Systematic Investigation of Phosphate Decomposition and Soil Fertility Modulation by the Filamentous Fungus Talaromyces nanjingensis
Abstract
1. Introduction
2. Materials and Methods
2.1. Source of Strain
2.2. Qualitative Determination of Phosphate-Solubilizing Capability in T. nanjingensis
2.3. Quantitative Determination of Inorganic and Organic Phosphate-Solubilizing Capabilities in T. nanjingensis Under Different Temperatures
2.4. Determination of Titratable Acid Production and Acid Composition in Fermentation Broth of T. nanjingensis
2.5. Detection of Phosphate-Solubilizing Enzyme Activity in Fermentation Broth of T. nanjingensis
2.6. Determination of Main Chemical and Physical Properties of Different Soils After Addition of T. nanjingensis
2.7. Gene Extraction for Phosphate Decomposition and Environmental Adaptability in the Genome of T. nanjingensis
2.8. Statistical Analyses
3. Results
3.1. Qualitative Results Regarding Decomposition of Insoluble Phosphates by T. nanjingensis
3.2. Characteristics of Inorganic and Organic Phosphate Solubilization in T. nanjingensis Under Different Temperatures
3.3. Titratable Acid, Acid Composition, and Phosphate-Solubilizing Enzyme Activity in Fermentation Broth of T. nanjingensis
3.4. Basic Properties of Soils with Three pH Values
3.5. Effects of T. nanjingensis on Three Types of Soil with Different pH Values
3.6. Genes Associated with Phosphate Decomposition and Environmental Adaptability Found in T. nanjingensis
4. Discussion
4.1. Multiple Detection Media Necessary for Rapid, Comprehensive Screening of Phosphate-Solubilizing Microbes
4.2. Insufficient Lecithin Results in Low Detection of Organic Phosphate Decomposition by Microbes
4.3. Determination of Amount of Insoluble Organic Phosphate Added to Improved Monkina Medium
4.4. Phosphate Decomposition Strategy of T. nanjingensis
4.5. PSF Can Regulate Physical and Chemical Properties of Soil
4.6. Multifaceted Evidence of Phosphate Decomposition and Environmental Adaptability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Z.; Dao, T.H.; Honeycutt, C.W. Insoluble Fe-Associated Inorganic and Organic Phosphates in Animal Manure and Soil. Soil Sci. 2006, 171, 117–126. [Google Scholar] [CrossRef]
- Malunda, J.J. Dissolution of Synthetic Strengite (FePO4·2H2O) and Synthetic Variscite (AlPO4·2H2O) as Functions of pH and Citrate Level. Ph.D. Thesis, University of California, Davis, CA, USA, 2000. [Google Scholar]
- Williams, R.F.; Bromfield, S.M.; Williams, C.H. Studies in soil fertility with special references to organic manures. IV. Effects of glucose on phosphate availability. Aust. J. Agric. Res. 1958, 9, 640–663. [Google Scholar] [CrossRef]
- Caldwell, A.G.; Black, C.A. Inositol Hexaphosphate: II. Synthesis by Soil Microorganisms. Soil Sci. Soc. Am. J. 1958, 22, 293. [Google Scholar] [CrossRef]
- Mclaren, T.I.; Smernik, R.J.; Mclaughlin, M.J.; Mcbeath, T.M.; Kirby, J.K.; Simpson, R.J.; Guppy, C.N.; Doolette, A.L.; Richardson, A.E. Complex forms of soil organic phosphorus—A major component of soil phosphorus. Environ. Sci. Technol. 2015, 49, 13238–13245. [Google Scholar] [CrossRef]
- Jinhee, P.; Bolan, N.; Mallavarapu, M.; Naidu, R.; Gilkes, R.J.; Prakongkep, N. Enhancing the solubility of insoluble phosphorus compounds by phosphate solubilizing bacteria. In Proceedings of the World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Seshagiri, S.; Tallapragada, P. Study of Acid Phosphatase in Solubilization of Inorganic Phosphates by Piriformospora indica. Pol. J. Microbiol. 2017, 65, 407–412. [Google Scholar] [CrossRef]
- Sattar, A.; Naveed, M.; Ali, M.; Zahir, Z.A.; Meena, H.N. Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Appl. Soil Ecol. 2018, 133, 146–159. [Google Scholar] [CrossRef]
- Mehta, P.; Sharma, R.; Putatunda, C.; Walia, A. Endophytic fungi: Role in phosphate solubilization. In Advances in Endophytic Fungal Research; Singh, B., Ed.; Fungal Biology; Springer: Cham, Switzerland, 2019; pp. 183–209. [Google Scholar]
- Agnihotri, V.P. Solubilization of insoluble phosphates by soil fungi isolated from nursery seedbeds. Can. J. Microbiol. 1970, 16, 877–880. [Google Scholar] [CrossRef]
- Zheng, B.X.; Ibrahim, M.; Zhang, D.P.; Bi, Q.F.; Li, H.Z.; Zhou, G.W.; Ding, K.; Peñuelas, J.; Zhu, Y.G.; Yang, X.R. Identification and characterization of inorganic-phosphate-solubilizing bacteria from agricultural fields with a rapid isolation method. AMB Express 2018, 8, 47. [Google Scholar] [CrossRef]
- Hii, Y.S.; San, C.Y.; Lau, S.W.; Danquah, M.K. Isolation and characterisation of phosphate solubilizing microorganisms from peat. Biocatal. Agric. Biotechnol. 2020, 26, 101643. [Google Scholar] [CrossRef]
- Adhikari, P.; Pandey, A. Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots. Rhizosphere 2019, 9, 2–9. [Google Scholar] [CrossRef]
- Omar, S.A. The role of rock-phosphate-solubilizing fungi and vesicular–arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microbiol. Biotechnol. 1997, 14, 211–218. [Google Scholar] [CrossRef]
- Di-Simine, C.; Sayer, J.; Gadd, G. Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol. Fertil. Soils 1998, 28, 87–94. [Google Scholar] [CrossRef]
- Bar-Yosef, B.; Rogers, R.; Wolfram, J.; Richman, E. Pseudomonas cepacia-mediated rock phosphate solubilization in kaolinire and montmorillonite. Soil Sci. Soc. Am. J. 1999, 63, 1703–1708. [Google Scholar] [CrossRef]
- Kim, K.Y.; Mcdonald, G.A.; Jordan, D. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol. Fertil. Soils 1997, 24, 347–352. [Google Scholar] [CrossRef]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of phosphatase enzymes in soil. In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling; Bunemann, E., Oberson, A., Frossard, E., Eds.; Soilbiology; Springer: Heidelberg, Germany, 2011; pp. 215–243. [Google Scholar]
- Rodríguez, H.; Fraga, R.; Gonzalez, T.; Bashan, Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 2006, 287, 15–21. [Google Scholar] [CrossRef]
- Amri, M.; Rjeibi, M.R.; Gatrouni, M.; Mateus, D.M.R.; Asses, N.; Pinho, H.J.O.; Abbes, C. Isolation, Identification, and Characterization of Phosphate-Solubilizing Bacteria from Tunisian Soils. Microorganisms 2023, 11, 783. [Google Scholar] [CrossRef]
- Islas-Valdez, S.; Afkairin, A.; Rovner, B.; Vivanco, J.M. Isolation of Diverse Phosphate- and Zinc-Solubilizing Microorganisms from Different Environments. Appl. Microbiol. 2024, 4, 1042–1056. [Google Scholar] [CrossRef]
- Wang, X.-L.; Qiu, S.-Y.; Zhou, S.-Q.; Xu, Z.-H.; Liu, X.-T. Phosphate-Solubilizing Capacity of Paecilomyces lilacinus PSF7 and Optimization Using Response Surface Methodology. Microorganisms 2023, 11, 454. [Google Scholar] [CrossRef]
- Suleimanova, A.; Bulmakova, D.; Sokolnikova, L.; Egorova, E.; Itkina, D.; Kuzminova, O.; Gizatullina, A.; Sharipova, M. Phosphate Solubilization and Plant Growth Promotion by Pantoea brenneri Soil Isolates. Microorganisms 2023, 11, 1136. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, L.; Liang, H.; Liu, M.; Chen, Y.; Chen, D.; Shen, P. Impacts of Soil Compaction and Phosphorus Levels on the Dynamics of Phosphate-Solubilizing and Nitrogen-Fixing Bacteria in the Peanut Rhizosphere. Agronomy 2024, 14, 1971. [Google Scholar] [CrossRef]
- Qiao, H.; Wu, X.; Wang, Z. Phosphate-solubilizing characteristic of a Penicillium pinophilum strain JP-NJ4. Microbiol. China 2014, 9, 1741–1748, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wei, W.; Wu, X.-Q.; Qiao, H. Screening and Identification of Phosphate-Solubilizing Fungi of Pinus massoniana Rhizosphere and Its Application. Sci. Silvae Sin. 2014, 50, 82–88, (In Chinese with English abstract). [Google Scholar]
- Sun, X.-R.; Xu, M.-Y.; Kong, W.-L.; Wu, F.; Zhang, Y.; Xie, X.-L.; Li, D.-W.; Wu, X.-Q. Fine Identification and Classification of a Novel Beneficial Talaromyces Fungal Species from Masson Pine Rhizosphere Soil. J. Fungi 2022, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef]
- Feng, G.; Song, Y.C.; Li, X.L.; Christie, P. Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Appl. Soil Ecol. 2003, 22, 139–148. [Google Scholar] [CrossRef]
- Zeng, Q.; Wu, X.; Wen, X. Identification and characterization of the rhizosphere phosphate-solubilizing bacterium Pseudomonas frederiksbergensis JW-SD2 and its plant growth-promoting effects on poplar seedlings. Ann. Microbiol. 2017, 67, 219–230. [Google Scholar] [CrossRef]
- Zeng, Q.; Wu, X.; Wang, J.; Ding, X. Phosphate Solubilization and Gene Expression of Phosphate-Solubilizing Bacterium Burkholderia multivorans WS-FJ9 under Different Levels of Soluble Phosphate. J. Microbiol. Biotechnol. 2017, 27, 844–855. [Google Scholar] [CrossRef]
- Qiao, H.; Sun, X.; Wu, X.; Li, G.; Li, D. The phosphate-solubilising ability of Penicilium guanacastense and its effects on the growth of Pinus massoniana in phosphate limiting conditions. Biol. Open 2019, 8, bio.046797. [Google Scholar] [CrossRef]
- Hofmann, K.; Heuck, C.; Spohn, M. Phosphorus resorption by young beech trees and soil phosphatase activity as dependent on phosphorus availability. Oecologia 2016, 181, 369–379. [Google Scholar] [CrossRef]
- Mouradi, M.; Farissi, M.; Makoudi, B.; Bouizgaren, A.; Ghoulam, C. Effect of faba bean (Vicia faba L.)–rhizobia symbiosis on barley’s growth, phosphorus uptake and acid phosphatase activity in the intercropping system. Ann. Agrar. Sci. 2018, 16, 297–303. [Google Scholar] [CrossRef]
- Liu, Q.; Li, W.; Nie, H.; Sun, X.; Dong, L.; Xiang, L.; Zhang, J.; Liu, X. The Effect of Human Trampling Activity on a Soil Microbial Community at the Urban Forest Park. Forests 2023, 14, 692. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Kong, W.; Liu, W.; Wu, X. Identification, cloning and expression patterns of the genes related to phosphate solubilization in Burkholderia multivorans WS-FJ9 under different soluble phosphate levels. AMB Express 2020, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Crowley, D.E.; Rengel, Z. Biology and chemistry of nutrient availability in the rhizosphere. In Mineral Nutrition of Crops: Fundamental Mechanisms and Implications; Rengel, Z., Ed.; Food Products Press: New York, NY, USA, 1999; pp. 1–40. [Google Scholar]
- Rengel, Z.; Marschner, P. Nutrient availability and management in the rhizosphere: Exploiting genotypic differences. New Phytol. 2005, 168, 305–312. [Google Scholar] [CrossRef]
- Keith, W. Environmental degradation and rehabilitation of the landscape around Sudbury, a major mining and smelting area. Doss. Environ. 1996, 4, 185–224. [Google Scholar] [CrossRef]
- Grossfeld, J.; Walter, G. Estimation of lecithin phosphate in foods containing water. Z. Fur Unters. Lebensm. 1934, 5244, 123–134. [Google Scholar] [CrossRef]
- Shang, C.; Zelazny, L.W.; Berry, D.F.; Maguire, R.O. Orthophosphate and Phytate Extraction Differences by Common Tests Used for Soil Phosphorus Evaluation from Soil Mineral Components. Geoderma 2013, 209–210, 22–30. [Google Scholar] [CrossRef]
- Finer, E.G.; Flook, A.G.; Hauser, H. Mechanism of sonication of aqueous egg yolk lecithin dispersions and nature of the resultant particles. Biochim. Biophys. Acta 1972, 260, 49–58. [Google Scholar] [CrossRef]
- Group, C.B. Soya Lecithin. Chem. Bus. 2010, 24, 18–20. [Google Scholar]
- Vyas, P.; Gulati, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 2009, 9, 174. [Google Scholar] [CrossRef]
- Nagy, N.; Kvaalen, H.; Fongen, M.; Fossdal, C.; Clarke, N.; Solheim, H.; Hietala, A. The Pathogenic White-Rot Fungus Heterobasidion parviporum Responds to Spruce Xylem Defense by Enhanced Production of Oxalic Acid. Mol. Plant Microbe Interact. 2012, 25, 1450–1458. [Google Scholar] [CrossRef]
- Wei, Z.; Xi, B.; Wang, S.; Zhao, Y.; Yang, Y.; He, L.; Liu, H. Effects of municipal solid waste composting on solubilization of insoluble phosphate and soil phosphorus sorption characteristics. Trans. Chin. Soc. Agric. Eng. 2006, 22, 142–146. [Google Scholar]
- Zhang, H.; Yang, L.; Ding, W.; Ma, Y. Theoretical Studies on the Catalytic Cycle of Histidine Acid Phosphatases Revealing an Acid Proof Mechanism. J. Phys. Chem. B 2018, 122, 7530–7538. [Google Scholar] [CrossRef] [PubMed]
- Maine, M.; Benkovic, S. On the mechanism of alkaline and neutral fructose 1, 6-diphosphatase: Inhibition by substrate analogs at neutral pH. Arch. Biochem. Biophys. 1972, 152, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Mattoo, R.L. Alkaline Phosphatase of some Angiosperm Parasites. Biochem. Physiol. Pflanz. 1973, 164, 639–642. [Google Scholar] [CrossRef]
- He, S.-B.; Balasubramanian, P.; Hu, A.-L.; Zhen, X.-Q.; Lin, M.-T.; Xiao, M.-X.; Peng, H.-P.; Deng, H.-H.; Chen, W. One-pot cascade catalysis at neutral pH driven by CuO tandem nanozyme for ascorbic acid and alkaline phosphatase detection. Sens. Actuators B Chem. 2020, 321, 128511. [Google Scholar] [CrossRef]
- Song, G.; An, N.; Liu, J.; Zong, N.; He, Y.; Shi, P.; Zhang, J.; He, N. Warming impacts on carbon, nitrogen and phosphorus distribution in soil water-stable aggregates. Plant Soil Environ. 2018, 64, 64–69. [Google Scholar] [CrossRef]
- O’Callaghan, T. Salt-loving microbe forges its own path. Nature 2011. [Google Scholar] [CrossRef]
- Jiang, C.; Sui, Q.; Chen, M.; Chai, Y.; Wei, Y. Quick start of high saline wastewater biological treatment technology strengthened by composite salt-tolerant microbe. Chin. J. Environ. Eng. 2017, 11, 3929–3935. [Google Scholar] [CrossRef]
- Zhang, H.S.; Zai, X.M.; Wu, X.H.; Qin, P.; Zhang, W.M. An ecological technology of coastal saline soil amelioration. Ecol. Eng. 2014, 67, 80–88. [Google Scholar] [CrossRef]
- Bacon, C. Production of fusaric acid by Fusarium species. Appl. Environ. Microbiol. 1996, 62, 4039–4043. [Google Scholar] [CrossRef]
- Zhu, H.; Yao, Q.; Yang, S.; Li, Z.; Guo, J. Streptomyces lacticiproducens sp. nov., a lactic acid-producing streptomycete isolated from the rhizosphere of tomato plants. Int. J. Syst. Evol. Microbiol. 2011, 61, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.-Q.; Cao, G.-X.; Huang, W.-Y.; Luan, X.-S.; Yang, Y.-F. Dissolving mechanism of strain P17 on insoluble phosphorus of yellow-brown soil. Braz. J. Microbiol. 2014, 45, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Ormeno-Orrillo, E.; Menna, P.; Almeida, L.; Ollero, F.J.; Nicolás, M.F.; Rodrigues, E.P.; Nakatani, A.S.; Silva Batista, J.S.; Chueire, L.O.; Souza, R.C.; et al. Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genom. 2012, 13, 735. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S. Molecular tools in the study of soil microbial diversity: With an emphasis on phosphate solubilizing microorganisms. In Microbes in Soil and Their Agricultural Prospects; Choudhary, K.K., Dhar, D.W., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2015. [Google Scholar]
Medium Name | Insoluble Phosphates/Molecular Weight | CAS No. | Phosphate Content (g/L) | Proportion of Phosphorus in Phosphate | Phosphorus Content (g/L) |
---|---|---|---|---|---|
Original NBRIP | Ca3(PO4)2, 310.177 | 7758-87-4 | 5.00 | 61.948/310.177 = 1/5.007 | 0.999 ≈ 1.0 |
AlPO4, 121.953 | 7784-30-7 | 3.94 | 30.974/121.953 = 1/3.937 | 1.0 | |
FePO4·4H2O, 222.877 | 14940-41-1 | 7.20 | 30.974/222.877 = 1/7.196 | 1.0 | |
FePO4, 150.816 | 10045-86-0 | 4.87 | 30.974/150.816 = 1/4.869 | 1.0 | |
Original Monkina | Lecithin C42H80NO8P, 758.060 | 97281-47-5 | 0.60 | 30.974/758.060 = 1/24.474 | 0.025 |
Improved MK No. 1 | Lecithin C42H80NO8P, 758.060 | 97281-47-5 | 5.00 | 30.974/758.060 = 1/24.474 | 0.204 |
Improved MK No. 2 | Lecithin C42H80NO8P, 758.060 | 97281-47-5 | 0.20 | 30.974/758.060 = 1/24.474 | 0.008 |
Improved MK No. 3 | Calcium phytate C6H6Ca6O24P6, 888.408 | 7776-28-5 | 5.00 | 185.844/888.408 = 1/4.780 | 1.046 |
Soil Sampling Point | 1 Manor Fields, Xuzhou, Jiangsu Province | 2 Grasslands, Nanjing, Jiangsu Province | 3 Arboretum, Nanjing, Jiangsu Province | |
---|---|---|---|---|
Latitude and Longitude of Sampling Point | 34°43′22″ N, 116°56′49″ E | 32°4′43″ N, 118°48′37″ E | 32°4′50″ N, 118°49′13″ E | |
Chemical and physical properties | AN (mg/kg) | 37.607 | 251.952 | 71.620 |
TP (g/kg) | 0.813 ± 0.009 b | 0.880 ± 0.005 a | 0.346 ± 0.014 c | |
AP (mg/kg) | 29.041 ± 2.607 a | 27.613 ± 3.833 a | 12.769 ± 0.503 b | |
AK (mg/kg) | 245.422 ± 7.213 b | 459.365 ± 11.804 a | 90.583 ± 5.437 c | |
HM (g/kg) | 7.888 | 12.102 | 11.594 | |
pH | 8.50 ± 0.041 a | 7.38 ± 0.045 b | 6.56 ± 0.085 c | |
EC (μs/cm) | 914.80 ± 4.224 a | 188.53 ± 2.076 b | 23.84 ± 0.735 c |
Type of Gene | Number of Genes (or Items) | ||
---|---|---|---|
Phosphate decomposition | Phosphate solubilizing | organic acid | 9 |
acid phosphatase | 29 | ||
alkaline phosphatase | 28 | ||
phytase | 7 | ||
phosphonatase | 3 | ||
C-P lyase | 35 | ||
Phosphate- related | phospholipase | 90 | |
dolichyldiphosphatase | 1 | ||
pyrophosphatase | 18 | ||
diphosphatase | 15 | ||
phosphoesterase | 36 | ||
phosphodiesterase | 37 | ||
Temperature-related | Low temperature | 8 | |
Cold | 1 | ||
High temperature | 1 | ||
Temperature-dependent | 1 | ||
Salt-related | Salt responsiveness or salt tolerance | 4 | |
Stress resistance-related | 1 Antibiotic resistance | 541 items | |
2 Antifungal agent resistance | |||
3 Drug resistance | |||
4 Pesticide resistance | |||
5 UV radiation resistance | |||
6 Disease resistance | |||
7 Metal resistance | |||
8 Acid resistance | |||
9 Natural resistance | |||
10 Other chemical resistance | |||
Genes that interact with plants and microbes | Siderophores | Siderophore | 20 |
Pyoverdine | 5 | ||
Catechol- type | 3 | ||
Hydroxamate-type | 1 | ||
Hormones | Auxin | 2 | |
Gibberellin | 2 | ||
Indole-3-acetic acid | 4 | ||
1-Aminocyclopropane-1-carboxylate deaminase (ACC deaminase) | 6 | ||
Other | Salicylic acid/salicylate | 71 items | |
Polyamine | 144 items |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.-R.; Li, P.-S.; Qiao, H.; Kong, W.-L.; Wang, Y.-H.; Wu, X.-Q. Systematic Investigation of Phosphate Decomposition and Soil Fertility Modulation by the Filamentous Fungus Talaromyces nanjingensis. Microorganisms 2025, 13, 1574. https://doi.org/10.3390/microorganisms13071574
Sun X-R, Li P-S, Qiao H, Kong W-L, Wang Y-H, Wu X-Q. Systematic Investigation of Phosphate Decomposition and Soil Fertility Modulation by the Filamentous Fungus Talaromyces nanjingensis. Microorganisms. 2025; 13(7):1574. https://doi.org/10.3390/microorganisms13071574
Chicago/Turabian StyleSun, Xiao-Rui, Pu-Sheng Li, Huan Qiao, Wei-Liang Kong, Ya-Hui Wang, and Xiao-Qin Wu. 2025. "Systematic Investigation of Phosphate Decomposition and Soil Fertility Modulation by the Filamentous Fungus Talaromyces nanjingensis" Microorganisms 13, no. 7: 1574. https://doi.org/10.3390/microorganisms13071574
APA StyleSun, X.-R., Li, P.-S., Qiao, H., Kong, W.-L., Wang, Y.-H., & Wu, X.-Q. (2025). Systematic Investigation of Phosphate Decomposition and Soil Fertility Modulation by the Filamentous Fungus Talaromyces nanjingensis. Microorganisms, 13(7), 1574. https://doi.org/10.3390/microorganisms13071574