Key Bacterial Taxa Differences Associated with Polypharmacy in Elderly Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection, DNA Extraction, and Sequencing
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CPLM | Compound Poisson Linear Models |
References
- Hovstadius, B.; Petersson, G. Factors leading to excessive polypharmacy. Clin. Geriatr. Med. 2012, 28, 159–172. [Google Scholar] [CrossRef]
- Delara, M.; Murray, L.; Jafari, B.; Bahji, A.; Goodarzi, Z.; Kirkham, J.; Chowdhury, M.; Seitz, D.P. Prevalence and factors associated with polypharmacy: A systematic review and Meta-analysis. BMC Geriatr. 2022, 22, 601. [Google Scholar]
- Nobili, A.; Marengoni, A.; Tettamanti, M.; Salerno, F.; Pasina, L.; Franchi, C.; Iorio, A.; Marcucci, M.; Corrao, S.; Licata, G.; et al. Association between clusters of diseases and polypharmacy in hospitalized elderly patients: Results from the REPOSI study. Eur. J. Intern. Med. 2011, 22, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Vich Vila, A.; Collij, V.; Sanna, S.; Sinha, T.; Imhann, F.; Bourgonje, A.R.; Mujagic, Z.; Jonkers, D.; Masclee, A.A.M.; Fu, J.; et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 2020, 11, 362. [Google Scholar] [CrossRef]
- Nakamura, J.; Kitagaki, K.; Ueda, Y.; Nishio, E.; Shibatsuji, T.; Uchihashi, Y.; Adachi, R.; Ono, R. Impact of polypharmacy on oral health status in elderly patients admitted to the recovery and rehabilitation ward. Geriatr. Gerontol. Int. 2021, 21, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Cannon, I.; Robinson-Barella, A.; McLellan, G.; Ramsay, S.E. From Drugs to Dry Mouth: A Systematic Review Exploring Oral and Psychological Health Conditions Associated with Dry Mouth in Older Adults with Polypharmacy. Drugs Aging 2023, 40, 307–316. [Google Scholar] [CrossRef]
- Bell, V.; Rodrigues, A.R.; Antoniadou, M.; Peponis, M.; Varzakas, T.; Fernandes, T. An Update on Drug-Nutrient Interactions and Dental Decay in Older Adults. Nutrients 2023, 15, 4900. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Zhao, L.; Sun, X.; Feng, Q. Microbiome succession with increasing age in three oral sites. Aging 2020, 12, 7874–7907. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.; Joshi, R.K.; Ekström, J.; Aframian, D.; Pedersen, A.M.; Proctor, G.; Narayana, N.; Villa, A.; Sia, Y.W.; Aliko, A.; et al. A Guide to Medications Inducing Salivary Gland Dysfunction, Xerostomia, and Subjective Sialorrhea: A Systematic Review Sponsored by the World Workshop on Oral Medicine VI. Drugs R D 2017, 17, 1–28. [Google Scholar] [CrossRef]
- Belstrøm, D. The salivary microbiota in health and disease. J. Oral. Microbiol. 2020, 12, 1723975. [Google Scholar] [CrossRef]
- Henne, K.; Schilling, H.; Stoneking, M.; Conrads, G.; Horz, H.P. Sex-specific differences in the occurrence of Fusobacterium nucleatum subspecies and Fusobacterium periodonticum in the oral cavity. Oncotarget 2018, 9, 20631–20639. [Google Scholar] [CrossRef]
- Nearing, J.T.; DeClercq, V.; Van Limbergen, J.; Langille, M.G.I. Assessing the Variation within the Oral Microbiome of Healthy Adults. mSphere 2020, 5, e00451-20. [Google Scholar] [CrossRef]
- Schwartz, J.L.; Peña, N.; Kawar, N.; Zhang, A.; Callahan, N.; Robles, S.J.; Griebel, A.; Adami, G.R. Old age and other factors associated with salivary microbiome variation. BMC Oral Health 2021, 21, 490. [Google Scholar] [CrossRef]
- Wu, J.; Peters, B.A.; Dominianni, C.; Zhang, Y.; Pei, Z.; Yang, L.; Ma, Y.; Purdue, M.P.; Jacobs, E.J.; Gapstur, S.M.; et al. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 2016, 10, 2435–2446. [Google Scholar] [CrossRef]
- DeClercq, V.; Nearing, J.T.; Langille, M.G.I. Investigation of the impact of commonly used medications on the oral microbiome of individuals living without major chronic conditions. PLoS ONE 2021, 16, e0261032. [Google Scholar] [CrossRef] [PubMed]
- Teles, F.R.; Teles, R.P.; Sachdeo, A.; Uzel, N.G.; Song, X.Q.; Torresyap, G.; Singh, M.; Papas, A.; Haffajee, A.D.; Socransky, S.S. Comparison of microbial changes in early redeveloping biofilms on natural teeth and dentures. J. Periodontol. 2012, 83, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Falcao, A.; Bullón, P. A review of the influence of periodontal treatment in systemic diseases. Periodontol. 2000 2019, 79, 117–128. [Google Scholar] [CrossRef]
- Kaur, S.; White, S.; Bartold, P.M. Periodontal disease and rheumatoid arthritis: A systematic review. J. Dent. Res. 2013, 92, 399–408. [Google Scholar] [CrossRef]
- Lockhart, P.B.; Bolger, A.F.; Papapanou, P.N.; Osinbowale, O.; Trevisan, M.; Levison, M.E.; Taubert, K.A.; Newburger, J.W.; Gornik, H.L.; Gewitz, M.H.; et al. Periodontal disease and atherosclerotic vascular disease: Does the evidence support an independent association?: A scientific statement from the American Heart Association. Circulation 2012, 125, 2520–2544. [Google Scholar] [CrossRef] [PubMed]
- Nakib, S.; Han, J.; Li, T.; Joshipura, K.; Qureshi, A.A. Periodontal disease and risk of psoriasis among nurses in the United States. Acta Odontol. Scand. 2013, 71, 1423–1429. [Google Scholar] [CrossRef]
- Su, C.Y.; Shigeishi, H.; Nishimura, R.; Ohta, K.; Sugiyama, M. Detection of oral bacteria on the tongue dorsum using PCR amplification of 16S ribosomal RNA and its association with systemic disease in middle-aged and elderly patients. Biomed. Rep. 2019, 10, 70–76. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Z.; Wang, Z. Assessment of the association between periodontal disease and total cancer incidence and mortality: A meta-analysis. PeerJ 2022, 10, e14320. [Google Scholar] [CrossRef]
- Zemedikun, D.T.; Chandan, J.S.; Raindi, D.; Rajgor, A.D.; Gokhale, K.M.; Thomas, T.; Falahee, M.; De Pablo, P.; Lord, J.M.; Raza, K.; et al. Burden of chronic diseases associated with periodontal diseases: A retrospective cohort study using UK primary care data. BMJ Open 2021, 11, e048296. [Google Scholar] [CrossRef] [PubMed]
- Martu, M.A.; Luchian, I.; Mares, M.; Solomon, S.; Ciurcanu, O.; Danila, V.; Rezus, E.; Foia, L. The Effectiveness of Laser Applications and Photodynamic Therapy on Relevant Periodontal Pathogens (Aggregatibacter actinomycetemcomitans) Associated with Immunomodulating Anti-rheumatic Drugs. Bioengineering 2023, 10, 61. [Google Scholar] [CrossRef]
- Petit, C.; Culshaw, S.; Weiger, R.; Huck, O.; Sahrmann, P. Impact of treatment of rheumatoid arthritis on periodontal disease: A review. Mol. Oral Microbiol. 2024, 39, 199–224. [Google Scholar] [CrossRef]
- Wagner, J.; Haker, L.; Mewes, L.; Bang, C.; Rühlemann, M.; Naujokat, H.; Spille, J.H.; Lieb, W.; Franke, A.; Schreiber, S.; et al. Changes in Periodontal Parameters and Microbiome Composition of Periodontal Pocket in Patients with Chronic Inflammatory Diseases Receiving Targeted Anti-Cytokine Therapy. Microorganisms 2024, 12, 1934. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions—Introduction and key changes from the 1999 classification. J. Periodontol. 2018, 89 (Suppl. S1), S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Kawar, N.; Park, S.G.; Schwartz, J.L.; Callahan, N.; Obrez, A.; Yang, B.; Chen, Z.; Adami, G.R. Salivary microbiome with gastroesophageal reflux disease and treatment. Sci. Rep. 2021, 11, 188. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.; Yu, W.H.; Lakshmanan, A.; Wade, W.G. The human oral microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef]
- Mallick, H.; Rahnavard, A.; McIver, L.J.; Ma, S.; Zhang, Y.; Nguyen, L.H.; Tickle, T.L.; Weingart, G.; Ren, B.; Schwager, E.H.; et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 2021, 17, e1009442. [Google Scholar] [CrossRef]
- Nickols, W.A.; Kuntz, T.; Shen, J.; Maharjan, S.; Mallick, H.; Franzosa, E.A.; Thompson, K.N.; Nearing, J.T.; Huttenhower, C. MaAsLin 3: Refining and extending generalized multivariable linear models for meta-omic association discovery. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kirkman, T.W. Statistics to Use. Available online: http://www.physics.csbsju.edu/stats/ (accessed on 26 March 2025).
- Colombo, A.P.; Boches, S.K.; Cotton, S.L.; Goodson, J.M.; Kent, R.; Haffajee, A.D.; Socransky, S.S.; Hasturk, H.; Van Dyke, T.E.; Dewhirst, F.; et al. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J. Periodontol. 2009, 80, 1421–1432. [Google Scholar] [CrossRef]
- Haffajee, A.D.; Uzel, N.G.; Arguello, E.I.; Torresyap, G.; Guerrero, D.M.; Socransky, S.S. Clinical and microbiological changes associated with the use of combined antimicrobial therapies to treat “refractory” periodontitis. J. Clin. Periodontol. 2004, 31, 869–877. [Google Scholar] [CrossRef]
- Obata, J.; Fujishima, K.; Nagata, E.; Oho, T. Pathogenic mechanisms of cariogenic Propionibacterium acidifaciens. Arch. Oral Biol. 2019, 105, 46–51. [Google Scholar] [CrossRef]
- Shao, Q.; Feng, D.; Yu, Z.; Chen, D.; Ji, Y.; Ye, Q.; Cheng, D. The role of microbial interactions in dental caries: Dental plaque microbiota analysis. Microb. Pathog. 2023, 185, 106390. [Google Scholar] [CrossRef] [PubMed]
- Wolff, D.; Frese, C.; Maier-Kraus, T.; Krueger, T.; Wolff, B. Bacterial biofilm composition in caries and caries-free subjects. Caries Res. 2013, 47, 69–77. [Google Scholar] [CrossRef] [PubMed]
- DeClercq, V.; Wright, R.J.; Nearing, J.T.; Langille, M.G.I. Oral microbial signatures associated with age and frailty in Canadian adults. Sci. Rep. 2024, 14, 9685. [Google Scholar] [CrossRef] [PubMed]
- Tanner, A.C.R.; Kressirer, C.A.; Rothmiller, S.; Johansson, I.; Chalmers, N.I. The Caries Microbiome: Implications for Reversing Dysbiosis. Adv. Dent. Res. 2018, 29, 78–85. [Google Scholar] [CrossRef]
- Usuga-Vacca, M.; Marquez-Ortiz, R.A.; Castellanos, J.E.; Martignon, S. Association of Root Biofilm Bacteriome with Root Caries Lesion Severity and Activity. Caries Res. 2024, 58, 39–48. [Google Scholar] [CrossRef]
(a) | |||
---|---|---|---|
Characteristics (2019 Group) | Polypharmacy ≤ 3 Drugs n = 29 | Polypharmacy ≥ 4 Drugs n = 26 | p-Value 1 (1.0) |
Age, years (mean ± SD) | 51.5 ± 14.8 | 62.7 ± 8.64 | 1.60 × 10−3 |
Sex, male n (%) | 11.0 (37.9) | 11.0 (42.3) | 4.00 × 10−1 |
Caries 2, n (mean ± SD) | 4.07 ± 6.87 | 6.35 ± 7.83 | 2.60 × 10−1 |
Medications, n (mean ± SD) | 0.793 ± 1.01 | 7.28 ± 3.01 | 1.00 × 10−4 |
Tobacco User, n (%) | 6.00 (20.7) | 2.00 (0.077) | 3.30 × 10−1 |
(b) | |||
Characteristics (2023 Group) | Polypharmacy ≤ 3 Drugs n = 26 | Polypharmacy ≥ 4 Drugs n = 24 | p-Value 1 (1.0) |
Age, years (mean ± SD) | 68.1 ± 7.44 | 72.2 ± 8.33 | 7.70 × 10−2 |
Sex, male n (%) | 9.00 (34.6) | 11.0 (45.8) | 6.00 × 10−1 |
Caries 2, n (mean ± SD) | 2.00 ± 2.10 | 1.79 ± 2.70 | 7.60 × 10−1 |
Medications, n (mean ± SD) | 1.42 ± 1.24 | 5.96 ± 2.31 | 1.00 × 10−4 |
Saliva 3, mL (mean ± SD) | 3.91 ± 1.51 | 2.70 ± 3.25 | 7.00 × 10−1 |
Tobacco User, n (%) | 1.00 (0.038) | 1.00 (0.042) | 1.00 |
Taxa associated with Medication Count 1 | |||||
---|---|---|---|---|---|
Taxa | Coefficient 2 | Standard Error 3 | Samples not 0 | p-value | q-value |
Propionibacterium.s_ acidifaciens | 0.773 | 0.205 | 27 | 1.59 × 10−4 | 1.72 × 10−2 |
Leptotrichia.s_sp._HMT_212 | −0.779 | 0.209 | 36 | 1.88 × 10−4 | 1.73 × 10−2 |
Corynebacterium.s_ durum | −0.901 | 0.273 | 35 | 9.70 × 10−4 | 4.08 × 10−2 |
Capnocytophaga.s_gingivalis | −0.736 | 0.233 | 37 | 1.61 × 10−3 | 5.15 × 10−2 |
Atopobium.s_rimae | 0.518 | 0.168 | 40 | 2.09 × 10−3 | 5.71 × 10−2 |
Taxa associated with Gender 4 | |||||
Taxa | Coefficient 2 | Standard Error 3 | Samples not 0 | p-value | q-value |
g_Prevotella._ | −0.788 | 0.232 | 54 | 6.91 × 10−4 | 3.79 × 10−2 |
Taxa Associated with Caries Level 5 | |||||
Taxa | Coefficient 2 | Standard Error 3 | Samples not 0 | p-value | q-value |
Propionibacteium.s_acidifaciens | 0.809 | 0.182 | 27 | 9.02 × 10−6 | 3.32 × 10−3 |
Actinomyces.s_dentalis | 0.558 | 0.124 | 34 | 6.80 × 10−6 | 3.32 × 10−3 |
Prevotella.s_sp._HMT_292 | 0.600 | 0.141 | 30 | 2.19 × 10−5 | 5.37 × 10−3 |
Prevotella.s baroniae | 0.644 | 0.168 | 24 | 1.21 × 10−4 | 1.72 × 10−2 |
Streptococcus.s _mutans | 0.822 | 0.243 | 38 | 7.21 × 10−4 | 3.79 × 10−2 |
Streptococcus.s_anginosus | 0.610 | 0.178 | 38 | 6.26 × 10−4 | 3.79 × 10−2 |
Prevotella.s_denticola | 0.515 | 0.159 | 45 | 1.16 × 10−3 | 4.07 × 10−2 |
Saccharibacteria_.TM7._.G.6..s_bacterium_HMT_870 | −1.01 | 0.312 | 34 | 1.14 × 10−3 | 4.07 × 10−2 |
Gemella._ | 0.633 | 0.218 | 40 | 3.73 × 10−3 | 8.85 × 10−2 |
Actinomyces. s sp. HMT 448 | 0.566 | 0.196 | 37 | 3.86 × 10−3 | 9.50 × 10−2 |
Validation of Taxa Associated with Medication Count 1 | ||||
---|---|---|---|---|
Taxa | Coefficient | Standard Error | Samples not 0 | p-value |
Propionibacterium.s_ acidifaciens | 0.422 | 0.255 | 25 | 9.72 × 10−2 |
Leptotrichia.s_sp._HMT_212 | −0.193 | 0.233 | 40 | 4.07 × 10−1 |
Corynebacterium.s_ durum | −0.510 | 0.241 | 38 | 3.48 × 10−2 |
Capnocytophaga.s_ gingivalis | −0.299 | 0.240 | 43 | 2.14 × 10−1 |
Atopobium.s_rimae | 0.121 | 0.259 | 29 | 6.39 × 10−1 |
Validation of Taxa Associated with Gender 2 | ||||
Taxa | Coefficient | Standard Error | Samples not 0 | p-value |
g_Prevotella._ | −0.0933 | 0.277 | 55 | 2.77 × 10−1 |
Validation of Taxa Associated with Caries Level 3 | ||||
Taxa | Coefficient | Standard Error | Samples not 0 | p-value |
Propionibacteium.s_acidifaciens | 0.271 | 0.249 | 25 | 2.77 × 10−1 |
Actinomyces.s_dentalis | 0.00438 | 0.269 | 33 | 9.87 × 10−1 |
Prevotella.s_sp._HMT_292 | ND | ND | ND | ND |
Prevotella.s baroniae | ND | ND | ND | ND |
Streptococcus.s _mutans | 0.161 | 0.305 | 34 | 5.97 × 10−1 |
Streptococcus.s_anginosus | 0.229 | 0.321 | 37 | 4.76 × 10−1 |
Prevotella.s_denticola | 0.390 | 0.236 | 33 | 9.84 × 10−2 |
Saccharibacteria_.TM7._.G.6..s_bacterium_HMT_870 | −0.396 | 0.379 | 27 | 2.96 × 10−1 |
Gemella._ | 0.0595 | 0.188 | 54 | 7.52 × 10−1 |
Actinomyces. s sp. HMT 448 | 0.0634 | 0.435 | 31 | 8.84 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahin, B.; Nadeem, T.; Khosla, T.; Adami, G.R. Key Bacterial Taxa Differences Associated with Polypharmacy in Elderly Patients. Microorganisms 2025, 13, 1877. https://doi.org/10.3390/microorganisms13081877
Shahin B, Nadeem T, Khosla T, Adami GR. Key Bacterial Taxa Differences Associated with Polypharmacy in Elderly Patients. Microorganisms. 2025; 13(8):1877. https://doi.org/10.3390/microorganisms13081877
Chicago/Turabian StyleShahin, Betti, Tahniat Nadeem, Tanya Khosla, and Guy R. Adami. 2025. "Key Bacterial Taxa Differences Associated with Polypharmacy in Elderly Patients" Microorganisms 13, no. 8: 1877. https://doi.org/10.3390/microorganisms13081877
APA StyleShahin, B., Nadeem, T., Khosla, T., & Adami, G. R. (2025). Key Bacterial Taxa Differences Associated with Polypharmacy in Elderly Patients. Microorganisms, 13(8), 1877. https://doi.org/10.3390/microorganisms13081877