Infection with the Endonuclear Symbiotic Bacterium Holospora obtusa Reversibly Alters Surface Antigen Expression of the Host Paramecium caudatum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Cultures
2.2. Extraction of P. caudatum Surface Antigens by Cold Salt/Ethanol Ttreatment
2.3. Production of Monoclonal Antibody
2.4. Indirect-Immunofluorescence Microscopy
2.5. SDS-PAGE and Immunoblotting
2.6. Immobilization Test
2.7. Creation of Aposymbiotic Cells from Symbiotic Cells
2.8. Starvation and Temperature-Shift Stress
3. Results
3.1. SAgs Comparison Between Symbiotic and Aposymbiotic Paramecium Cells
3.2. Immobilization Test of Aposymbiotic and Symbiotic Cells
3.3. Reversibility of SAg Expression
3.4. Effects of Starvation and Temperature Shifts on SAg Expression
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beal, G.H.; Mott, M.R. Further studies on the antigens of Paramecium aurelia with the aid of fluorescent antibodies. J. Gen. Microbiol. 1962, 17, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Mott, M.R. Electron microscopy studies on the immobilization antigens of Paramecium aurelia. J. Gen. Microbiol. 1965, 41, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Preer, J.R., Jr. Genetics of the protozoa. In Research in Protozoology 3; Chen, T.T., Ed.; Pergamon: Oxford, UK, 1968; pp. 129–278. [Google Scholar]
- Preer, J.R., Jr.; Preer, L.B.; Rudman, B.M. mRNAs for the immobilization antigens of Paramecium. Proc. Natl. Acad. Sci. USA 1981, 78, 6776–6778. [Google Scholar] [CrossRef] [PubMed]
- Prat, A.; Katinka, M.; Caron, F.; Meyer, E. Nucleotide sequence of the Paramecium primaurelia G surface protein: A huge protein with a highly periodic structure. J. Mol. Biol. 1986, 189, 47–60. [Google Scholar] [CrossRef]
- Schmidt, H.-J. Immobilization Antigen. In Paramecium; Görtz, H.-D., Ed.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 155–163. [Google Scholar]
- Baranasic, D.; Oppermann, T.; Cheaib, M.; Cullum, J.; Schmidt, H.; Simon, M. Genomic characterization. of variable surface antigens reveals a telomere position effect as a prerequisite for RNA interference-mediated silencing in Paramecium tetraurelia. mBio 2014, 5, e01328-14. [Google Scholar] [CrossRef]
- Rössele, R. Spezifische Seren Gegen Infusorien. Arch. Hyg. Bakteriol. 1905, 54, 1–31. [Google Scholar]
- Beale, G.H. The antigens. In The Genetics of Paramecium aurelia; Selt, G., Ed.; Cambridge University Press: Cambridge, UK, 1954; pp. 77–123. [Google Scholar]
- Preer, J.R., Jr. Studies on the immobilization antigens of Paramecium: II. Isolation. J. Immunol. 1959, 83, 378–384. [Google Scholar] [CrossRef]
- Nielsen, E.; You, Y.; Forney, J. Cysteine residue periodicity is a conserved structural feature of variable surface proteins from Paramecium tetraurelia. J. Mol. Biol. 1991, 222, 835–841. [Google Scholar] [CrossRef]
- Capdeville, Y.; Cardoso De Almeida, M.L.; Deregnaucourt, C. The membrane-anchor of Paramecium temperature-specific surface antigens is a glycosylinositol phospholipid. Biochem. Biophys. Res. Commun. 1987, 147, 1219–1225. [Google Scholar] [CrossRef]
- Capdeville, Y.; Benwakrim, A. The major ciliary membrane proteins in Paramecium primaurelia are all glycosylphosphatidylinositol-anchored proteins. Eur. J. Cell Biol. 1996, 70, 339–346. [Google Scholar]
- Yano, J.; Rachochy, V.; Van Houten, J.L. Glycosyl phosphatidylinositol-anchored proteins in chemosensory signaling: Antisense Manipulation of Paramecium tetraurelia PIG-A gene expression. Eukaryot. Cell 2003, 2, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Pirritano, M.; Yakovleva, Y.; Potekhin, A.; Simon, M. Species-specific duplication of surface antigen genes in Paramecium. Microorganisms 2022, 10, 2378. [Google Scholar] [CrossRef] [PubMed]
- Rothberg, K.G.; Ying, Y.; Kolhouse, J.F.; Kamen, B.A.; Anderson, R.G.W. The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. J. Cell Biol. 1990, 110, 637–649. [Google Scholar] [CrossRef]
- Paquette, C.A.; Rakochy, V.; Bush, A.; Van Houten, J.L. Glycophosphatidylinositol-anchored proteins in Paramecium tetraurelia: Possible role in chemoresponse. J. Exp. Biol. 2001, 204, 2899–2910. [Google Scholar] [CrossRef]
- Vallet, V.; Chraibi, A.; Gaeggeler, H.-P.; Horisberger, J.-D.; Rossier, B.C. An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 1997, 389, 607–610. [Google Scholar] [CrossRef]
- Nosjean, O.; Briolay, A.; Bernard, R. Mammalian GPI proteins: Sorting, membrane residence and functions. Biochim. Biophys. Acta 1997, 1331, 153–186. [Google Scholar] [CrossRef]
- Parolini, I.; Sargiacomo, M.; Lisanti, M.P.; Peschle, C. Signal transduction and glycophosphatidylinositol-linked proteins (LYN, LCK, CD4, CD45, G proteins and CD55) selectively localize in Triton-insoluble plasma membrane domains of human leukemic cell lines and normal granulocytes. Blood 1996, 87, 3783–3794. [Google Scholar] [CrossRef]
- Casey, P. Protein lipidation in cell signaling. Science 1995, 268, 221–225. [Google Scholar] [CrossRef]
- Leidich, S.D.; Orlean, P. Gpi1, a Saccharomyces cerevisiae protein that participates in the first step in glycosylphosphatidylinositol anchor synthesis. J. Biol. Chem. 1996, 269, 27829–27837. [Google Scholar] [CrossRef]
- Hilley, J.D.; Zawadzki, J.L.; McConville, M.J.; Coombs, G.H.; Mottram, J.C. Leishmania mexicana mutants lacking glycosylphosphatidylinositol (GPI): Protein transamidase provide insights into the biosynthesis and functions of GPI-anchored proteins. Mol. Biol. Cell 2000, 11, 1113–1498. [Google Scholar] [CrossRef]
- Nagamune, K.; Nozaki, T.; Maeda, Y.; Ohishi, K.; Fukuma, T.; Hara, T.; Schwarz, R.T.; Süterlin, C.; Brun, R.; Riezman, H.; et al. Critical roles of glycosyl phosphatidylinositol for Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 2000, 97, 10335–10341. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, T.; Bessler, M.; Takeda, J. Animal models of PNH. In PNH and the GPI-Linked Proteins; Young, N.S., Moss, J., Eds.; Academic Press: New York, NY, USA, 2002; pp. 139–158. [Google Scholar]
- Tarutani, M.; Itami, S.; Okabe, M.; Ikawa, M.; Tezuka, T.; Yoshikawa, K.; Kinoshita, T.; Takeda, J. Tissue-specific knockout of the mouse Pig-a gene reveals important roles for GPI-anchored proteins in skin development. Proc. Natl. Acad. Sci. USA 1997, 94, 7400–7405. [Google Scholar] [CrossRef] [PubMed]
- Bisharyzn, Y.; Clark, T. Signaling through GPI-anchored surface antigens in ciliates. In Biocommunication of Ciliates; Witzany, G., Nowacki, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 139–157. [Google Scholar] [CrossRef]
- Yano, J.; Rakochy, V.; Stabila, J.; Van Houten, J.L. Calcium pump in chemoresponse: Role of the calmodulin binding domain. Chem. Senses 1997, 22, 829. [Google Scholar]
- Finger, I. Surface antigens of Paramecium aurelia. In Paramecium, a Current Survey; Van Wgtendonk, W.J., Ed.; Elsevier: New York, NY, USA, 1974; pp. 131–164. [Google Scholar]
- Nakamura, Y.; Aki, M.; Aikawa, T.; Hori, M.; Fujishima, M. Differences in gene expression of the ciliate Paramecium caudatum caused by endonuclear symbiosis with Holospora obtusa, revealed using differential display reverse transcribed PCR. FEMS Microbiol. Lett. 2004, 240, 209–213. [Google Scholar] [CrossRef]
- Hori, M.; Fujishima, M. The endosymbiotic bacterium Holospora obtusa enhances heat-shock gene expression of the host Paramecium caudatum. J. Eukaryot. Microbiol. 2003, 30, 293–298. [Google Scholar] [CrossRef]
- Hori, M.; Fujii, K.; Fujishima, M. Micronucleus-specific bacterium Holospora elegans irreversibly enhances stress gene expression of the host Paramecium caudatum. J. Eukaryot. Microbiol. 2008, 55, 515–521. [Google Scholar] [CrossRef]
- Fujishima, M.; Nagahara, K.; Kojima, Y. Changes in morphology, buoyant density and protein composition in differentiation from the reproductive short form to the infectious long form of Holospora obtusa, a macronucleus-specific symbiont of the ciliate Paramecium caudatum. Zool. Sci. 1990, 7, 849–860. [Google Scholar]
- Dryl, S. Antigenic transformation in Paramecium aurelia after homologous antiserum treatment during autogamy and conjugation. J. Protozool. 1959, 6, 25. [Google Scholar]
- Hiwatashi, K. Determination and inheritance of mating type in Paramecium caudatum. Genetics 1968, 58, 373–386. [Google Scholar] [CrossRef]
- Galfre, G.; Milstein, C. Preparation of monoclonal antibodies: Strategies and procedures. Methods Enzymol. 1981, 73, 3–46. [Google Scholar] [CrossRef]
- Coffino, P.; Baumal, R.; Laskov, R.; Scharff, M.D. Cloning of mouse myeloma cells and detection of rare variants. J. Cell. Physiol. 1972, 79, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Iwatani, K.; Dohra, H.; Lang, B.; Burger, G.; Hori, M.; Fujishima, M. Translocation of an 89-kDa periplasmic protein is associated with Holospora infection. Biochem. Biophys. Res. Commun. 2005, 337, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Flötenmeyer, M.; Momayezi, M.; Plattner, H. Immuno-labeling analysis of biosynthetic and degradative pathways of cell surface components (glycocalyx) in Paramecium cells. Eur. J. Cell Biol. 1999, 78, 67–77. [Google Scholar] [CrossRef]
- Fujishima, M.; Nagahara, K.; Kojima, Y.; Sayama, Y. Sensitivity of the infectious long form of the macronuclear endosymbiont Holospora obtusa of the ciliate Paramecium caudatum against chemical and physical factors. Eur. J. Cell Biol. 1991, 27, 119–126. [Google Scholar] [CrossRef]
- Koizumi, S. Serotypes and immobilization antigens in Paramecium caudatum. J. Protozool. 1966, 13, 73–76. [Google Scholar] [CrossRef]
- Hiwatashi, K. Serotype inheritance and serotype alleles in Paramecium caudatum. Genetics 1967, 57, 711–717. [Google Scholar] [CrossRef]
- Sonneborn, T.M. Tetrahymena pyriformis. Paramecium aurelia. In Handbook of Genetics 2; King, R.C., Ed.; Plenum: New York, NY, USA, 1975; pp. 433–594. [Google Scholar]
- Steers, E., Jr.; Barnett, A. Isolation and characterization of an immobilization antigen (C) from Paramecium multimicronucleatum. Comp. Biochem. Physiol. 1982, 71B, 217–222. [Google Scholar] [CrossRef]
- Capdeville, Y.; Benwakrim, A. Temperature-dependent expression of ciliary GPI-proteins in Paramecium. Braz. J. Med. Biol. Res. 1994, 27, 415–420. [Google Scholar]
- Hafkine, M.W. Maladies infectieuses des Paramécies. Ann. Inst. Pasteur 1980, 4, 148–162. [Google Scholar]
- Preer, L.B. Alpha, an infectious macronuclear symbiont of Paramecium aurelia. J. Protozool. 1969, 16, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Ossipov, D.V. Specific infectious specificity of the omega-particle, micronuclear symbiotic bacteria of Paramecium caudatum. Cytologia 1973, 15, 211–217. [Google Scholar]
- Preer, J.R., Jr.; Preer, L.B.; Juland, A. Kappa and other endosymbionts of Paramecium aurelia. Bacteriol. Rev. 1974, 38, 113–163. [Google Scholar] [CrossRef] [PubMed]
- Ossipov, D.V.; Skoblo, I.I.; Rautian, M.S. Iota-particles, macronuclear symbiotic bacteria of ciliate Paramecium caudatum clone. M-115. Acta Protozool. 1975, 14, 263–280. [Google Scholar]
- Podlipaev, S.A.; Ossipov, D.V. Early stages of infection of Paramecium caudatum micronuclei by symbiotic bacteria—Omega-particles (electron microscope examination). Acta Protozool. 1979, 18, 465–480. [Google Scholar]
- Ossipov, D.V.; Skoblo, I.I.; Borschsenius, O.N.; Rautian, M.S. Holospora acuminate—A new species of symbiotic bacterium from the micronucleus of the ciliate Paramecium bursaria Focke. Tsitologiya 1980, 22, 922–929. [Google Scholar]
- Gromov, B.V.; Ossipov, D.V. Holospora (ex Hafkine 1890) nom. rev., a genus of bacteria inhabiting the nuclei of paramecia. Int. J. Syst. Evol. Microbiol. 1981, 31, 348–352. [Google Scholar] [CrossRef]
- Fujishima, M.; Görtz, H.-D. Infection of macronuclear anlagen of Paramecium caudatum with the macronucleus-specific symbiont Holospora obtusa. J. Cell Sci. 1983, 64, 137–146. [Google Scholar] [CrossRef]
- Fokin, S.I. Bacterial endobionts of the ciliate Paramecium woodruffi. I. Endobionts from the macronuicleus. Cytologia 1989, 31, 839–844. [Google Scholar]
- Fokin, S.I. Holospora recta sp. nov.—A micronucleus specific endobiont of the ciliate Paramecium caudatum. Cytologia 1991, 33, 135–141. [Google Scholar]
- Amann, R.; Springer, N.; Ludwig, W.; Görtz, H.-D.; Schleifer, K.-H. Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 1991, 351, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Fokin, S.I.; Sabaneyeva, E. Bacterial endocytobionts of the ciliate Paramecium calkinsi. Eur. J. Protistol. 1993, 29, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Fokin, S.I.; Görtz, H.-D. Caedibacter macronucleorum sp. nov., a bacterium inhabiting the macronucleus of Paramecium duboscqui. Arch. Protistenkd. 1993, 143, 319–324. [Google Scholar] [CrossRef]
- Fokin, S.I. Bacterial endocytobionts of ciliophora and their interactions with the host cell. Int. Rev. Cytol. 2004, 236, 181–249. [Google Scholar] [CrossRef]
- Lang, B.F.; Brinkmann, H.; Koski, L.B.; Fujishima, M.; Görtz, H.-D.; Burger, G. On the origin of mitochondria and Rickettsia-related eukaryotic endosymbionts. Jpn. J. Protozool. 2005, 38, 171–183. [Google Scholar]
- Fujishima, M. Infection and maintenance of Holospora species in Paramecium caudatum. In Endosymbionts in Paramecium Microbiology Monographs; Fujishima, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 201–225. [Google Scholar] [CrossRef]
- Görtz, H.-D.; Fokin, S.I. Diversity of endosymbiotic bacteria in Paramecium. In Endosymbionts in Paramecium. Microbiology Monographs; Fujishima, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 12, pp. 132–160. [Google Scholar] [CrossRef]
- Fokin, S.I.; Görtz, H.-D. Diversity of Holospora bacteria in Paramecium and their characterization. In Endosymbionts in Paramecium. Microbiology Monographs; Fujishima, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 12, pp. 161–199. [Google Scholar] [CrossRef]
- Fokin, S.I. Frequency and biodiversity of symbionts in representatives of the main classes of Ciliophora. Eur. J. Protistol. 2012, 48, 138–148. [Google Scholar] [CrossRef]
- Fujishima, M.; Kodama, Y. Endosymbionts in Paramecium. Eur. J. Protistol. 2012, 48, 124–137. [Google Scholar] [CrossRef]
- Fujishima, M.; Kodama, Y. Insights into the Paramecium-Holospora and Paramecium-Chlorella symbioses. In Cilia/Flagella—Ciliates/Flagellates; Hausmann, K., Radek, R., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2014; pp. 203–227. [Google Scholar]
- Kodama, Y.; Fujishima, M. Paramecium as a model organism for studies on primary and secondary endosymbioses. In Biocommunication of Ciliates; Witzany, G., Nowacki, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 227–304. ISBN 978-3-319-32209-4. [Google Scholar]
- Serra, V.; Fokin, S.I.; Castelli, M.; Basuri, C.K.; Nitla, V.; Verni, F.; Sandeep, B.V.; Kalavati, C.; Petroni, G. “Candidatus Gortzia shahrazadis”, a novel endosymbiont of Paramecium multimicronucleatum and a revision of the biogeographical distribution of Holospora-like bacteria. Front. Microbiol. 2016, 7, 1704. [Google Scholar] [CrossRef]
- Lanzoni, O.; Fokin, S.I.; Lebedeva, N.; Migunova, A.; Petroni, G.; Potekhin, A. Rare freshwater ciliate Paramecium chlorelligerum Kahl, 1935 and its macronuclear symbiotic bacterium “Candidatus Holospora parva”. PLoS ONE 2016, 11, e0167928. [Google Scholar] [CrossRef]
- Beliavskaia, A.Y.; Predeus, F.V.; Garushyants, S.K.; Logacheva, M.D.; Gong, J.; Zou, S.; Gelfand, M.S.; Rautian, M.S. New intranuclear symbiotic bacteria from macronucleus of Paramecium putrinum—Candidatus Gortzia yakutica. Diversity 2020, 12, 198. [Google Scholar] [CrossRef]
- Fujishima, M.; Kodama, Y. Mechanisms for establishing primary and secondary endosymbiosis in Paramecium. J. Eukaryot. Microbiol. 2022, 69, e12901. [Google Scholar] [CrossRef] [PubMed]
- Fokin, S.I.; Serra, V. Bacterial symbiosis in ciliates (Alveolata, Ciliophora): Roads traveled and those still to be taken. J. Eukaryot. Microbiol. 2022, 69, e12886. [Google Scholar] [CrossRef] [PubMed]
- Fokin, S.I.; Serra, V.; Ferrantini, F.; Modeo, L.; Petroni, G. “Candidatus Hafkinia simulans” gen. nov., sp. nov., a novel Holospora-like bacterium from the macronucleus of the rare brackish water ciliate Frontonia salmastra (Oligohymenophorea, Ciliophora): Multidisciplinary characterization of the new endosymbiont and its host. Microb. Ecol. 2019, 77, 1092–1106. [Google Scholar] [CrossRef]
- Boscaro, V.; Fokin, S.I.; Schrallhammer, M.; Schweikert, M.; Petroni, G. Revised systematic of Holospora-like bacteria and characterization of “Candidatus Gortzia infectiva”, a novel macronuclear symbiont of Paramecium jenningsi. Microb. Ecol. 2013, 65, 255–267. [Google Scholar] [CrossRef]
- Rautian, M.S.; Wackerow-Kouzova, N.D. Phylogenetic placement of two previously described intranuclear bacteria from the ciliate Paramecium bursaria (Protozoa, Ciliophora): Holospora acuminata and Holospora curviuscula. Int. J. Syst. Evol. Microbiol. 2013, 63, 1930–1933. [Google Scholar] [CrossRef]
- Potekhin, A.; Nekrasova, I.; Flemming, F.E. In shadow of Holospora—The continuous quest for new Holosporaceae members. Protistology 2021, 5, 127–141. [Google Scholar] [CrossRef]
- Fokin, S.I.; Lebedeva, N.A.; Potekhin, A.; Gammutoa, L.; Petroni, G.; Serra, V. Holospora-like bacteria “Candidatus Gortzia yakutica” and Preeria caryophila: Ultrastructure, promiscuity, and biogeography of the symbionts. Eur. J. Protistol. 2023, 90, 125998. [Google Scholar] [CrossRef]
- Dohra, H.; Suzuki, H.; Suzuki, T.; Tanaka, K.; Fujishima, M. Draft genome sequence of Holospora undulata strain hu1, a micronucleus-specific symbiont of the ciliate Paramecium caudatum. Genome Announc. 2013, 1, e664-13. [Google Scholar] [CrossRef]
- Dohra, H.; Tanaka, K.; Suzuki, T.; Fujishima, M.; Suzuki, H. Draft genome sequences of three Holospora species (Holospora obtusa, Holospora undulata, and Holospora elegans), endonuclear symbiotic bacteria of the ciliate Paramecium caudatum. FEMS Microbiol. Lett. 2014, 359, 16–18. [Google Scholar] [CrossRef]
- Garushyants, S.K.; Beliavskaja, A.Y.; Malko, D.B.; Logacheve, M.D.; Rautian, M.S.; Gelfand, M.S. Comparative genomic analysis of Holospora spp., intranuclear symbionts of Paramecia. Front. Microbiol. 2018, 9, 738. [Google Scholar] [CrossRef]
- Fujishima, M.; Fujita, M. Infection and maintenance of Holospora obtusa, a macronucleus-specific bacterium of the ciliate Paramecium caudatum. J. Cell Sci. 1985, 76, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, M. Further study of the infectivity of Holospora obtusa, a macronucleus specific bacterium of the ciliate Paramecium caudatum. Acta Protozool. 1986, 25, 345–350. [Google Scholar]
- Skovorodkin, I.N.; Fokin, S.I.; Fujishima, M. Fates of the endonuclear symbiotic bacteria Holospora obtusa and Holospora undulata injected into the macronucleus of Paramecium caudatum. Eur. J. Protistol. 2001, 237, 137–145. [Google Scholar] [CrossRef]
- Fokin, S.I.; Schweikert, S.; Fujishima, M. Recovery of the ciliate Paramecium multimicronucleatum following bacterial infection with Holospora obtusa. Eur. J. Protistol. 2005, 41, 129–138. [Google Scholar] [CrossRef]
- Görtz, H.D.; Wiemann, M. Route of infection of bacteria Holospora elegans and Holospora obtusa into the nuclei of Paramecium caudatum. Eur. J. Protistol. 1989, 24, 101–109. [Google Scholar] [CrossRef]
- Fujishima, M.; Sawabe, H.; Iwatsuki, K. Scanning electron microscopic observations of differentiation from the reproductive short form to the infectious long form of Holospora obtusa. J. Protozool. 1990, 37, 123–128. [Google Scholar] [CrossRef]
- Dohra, H.; Fujishima, M. Effects of antibiotics on early infection process of a macronuclear endosymbiotic bacterium Holospora obtusa of Paramecium caudatum. FEMS Microbiol. Lett. 1999, 179, 473–477. [Google Scholar] [CrossRef]
- Fujishima, M.; Hoshide, K. Light and electron microscopic observations of Holospora obtusa: A macronucleus-specific bacterium of the ciliate Paramecium caudatum. Zool. Sci. 1988, 5, 791–799. [Google Scholar]
- Dohra, H.; Fujishima, M. Cell structure of the infectious form of Holospora, an endonuclear symbiotic bacterium of the ciliate Paramecium. Zool. Sci. 1999, 16, 93–98. [Google Scholar] [CrossRef]
- Fujishima, M.; Kawai, M.; Yamamoto, R. Paramecium caudatum acquires heat-shock resistance in ciliary movement by infection with the endonuclear symbiotic bacterium Holospora obtusa. FEMS Microbiol. Lett. 2005, 243, 101–105. [Google Scholar] [CrossRef]
- Smurov, A.O.; Fokin, S.I. Resistance of Paramecium caudatum infected with endonuclear bacteria Holospora against salinity impact. Proc. Zool. Inst. RAS 1988, 276, 175–178. [Google Scholar]
- Duncan, A.B.; Fellous, S.; Accot, R.; Alart, M.; Chantung Sobandi, K.; Cosiaux, A.; Kaltz, O. Parasite-mediated protection against osmotic stress for Paramecium caudatum infected by Holospora undulata is host genotype specific. FEMS Microbiol. Ecol. 2010, 74, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, M.; Nakata, K.; Kodama, Y. Paramecium acquires resistance for high concentrations of various metal chlorides by infection of endonuclear symbiotic bacterium Holospora. Zool. Sci. 2006, 23, 1161. [Google Scholar]
- Arbibe, L.; Kim, D.W.; Batsche, E.; Pedron, T.; Mateescu, B.; Muchardt, C.; Parsot, C.; Sansonetti, P.J. An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nat. Immunol. 2007, 8, 47–56. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.J.; Choi, K.S.; Grab, D.J.; Dumler, J.S. Anaplasma phagocytophilum AnkA binds to granulocyte DNA and nuclear proteins. Cell. Microbiol. 2004, 6, 743–751. [Google Scholar] [CrossRef]
- Garcia-Garcia, J.C.; Rennoll-Banket, K.E.; Pelly, S.; Milstone, A.M.; Dumler, J.S. Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen Anaplasma phagocytophilum. Infect. Immun. 2009, 77, 2385–2391. [Google Scholar] [CrossRef]
- Abamo, F.; Dohra, H.; Fujishima, M. Fate of the 63-kDa periplasmic protein of the infectious form of the endonuclear symbiotic bacterium Holospora obtusa during the infection process. FEMS Microbiol. Lett. 2008, 280, 21–27. [Google Scholar] [CrossRef]
- Fujishima, M.; Kawano, H.; Miyakawa, I. A 63-kDa periplasmic protein of the endonuclear symbiotic bacterium Holospora obtusa secreted to the outside of the bacterium during the early infection process binds weakly to the macronuclear DNA of the host Paramecium caudatum. Microorganisms 2023, 11, 155. [Google Scholar] [CrossRef]
- Kasahara, K.; Watanabe, Y.; Yamamoto, T.; Sanai, Y. Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain. J. Biol. Chem. 1997, 272, 29947–29953. [Google Scholar] [CrossRef]
- Rautian, M.S.; Skoblo, I.I.; Lebedeva, N.A.; Ossipov, D.M. Genetics of symbiotic interactions between Paramecium bursaria and the intranuclear bacterium Holospora acuminata, natural genetic variability by infectivity and susceptibility. Acta Protozool. 1993, 32, 165–173. [Google Scholar]
Paramecium Species | Strains | Cross-Reactivity | |
---|---|---|---|
Log Phase | Stationary Phase | ||
P. primaurelia | HV15-1 | − | − |
P. biaurelia | 537 | − | − |
P. triaurelia | 136 | − | − |
P. tetraurelia | Stock 51 | − | − |
P. pentaurelia | 87 | − | − |
P. sexaurelia | GSZ-3 | − | − |
P. septaurelia | 325 | − | − |
P. octaurelia | 137 | − | − |
P. novaurelia | 91YB1-3 | − | − |
P. decaurelia | 223 | − | − |
P. undecaurelia | 219 | − | − |
P. dodecaurelia | 246 | − | − |
P. tredecaurelia | 321 | − | − |
P. quqdecaurelia | 328 | − | − |
P. polycarium | YnA(+) | − | − |
P. jenningsi | 30997 | − | − |
P. dubosqui | 702 | − | − |
P. trichium | OM4 | − | − |
P. calkinsi | GN5-3 | − | − |
P. multimicronucleatum | TH103 | − | − |
P. caudatum | RB-1 | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujishima, M. Infection with the Endonuclear Symbiotic Bacterium Holospora obtusa Reversibly Alters Surface Antigen Expression of the Host Paramecium caudatum. Microorganisms 2025, 13, 991. https://doi.org/10.3390/microorganisms13050991
Fujishima M. Infection with the Endonuclear Symbiotic Bacterium Holospora obtusa Reversibly Alters Surface Antigen Expression of the Host Paramecium caudatum. Microorganisms. 2025; 13(5):991. https://doi.org/10.3390/microorganisms13050991
Chicago/Turabian StyleFujishima, Masahiro. 2025. "Infection with the Endonuclear Symbiotic Bacterium Holospora obtusa Reversibly Alters Surface Antigen Expression of the Host Paramecium caudatum" Microorganisms 13, no. 5: 991. https://doi.org/10.3390/microorganisms13050991
APA StyleFujishima, M. (2025). Infection with the Endonuclear Symbiotic Bacterium Holospora obtusa Reversibly Alters Surface Antigen Expression of the Host Paramecium caudatum. Microorganisms, 13(5), 991. https://doi.org/10.3390/microorganisms13050991