Vanadium Stress-Driven Microbial Acclimation Enhances Biological Denitrification in Recycling of Vanadium-Containing Industrial Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ammonia–Nitrogen Wastewater
2.2. Main Medium
2.3. Source and Identification of Strains
2.4. Domestication of Bacteria
2.5. Single Factor Experimental Design Affecting the Performance of Heterotrophic Deamination
2.6. Assessment of Aerobic Denitrification Capability
2.7. Enzyme Assay
2.8. PCR Amplification of Nitrification and Denitrification Genes in Pseudomonas Aeruginosa
2.9. Analysis Methods
3. Results and Discussion
3.1. Factors Affecting the Ammonia–Nitrogen Removal Performance of S.P-1
3.1.1. Effect of Carbon Sources
3.1.2. Effect of C/N Ratio
3.1.3. Effect of Initial pH
3.1.4. Effect of Inoculum Amounts
3.2. Heterotrophic Nitrification–Aerobic Denitrification Capacity of S.P-1
3.2.1. Differences in Ammonia–Nitrogen Removal Efficiency of S.P and S.P-1
3.2.2. Evaluation of Nitrification–Denitrification Capacity of S.P-1 at Different Nitrogen Sources
3.3. Mechanism of Simultaneous Nitrification–Denitrification Removal of Ammonia–Nitrogen by S.P-1
3.3.1. Identification of Strain S.P-1
3.3.2. Changes in Extracellular Polymeric Substances (EPS) of S.P-1
3.3.3. Effects of Ammonia and Vanadium on the Membrane Potential and Permeability of Pseudomonas Aeruginosa Cells
3.3.4. S.P-1 Hydrophilic Enhancement
3.3.5. Accumulation Behavior of Vanadium in S.P-1
3.3.6. Enhancement of Internal Nitrification Process in S.P-1
3.3.7. Mechanism of S.P-1 Enhanced Ammonia–Nitrogen Removal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Wang, J.; Zhao, X.; Song, X.; Gong, J. The inhibition and adaptability of four wetland plant species to high concentration of ammonia wastewater and nitrogen removal efficiency in constructed wetlands. Bioresour. Technol. 2016, 202, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Bo, W.; Zhang, Y.; Liu, H.; Xue, N.; Zhang, L. Optimization of precursor structure by dispersants to promote nitrogen reduction process to prepare high-quality VN. J. Alloys Compd. 2024, 1006, 176285. [Google Scholar] [CrossRef]
- Chen, B.; Bao, S.X.; Zhang, Y.M.; Ren, L. A novel and sustainable technique to precipitate vanadium from vanadium-rich solutions via efficient ultrasound irradiation. J. Clean. Prod. 2022, 339, 130755. [Google Scholar] [CrossRef]
- Duan, G.; Yuan, Y.; Zhang, Y.; Xue, N.; Liu, H.; Zhao, X. A novel approach to eliminate the negative effects of SO4 2- and NH4+on vanadium extraction from the high-calcium shale during the internal recycling of vanadium industrial wastewater. J. Environ. Chem. Eng. 2024, 12, 113484. [Google Scholar] [CrossRef]
- Zeng, L.; Li, Q.; Xiao, L.; Zhang, Q. Extraction of vanadium from acidic solution of stone coal using P204 and waste water treatment. Chin. J. Rare Met. 2010, 34, 400–405. [Google Scholar]
- Zheng, L.; Dong, Y.; Li, B.; Yin, T.; Liu, C.; Lin, H. Simultaneous removal of high concentrations of ammonia nitrogen and calcium by the novel strain Paracoccus denitrifican AC-3 with good environmental adaptability. Bioresour. Technol. 2022, 359, 127457. [Google Scholar] [CrossRef]
- Back, S.; Saito, N.; Lee, S. A facile and efficient approach for the removal of high concentrations of ammonia nitrogen in wastewater: Liquid-phase plasma treatment. J. Environ. Chem. Eng. 2023, 11, 109075. [Google Scholar] [CrossRef]
- He, X.; Sun, Q.; Xu, T.; Dai, M.; Wei, D. Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a novel halotolerant bacterium Pseudomonas mendocina TJPU04. Bioprocess Biosyst. Eng. 2019, 42, 853–866. [Google Scholar] [CrossRef]
- He, T.; Li, Z.; Sun, Q.; Xu, Y.; Ye, Q. Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresour. Technol. 2016, 200, 493–499. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, D.F. Tapping the potential of wastewater treatment with direct ammonia oxidation (Dirammox). Environ. Sci. Technol. 2023, 57, 7106–7108. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.-H.; Lazzaro, A.; Tang, Y.; Zeyer, J. Response of soil enzyme activity and microbial community in vanadiumloaded soil. Water Air Soil Pollut. 2014, 225, 2012–2021. [Google Scholar] [CrossRef]
- Kamika, I.; Momba, M.N. Microbial diversity of Emalahleni mine water in South Africa and tolerance ability of the predominant organism to vanadium and nickel. PLoS ONE 2014, 9, e86189. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Feng, Y.; Zou, X.; Luo, X. Study on microbial reduction of vanadium matallurgical waste Water. Hydrometallurgy 2009, 99, 13–17. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C.; Tang, Y.; Liu, B. Efficient nitrogen removal by a novel extreme strain, Pseudomonas reactans WL20-3 under dual stresses of low temperature and high alkalinity: Characterization, mechanism, and application. Bioresour. Technol. 2023, 385, 129465. [Google Scholar] [CrossRef]
- Yang, W.; Xu, L.; Wang, Z.; Li, K.; Hu, R.; Su, J.; Zhang, L. Synchronous removal of ammonia nitrogen, phosphate, and calcium by heterotrophic nitrifying strain Pseudomonas sp. Y1 based on microbial induced calcium precipitation. Bioresour. Technol. 2022, 363, 127996. [Google Scholar] [CrossRef]
- Fu, W.L.; Duan, P.F.; Wang, Q.; Liao, Y.X.; Wang, Y.S.; Xu, M.J.; Jiang, H.H.; Zhang, X.; Rao, Z.M. Transcriptomics reveals the effect of ammonia nitrogen concentration on Pseudomonas stutzeri F2 assimilation and the analysis of amtB function. Synth. Syst. Biotechnol. 2023, 8, 262–272. [Google Scholar] [CrossRef]
- Zhao, B.; He, Y.L.; Hughes, J.; Zhang, X.F. Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR. Bioresour. Technol. 2010, 101, 5194–5200. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, R.; Chen, Y.G. Effects of ZnO Nanoparticles on Wastewater Biological Nitrogen and Phosphorus Removal. Environ. Sci. Technol. 2011, 45, 2826–2832. [Google Scholar] [CrossRef]
- Otte, S.; Schalk, J.; Jetten, M.S.M. Hydroxylamine oxidation and subsequent nitrous oxide production by the heterotrophic ammonia oxidizer Alcaligenes faecalis. Microbiol. Biotechnol. 1999, 51, 255–261. [Google Scholar] [CrossRef]
- Yang, J.-R.; Wang, Y.; Chen, H.; Lyu, Y.-K. Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification. Bioresour. Technol. 2019, 274, 56–64. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Tian, H.; Cai, Z.; Zhang, Y.; Zheng, Q. Chemical mutation of Bacillus mucilaginosus genes to enhance the bioleaching of vanadium-bearing shale. Biochem. Eng. J. 2023, 197, 108962. [Google Scholar] [CrossRef]
- Li, W. Study on characteristics in the removal process of ammonia nitrogen and nitrate nitrogen by an isolated heterotrophic nitrification-aerobic denitrification strain Rhodococcus sp. Environ. Prot. 2013, 4, 74–79. [Google Scholar] [CrossRef]
- Silva, L.C.F.; Lima, H.S.; de Oliveira Mendes, T.A.; Sartoratto, A.; de Paula Sousa, M.; de Souza, R.S.; de Paula, S.O.; de Oliveira, V.M.; da Silva, C.C. Heterotrophic nitrifying/aerobic denitrifying bacteria: Ammonium removal under different physical-chemical conditions and molecular characterization. J. Environ. Manag. 2019, 248, 109294. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Jin, R.; Zhou, J.; Huang, J. Nitrogen-removal characteristic of heterotrophic nitrification and aerobic denitrification bacterium ADN-42. Chin. J. Environ. Eng. 2015, 9, 989–996. [Google Scholar]
- Pan, Z.; Zhou, J.; Lin, Z.; Wang, Y.; Zhao, P.; Zhou, J.; Liu, S.; He, X. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process. Bioresour. Technol. 2020, 301, 122726. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; Dopson, M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 2007, 15, 165–171. [Google Scholar] [CrossRef]
- Duan, J.; Fang, H.; Su, B.; Chen, J.; Lin, J. Characterization of a halophilic heterotrophic nitriffcation–aerobic denitriffcation bacterium and its application on treatment of saline wastewater. Bioresour. Technol. 2015, 179, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Lu, D.; Qin, B.; Liu, Q.; Zhao, Y.; Liu, H.; Ma, J. Highly efffcient nitrogen removal of a coldness-resistant and low nutrient needed bacterium, Janthinobacterium sp. M-11. Bioresour. Technol. 2018, 256, 366–373. [Google Scholar] [CrossRef]
- Abdelaziz, A.A.; Kamer, A.M.A.; Al-Monofy, K.B.; Al-Madboly, L.A. Pseudomonas aeruginosa’s greenish-blue pigment pyocyanin: Its production and biological activities. Microb. Cell Factories 2023, 22, 110. [Google Scholar] [CrossRef]
- Barathi, S.; Meng, Y.; Yu, Z.; Ni, S.Q.; Meng, F. Roles of nitrite in mediating the composition and metacommunity of multispecies biofilms. J. Water Process Eng. 2021, 40, 101764. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Zhang, S.; Liu, F.; Peng, J.; Peng, Y.; Wu, J. Denitrification characteristics of a hypothermia nitrite denitrifier Pseudomonas putida Y-12. Acta Sci. Circumstantiae 2015, 0126, 2393–2399. [Google Scholar]
- Chen, J.; Xu, J.; Zhang, S.; Liu, F.; Peng, J.; Peng, Y.; Wu, J. Nitrogen removal characteristics of a novel heterotrophic nitrification and aerobic denitrification bacteria, Alcaligenes faecalis strain WT14. Environ. Manag. 2021, 282, 111961. [Google Scholar] [CrossRef]
- Ren, J.; Bai, X.; Liu, Y.; Huang, X. Simultaneous nitrification and aerobic denitrification by a novel isolated Ochrobactrum anthropi HND19. Bioresour. Technol. 2021, 340, 125582. [Google Scholar] [CrossRef]
- Ke, X.; Liu, C.; Tang, S.Q.; Guo, T.T.; Pan, L.; Xue, Y.P.; Zheng, Y.G. Characterization of Acinetobacter indicus ZJB20129 for heterotrophic nitrification and aerobic denitrification isolated from an urban sewage treatment plant. Bioresour. Technol. 2022, 347, 126423. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Li, X.; Fan, W.; Wang, J. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresour. Technol. 2020, 301, 122749. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.P.; Zhang, F.P.; Zhang, L.J.; Liu, H.; Zhang, Q.; Xing, Z.; Zhao, T. Characterization of a novel salt-tolerant strain Sphingopyxis sp. CY-10 capable of heterotrophic nitrification and aerobic denitrification. Bioresour. Technol. 2022, 358, 127353. [Google Scholar] [CrossRef]
- Xia, L.; Tan, J.; Wu, P.; He, Q.; Song, S.; Li, Y. Biopolymers extracted from Klebsiella sp. and Bacillus sp.in wastewater sludge as superb adsorbents for aqueous Hg (II) removal from water. Chem. Phys. Lett. 2020, 754, 137689. [Google Scholar] [CrossRef]
- Yang, Y.; Wikieł, A.J.; Dall’Agnol, L.T.; Eloy, P.; Genet, M.J.; Moura, J.J.; Sand, W.; Dupont-Gillain, C.C.; Rouxhet, P.G. Proteins dominate in the surface layers formedon materials exposed to extracellular polymeric substances from bacterial cultures. Biofouling 2016, 32, 95–108. [Google Scholar] [CrossRef]
- Li, Q.; Song, W.; Sun, M.; Li, J.; Yu, Z. Response of Bacillus vallismortis sp. EPS to exogenous sulfur stress/induction and its adsorption performance on Cu (II). Chemosphere 2019, 251, 126343. [Google Scholar] [CrossRef]
- Ojeda, J.J. Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTR spectroscopy, modeling, and potentiometric titrations. Langmuir 2008, 24, 4032–4040. [Google Scholar] [CrossRef]
- Costa, O.; Raaijmakers, J.M.; Kuramae, E.E. Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef] [PubMed]
- Redmile-Gordon, M.; Evershed, R.; Hirsch, P.; White, R.; Goulding, K. Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability. Soil Biol. Biochem. 2015, 88, 257–267. [Google Scholar] [CrossRef]
- Zeng, W.; Li, F.; Wu, C.; Yu, R.; Wu, X.; Shen, L.; Liu, Y.; Qiu, G.; Li, J. Role of extracellular polymeric substance (EPS) in toxicityresponse of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess Biosyst. Eng. 2020, 43, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Shao, W.; Zhang, K.; Huo, Y.; Zhu, J.; Li, M. Pb biosorption by Leclercia adecarboxylata: Protective and immobilized mechanisms of extracellular polymeric substances. Chem. Eng. J. 2019, 375, 122113. [Google Scholar] [CrossRef]
- Alegun, O.; Pandeya, A.; Cui, J.; Ojo, I.; Wei, Y. Donnan Potential across the Outer Membrane of Gram-Negative Bacteria and Its Effect on the Permeability of Antibiotics. Antibiotics 2021, 10, 701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Su, P.; Chen, H.; Qiao, M.; Yang, B.; Zhao, X. Impact of reactive oxygen species on cell activity and structural integrity of Gram-positive and Gram-negative bacteria in electrochemical disinfection system. Chem. Eng. J. 2023, 451, 138879. [Google Scholar] [CrossRef]
- Guo, P.S.; Hang, Y. Relationship between the extracellular polymeric substances and surface characteristics of Rhodopseudomonas acidophila. Microbiol. Biotechnol. 2006, 72, 126–131. [Google Scholar]
- Priya, A.; Gnanasekaran, L.; Dutta, K.; Rajendran, S.; Balakrishnan, D.; Soto-Moscoso, M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere 2022, 307, 135957. [Google Scholar] [CrossRef]
- Li, M.; Deng, X.; Sun, W.; Hu, L.; Zhong, H.; He, Z.; Xiong, D. Extracellular polymeric substances of acidophilic microorganisms play a crucial role in heavy metal ions adsorption. Int. J. Environ. Sci. Technol. 2022, 19, 4857–4868. [Google Scholar] [CrossRef]
- Ayele, A.; Yakob, G. Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups. J. Chem. 2021, 1, 7694157. [Google Scholar] [CrossRef]
- Schommer, V.A.; Vanin, A.P.; Nazari, M.T.; Ferrari, V.; Dettmer, A.; Colla, L.M.; Piccin, J.S. Biochar-immobilized Bacillus spp. for heavy metals bioremediation: A review on immobilization techniques, bioremediation mechanisms and effects on soil. Sci. Total Environ. 2023, 881, 163385. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Tan, Y.; Tian, S.; Qin, Y.; Zhou, M.; Hu, H.; Zhao, X.; Wang, Z.; Hu, B. Effect of carbon source on carbon and nitrogen metabolism of common heterotrophic nitrifica-tion-aerobic denitrification pathway. Chemosphere 2024, 361, 142525. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Q.; Wu, H.; Jiang, W.; Kahaer, A.; Tang, Q.; Hu, Z.; Hong, C.; Liu, D. Integrative chemical and omics analysis of the ammonia nitrogen removal characteristics and mechanism of a novel oligotrophic heterotrophic nitrification aerobic denitrification bacterium. Sci. Total Environ. 2022, 852, 158519. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Tian, X.; He, Y.; Dong, S. Nitrogen removal capability and mechanism of a novel heterotrophic nitrification–aerobic denitrification bacterium Halomonas sp. DN3. Bioresour. Technol. 2023, 387, 129569. [Google Scholar] [CrossRef]
- Tsujino, S.; Uematsu, C.; Dohra, H.; Fujiwara, T. Pyruvic oxime dioxygenase from heterotrophic nitriffer Alcaligenes faecalis is a nonheme Fe(II)-dependent enzyme homologous to class II aldolase. Sci. Rep. 2017, 7, 39991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, Z.; Chen, S.; Kang, P.; Wang, Y.; Feng, J.; Jia, J.; Yan, M.; Wang, Y.; Xu, L. Paracoccus versutus KS293 adaptation to aerobic and anaerobic denitriffcation: Insights from nitrogen removal, functional gene abundance, and proteomic proffling analysis. Bioresour. Technol. 2018, 260, 321–328. [Google Scholar] [CrossRef]
- Padhi, S.K.; Tripathy, S.; Sen, R.; Mahapatra, A.S.; Mohanty, S.; Maiti, N.K. Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater. Int. Biodeterior. Biodegrad. 2013, 78, 67–73. [Google Scholar] [CrossRef]
- Dong, J.; Yang, B.; Wang, H.; Cao, X.; He, F.; Wang, L. Reveal molecular mechanism on the effects of silver nanoparticles on nitrogen transformation and related functional microorganisms in an agricultural soil. Sci. Total Environ. 2023, 904, 166765. [Google Scholar] [CrossRef]
Elemental | Mg | Na | Ca | K | V | N-NH4+ |
---|---|---|---|---|---|---|
concentration (mg L−1) | 18.45 | 1533.82 | 101.36 | 77.49 | 96.00 | 1999.56 |
Gene Name | Sequence (5′ to 3′) |
---|---|
16S-F | CGCAGAACCTTACCAACCCT |
16S-R | GAGTGCCCAACCAAATGCTG |
napA-F2 | GGGCTTGAAGACGATGGGAA |
napA-R2 | ATGCATCCGATCCTGTGGAC |
narG-F2 | TCATTCCGCTGCCTCCATAC |
narG-R2 | CCAGTTGGCCTATGGCTTCA |
nirS-F3 | ACAACCTCAAGACCACCGAGA |
nirS-R3 | GCCTTCCTTGGTGTCGATCA |
norB-F2 | CTAGTGCTGCTGTGGCTCTT |
norB-R2 | TGAGCATCAGGAAGGCAAGG |
amoA-F2 | GAACAGCGGATAACCGACCA |
amoA-R2 | CATCTTCATGCGCACCATCC |
nosZ-F | AGCGGTCCTTCGAGAACTTG |
nosZ-R | ACCCGATCAAGGACAAGCTG |
Samples | Cps/C (%) | Cpn/C (%) | Chc/C (%) |
---|---|---|---|
SP. | 27.58 | 35.69 | 36.73 |
SP-1 | 30.71 | 49.23 | 20.06 |
Name | 16S-F (bp) | amoA (bp) | napA (bp) | napG (bp) | nirS (bp) | norB (bp) | nosZ (bp) |
---|---|---|---|---|---|---|---|
S.P | 177 | 145 | 129 | 148 | 131 | 142 | 123 |
S.P-1 | 177 | 362 | 129 | 148 | 131 | 142 | 123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
She, Y.; Zhang, Y.; Zheng, Q.; Cai, Z.; Wang, Y.; Xue, N. Vanadium Stress-Driven Microbial Acclimation Enhances Biological Denitrification in Recycling of Vanadium-Containing Industrial Wastewater. Microorganisms 2025, 13, 1003. https://doi.org/10.3390/microorganisms13051003
She Y, Zhang Y, Zheng Q, Cai Z, Wang Y, Xue N. Vanadium Stress-Driven Microbial Acclimation Enhances Biological Denitrification in Recycling of Vanadium-Containing Industrial Wastewater. Microorganisms. 2025; 13(5):1003. https://doi.org/10.3390/microorganisms13051003
Chicago/Turabian StyleShe, Yihuan, Yimin Zhang, Qiushi Zheng, Zhenlei Cai, Yue Wang, and Nannan Xue. 2025. "Vanadium Stress-Driven Microbial Acclimation Enhances Biological Denitrification in Recycling of Vanadium-Containing Industrial Wastewater" Microorganisms 13, no. 5: 1003. https://doi.org/10.3390/microorganisms13051003
APA StyleShe, Y., Zhang, Y., Zheng, Q., Cai, Z., Wang, Y., & Xue, N. (2025). Vanadium Stress-Driven Microbial Acclimation Enhances Biological Denitrification in Recycling of Vanadium-Containing Industrial Wastewater. Microorganisms, 13(5), 1003. https://doi.org/10.3390/microorganisms13051003