (2/108) | 1.05% (2/190) | 1.17% (2/171) | 1.85% (2/108) | 0.53% (1/190) | 0.58% (1/171) | 0.93% (1/108) |
Hebei | 9.26% (5/54) | 0 (0/56) | 12.50% (3/24) | 5.56% (3/54) | 0 (0/56) | 8.33% (2/24) | 1.85% (1/54) | 3.57% (2/56) | 4.17% (1/24) |
Gansu | 6.82% (3/44) | 0 (0/54) | 4.65% (4/86) | 9.09% (4/44) | 0 (0/54) | 1.62% (1/86) | 2.27% (1/44) | 3.70% (2/54) | 1.16% (1/86) |
Henan | 2.22% (1/45) | 4.44% (2/45) | 3.13% (1/32) | 4.44% (2/45) | 0 (0/45) | 3.13% (1/32) | 0 (0/45) | 4.44% (2/45) | 0 (0/32) |
Hubei | 0.66% (2/302) | 0 (0/330) | 3.33% (6/180) | 1.32% (4/302) | 0.30% (1/330) | 0 (0/180) | 0.99% (3/302) | 0.30% (1/330) | 0.56% (1/180) |
Shanxi | 8.16% (4/49) | 0 (0/57) | 4.04% (4/99) | 0 (0/49) | 7.02% (4/57) | 1.01% (1/99) | 4.08% (2/49) | 5.26% (3/57) | 1.01% (1/99) |
Guangdong | 0.48% (1/207) | 0.90% (2/221) | 0 (0/173) | 0.97% (2/207) | 0 (0/221) | 0 (0/173) | 0.48% (1/207) | 0.45% (1/221) | 0 (0/173) |
Yunan | 2.00% (1/50) | 5.13% (2/39) | 1.15% (1/87) | 0 (0/50) | 2.56% (1/39) | 2.30% (2/87) | 2.00% (1/50) | 5.13% (2/39) | 1.15% (1/87) |
Total | 1.87% (27/1441) | 0.67% (10/1490) | 2.14% (27/1259) | 1.60% (23/1441) | 0.74% (11/1490) | 1.11% (14/1259) | 0.97% (14/1441) | 1.07% (16/1490) | 0.71% (9/1259) |
Species 1 | Agents 2 | No. of Strains with MIC of (μg/mL) | Break Points (μg/mL) 3 | MIC50 | MIC90 | % Resistant | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | ||||||
PM | SXT | 3 | 61 | NA | 512 | 512 | NA | ||||||||||
CEF | 18 | 2 | 5 | 0 | 0 | 39 | NA | 32 | 32 | NA | |||||||
AMP | 3 | 1 | 0 | 0 | 0 | 60 | 2 | 8 | 8 | 93.75% | |||||||
TET | 0 | 2 | 34 | 0 | 0 | 28 | 2 | 1 | 8 | 43.75% | |||||||
TMC | 3 | 4 | 16 | 0 | 0 | 41 | 32 | 128 | 128 | 64.06% | |||||||
ENR | 24 | 18 | 0 | 0 | 1 | 21 | 1 | 0.5 | 8 | 34.38% | |||||||
GEN | 0 | 15 | 26 | 0 | 1 | 22 | NA | 4 | 32 | NA | |||||||
GPS | SXT | 15 | 33 | NA | 512 | 512 | NA | ||||||||||
CEF | 10 | 6 | 17 | 5 | 0 | 10 | NA | 4 | 32 | NA | |||||||
AMP | 0 | 2 | 2 | 0 | 0 | 44 | NA | 8 | 8 | NA | |||||||
TET | 0 | 0 | 9 | 0 | 1 | 38 | NA | 8 | 8 | NA | |||||||
TMC | 5 | 1 | 23 | 6 | 2 | 11 | NA | 16 | 128 | NA | |||||||
ENR | 12 | 25 | 0 | 0 | 4 | 7 | NA | 0.5 | 8 | NA | |||||||
GEN | 0 | 0 | 16 | 2 | 0 | 30 | NA | 32 | 32 | NA | |||||||
APP | SXT | 9 | 30 | NA | 512 | 512 | NA | ||||||||||
CEF | 14 | 12 | 5 | 0 | 2 | 6 | NA | 2 | 32 | NA | |||||||
AMP | 9 | 2 | 0 | 0 | 1 | 27 | 2 | 8 | 8 | 69.23% | |||||||
TET | 0 | 2 | 13 | 0 | 0 | 24 | 2 | 8 | 8 | 61.54% | |||||||
TMC | 0 | 0 | 16 | 0 | 2 | 21 | 32 | 128 | 128 | 58.97% | |||||||
ENR | 24 | 11 | 0 | 0 | 2 | 2 | 1 | 0.25 | 8 | 10.26% | |||||||
GEN | 0 | 0 | 20 | 0 | 2 | 17 | NA | 4 | 32 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Zong, X.; Chen, G.; Zhang, Y.; Cao, Q.; Li, L.; Chen, H.; Peng, Z.; Tan, C. Isolation, Antimicrobial Susceptibility, and Genotypes of Three Pasteurellaeae Species Prevalent on Pig Farms in China Between 2021 and 2023. Microorganisms 2025, 13, 938. https://doi.org/10.3390/microorganisms13040938
Li F, Zong X, Chen G, Zhang Y, Cao Q, Li L, Chen H, Peng Z, Tan C. Isolation, Antimicrobial Susceptibility, and Genotypes of Three Pasteurellaeae Species Prevalent on Pig Farms in China Between 2021 and 2023. Microorganisms. 2025; 13(4):938. https://doi.org/10.3390/microorganisms13040938
Chicago/Turabian StyleLi, Fangxin, Xin Zong, Guosheng Chen, Yu Zhang, Qi Cao, Lu Li, Huanchun Chen, Zhong Peng, and Chen Tan. 2025. "Isolation, Antimicrobial Susceptibility, and Genotypes of Three Pasteurellaeae Species Prevalent on Pig Farms in China Between 2021 and 2023" Microorganisms 13, no. 4: 938. https://doi.org/10.3390/microorganisms13040938
APA StyleLi, F., Zong, X., Chen, G., Zhang, Y., Cao, Q., Li, L., Chen, H., Peng, Z., & Tan, C. (2025). Isolation, Antimicrobial Susceptibility, and Genotypes of Three Pasteurellaeae Species Prevalent on Pig Farms in China Between 2021 and 2023. Microorganisms, 13(4), 938. https://doi.org/10.3390/microorganisms13040938