Bioeconomy-Based Approaches for the Microbial Valorization of Citrus Processing Waste
Abstract
1. Citrus Processing Waste
2. Legislative Framework for the Valorization of Citrus Processing Waste in the EU
3. Biomass Valorization of Citrus Processing Waste for Energy Recovery
4. Bioconversion of Citrus Processing Waste for Enhanced Soil Fertility and Phytoprotective Properties
5. Valorization of Citrus Processing Waste into Biobased Polymers, Antimicrobial Materials, and Adsorbents
6. Solid-State Fermentation of Citrus Processing Waste for Food and Environmental Processing Applications
7. Bioactive Compounds and Antioxidant Properties of Raw and Biotreated Citrus Processing Waste
8. Citrus Processing Waste as a Source of Specialized Microbial Starter Cultures
9. Valorization of Citrus Processing Waste as a Sustainable Ingredient in Animal Feeding
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 5 June 2025).
- Romelle, F.D.; Rani, A.; Manohar, R.S. Chemical composition of some selected fruit peels. Eur. J. Food Sci. Technol. 2016, 4, 12–21. [Google Scholar]
- Olabinjo, O.O.; Ogunlowo, A.S.; Ajayi, O.O.; Olalusi, A.P. Analysis of physical and chemical composition of sweet orange (Citrus sinensis) peels. Int. J. Environ. Agric. Biotechnol. 2017, 2, 2201–2206. [Google Scholar] [CrossRef]
- Jentzsch, M.; Badstöber, M.C.; Umlas, F.; Speck, T. Damage protection in fruits: Comparative analysis of the functional morphology of the fruit peels of five Citrus species via quasi-static compression tests. Front. Mater. 2022, 9, 979151. [Google Scholar] [CrossRef]
- Jentzsch, M.; Becker, S.; Thielen, M.; Speck, T. Functional anatomy, impact behavior and energy dissipation of the peel of Citrus limon: A comparison of Citrus limon and Citrus maxima. Plants 2022, 11, 991. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Qureshi, T.M.; Nadeem, M.; Asghar, M. Variability in peel composition and quality evaluation of peel oils of citrus varieties. J. Agric. Res. 2016, 54, 747–756. [Google Scholar]
- Kumar, P.G.; Paul, S.K.; Khobragade, C.B.; Bania, B.K.; Sengupta, D.K. Requirements of mixed tangerine (Citrus tangerina) and pineapple (Ananas comosus) powdered peel wastes fermentation for citric acid production. Agric. Eng. Int. CIGR J. 2020, 22, 194–207. [Google Scholar]
- Patil, B.N.; Gupta, S.V.; Bharad, S.G.; Gahukar, S.J.; Patil, N.B. Physicochemical properties and mass modelling of Nagpur mandarin (Citrus reticulata) fruit. J. Pharm. Innov. 2021, 10, 1784–1791. [Google Scholar]
- Kalompatsios, D.; Palaiogiannis, D.; Makris, D.P. Optimized production of a hesperidin-enriched extract with enhanced antioxidant activity from waste orange peels using a glycerol/sodium butyrate deep eutectic solvent. Horticulturae 2024, 10, 208. [Google Scholar] [CrossRef]
- Kanaze, F.I.; Termentzi, A.; Gabrieli, C.; Niopas, I.; Georgarakis, M.; Kokkalou, E. The phytochemical analysis and antioxidant activity assessment of orange peel (Citrus sinensis) cultivated in Greece–Crete indicates a new commercial source of hesperidin. Biomed. Chromatogr. 2009, 23, 239–249. [Google Scholar] [CrossRef]
- Toprakçı, G.; Toprakçı, İ.; Şahin, S. Highly clean recovery of natural antioxidants from lemon peels: Lactic acid-based automatic solvent extraction. Phytochem. Anal. 2022, 33, 554–563. [Google Scholar] [CrossRef]
- Li, P.; Yao, X.; Zhou, Q.; Meng, X.; Zhou, T.; Gu, Q. Citrus peel flavonoid extracts: Health-beneficial bioactivities and regulation of intestinal microecology in vitro. Front. Nutr. 2022, 9, 888745. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, C.T.; Oliveira, A.F.; Fernandes, V.B.; Mendes, F.N.P.; Vieira, Í.G.P. Development of a functional ingredient rich in hesperidin from citrus fruit wastes. Res. Soc. Dev. 2021, 10, e369101220530. [Google Scholar] [CrossRef]
- Castro-Vazquez, L.; Alañón, M.E.; Rodríguez-Robledo, V.; Pérez-Coello, M.S.; Hermosín-Gutierrez, I.; Díaz-Maroto, M.C.; Arroyo-Jimenez, M.D.M. Bioactive flavonoids, antioxidant behaviour, and cytoprotective effects of dried grapefruit peels (Citrus paradisi Macf.). Oxid. Med. Cell. Longev. 2016, 2016, 8915729. [Google Scholar] [CrossRef]
- Ngoc, T.N.T.; Van Hung, P.; Phi, N.T.L. Extraction of flavonoids in pomelos’ peels using Box-Behnken response surface design and their biological activities. Viet. J. Sci. Technol. Eng. 2021, 63, 52–57. [Google Scholar]
- Helmy, M.G.; Khalil, M.; Zein, R. Phenolics content, antioxidant, antibacterial and anticancer activities of pomelo peels. J. Microbiol. Biotechnol. Food Sci. 2025, e12039. [Google Scholar] [CrossRef]
- Karne, H.; Kelkar, V.; Mundhe, A.; Ikar, M.; Betawar, S.; Chaudhari, N. Essential oil extraction from orange and lemon peel. E3S Web Conf. 2023, 455, 01005. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Y.; Hollmann, F.; Wang, Y. Study on green extraction of limonene from orange peel and cascade catalysis to produce carvol and carvone in deep eutectic solvents. Flavour Fragr. J. 2022, 37, 254–261. [Google Scholar] [CrossRef]
- El Aboubi, M.; Hdech, D.B.; Bikri, S.; Benayad, A.; El Magri, A.; Aboussaleh, Y.; Aouane, E.M. Chemical composition of essential oils of Citrus limon peel from three Moroccan regions and their antioxidant, anti-inflammatory, antidiabetic and dermatoprotective properties. J. Herbmed Pharmacol. 2022, 12, 118–127. [Google Scholar] [CrossRef]
- Himed, L.; Merniz, S.; Monteagudo-Olivan, R.; Barkat, M.; Coronas, J. Antioxidant activity of the essential oil of citrus limon before and after its encapsulation in amorphous SiO2. Sci. Afr. 2019, 6, e00181. [Google Scholar] [CrossRef]
- Okunowo, W.O.; Oyedeji, O.; Afolabi, L.O.; Matanmi, E. Essential oil of grape fruit (Citrus paradisi) peels and its antimicrobial activities. Am. J. Plant Sci. 2013, 4, 1–9. [Google Scholar] [CrossRef]
- Tran, T.H.; Dao, T.P.; Le, X.T.; Huynh, B.L.; Minh, L.T.N. Volatile compounds of grapefruit (Citrus Grandis (L.) Osbeck) peel essential oil by cold pressing and hydrodistillation methods. IOP Conf. Ser. Earth Environ. Sci. 2023, 1241, 012070. [Google Scholar] [CrossRef]
- Das, S.C.; Hossain, M.; Hossain, M.Z.; Jahan, N.; Uddin, M.A. Chemical analysis of essential oil extracted from pomelo sourced from Bangladesh. Heliyon 2022, 8, e12137. [Google Scholar] [CrossRef]
- Sirisomboon, P.; Duangchang, J.; Phanomsophon, T.; Lapcharoensuk, R.; Shrestha, B.P.; Kasemsamran, S.; Tsuchikawa, S. Analysis of the pomelo peel essential oils at different storage durations using a visible and near-infrared spectroscopic on intact fruit. Foods 2024, 13, 2379. [Google Scholar] [CrossRef] [PubMed]
- Dao, T.P.; Ngo, T.C.Q.; Le, T.D.; Ngo, H.D.; Thao, P.; Tran, T.G.; Huynh, X.P. Comparative study of mandarin (Citrus reticulata Blanco) essential oil extracted by microwave-assisted hydrodistillation, microwave extraction and hydrodistillation methods. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012129. [Google Scholar] [CrossRef]
- Meryem, S.; Mohamed, D.; Nour-Eddine, C.; Faouzi, E. Chemical composition, antibacterial and antioxidant properties of three Moroccan citrus peel essential oils. Sci. Afr. 2023, 20, e01592. [Google Scholar] [CrossRef]
- Fakayode, O.A.; Abobi, K.E. Optimization of oil and pectin extraction from orange (Citrus sinensis) peels: A response surface approach. J. Anal. Sci. Technol. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Kamal, M.M.; Kumar, J.; Mamun, M.A.H.; Ahmed, M.N.U.; Shishir, M.R.I.; Mondal, S.C. Extraction and characterization of pectin from Citrus sinensis peel. J. Biosyst. Eng. 2021, 46, 16–25. [Google Scholar] [CrossRef]
- Pei, C.C.; Hsien, T.S.; Hsuan, F.C.; Hsuan, H.L.; Chi, C.C.; Yi, L.M. Microwave- and ultrasound-assisted extraction of pectin yield and physicochemical properties from lemon peel. J. Agric. Food Res. 2024, 15, 101009. [Google Scholar] [CrossRef]
- Salma, M.A.; Jahan, N.; Islam, M.A.; Hoque, M.M. Extraction of pectin from lemon peel: Technology development. J. Chem. Eng. 2012, 27, 25–30. [Google Scholar] [CrossRef]
- Mohamed, H. Extraction and characterization of pectin from grapefruit peels. MOJ Food Process. Technol. 2016, 2, 31–38. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Xu, Y.; Cao, Y.; Jiang, Z.; Ding, T.; Liu, D. Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food Chem. 2015, 178, 106–114. [Google Scholar] [CrossRef]
- Pagarra, H.; Rachmawaty, R.; Sahribulan, S. Optimization of pectin extraction from pomelo peels (Citrus maxima) using response surface methodology. Bionature 2024, 25, 28–36. [Google Scholar] [CrossRef]
- Quoc, L.P.T. Effect of the assistance of microwave and oxalic acid on the extraction yield of pectin from pomelo (Citrus maxima) peel. Bulg. J. Agric. Sci. 2019, 25, 192–196. [Google Scholar]
- Colodel, C.; Vriesmann, L.C.; Teófilo, R.F.; de Oliveira Petkowicz, C.L. Extraction of pectin from Ponkan (Citrus reticulata Blanco cv. Ponkan) peel: Optimization and structural characterization. Int. J. Biol. Macromol. 2018, 117, 385–391. [Google Scholar] [CrossRef]
- Twinomuhwezi, H.; Godswill, A.C.; Kahunde, D. Extraction and characterization of pectin from orange (Citrus sinensis), lemon (Citrus limon) and tangerine (Citrus tangerina). Am. J. Phys. Sci. 2020, 1, 17–30. [Google Scholar] [CrossRef]
- Rivas, B.; Torrado, A.; Torre, P.; Converti, A.; Domínguez, J.M. Submerged citric acid fermentation on orange peel autohydrolysate. J. Agric. Food Chem. 2008, 56, 2380–2387. [Google Scholar] [CrossRef]
- Orozco, R.S.; Hernández, P.B.; Morales, G.R.; Núñez, F.U.; Villafuerte, J.O.; Lugo, V.L.; Vázquez, P.C. Characterization of lignocellulosic fruit waste as an alternative feedstock for bioethanol production. BioResources 2014, 9, 1873–1885. [Google Scholar] [CrossRef]
- Núñez-Gómez, V.; San Mateo, M.; González-Barrio, R.; Periago, M.J. Chemical composition, functional and antioxidant properties of dietary fibre extracted from lemon peel after enzymatic treatment. Molecules 2024, 29, 269. [Google Scholar] [CrossRef] [PubMed]
- Ververis, C.; Georghiou, K.; Danielidis, D.; Hatzinikolaou, D.G.; Santas, P.; Santas, R.; Corleti, V. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour. Technol. 2007, 98, 296–301. [Google Scholar] [CrossRef]
- Rivas-Cantu, R.C.; Jones, K.D.; Mills, P.L. A citrus waste-based biorefinery as a source of renewable energy: Technical advances and analysis of engineering challenges. Waste Manag. Res. 2013, 31, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Nor Fazelin, M.Z.; Salma Mohamad Yusop, S.M.Y.; Ishak Ahmad, I.A. Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. J. Nutr. Food Sci. 2015, 5, 334. [Google Scholar]
- Wang, H.; Wang, P.; Kasapis, S.; Truong, T. Pomelo (Citrus grandis L.) peels as effective sorbents for diverse gel matrices: The influence of particle size and powder concentration. J. Food Eng. 2024, 370, 111966. [Google Scholar] [CrossRef]
- Boluda-Aguilar, M.; García-Vidal, L.; González-Castañeda, F.P.; López-Gómez, A. Mandarin peel wastes pretreatment with steam explosion for bioethanol production. Bioresour. Technol. 2010, 101, 3506–3513. [Google Scholar] [CrossRef]
- Prajapati, P.; Porwal, C.; Garg, M.; Singh, N.; Sadhu, S.D.; Chopra, R.; Tripathi, A.D. Transforming lemon peel into a sustainable reservoir of bioactives: A green osmotic dehydration strategy. Food Chem. X 2025, 25, 102172. [Google Scholar] [CrossRef]
- Umaña, M.; Simal, S.; Dalmau, E.; Turchiuli, C.; Chevigny, C. Evaluation of different pectic materials coming from citrus residues in the production of films. Foods 2024, 13, 2138. [Google Scholar] [CrossRef] [PubMed]
- Yun, D.; Liu, J. Preparation, characterization and application of active food packaging films based on sodium alginate and twelve varieties of mandarin peel powder. Foods 2024, 13, 1174. [Google Scholar] [CrossRef]
- Nithish, S.; Kumar, R.P.; Rawat, L.K.; Afzia, N.; Ghosh, T. Extraction of pectin from Assam lemon (Citrus limon) peel and its use in preparation of low-fat mayonnaise. Sustain. Food Technol. 2025, 3, 1128–1135. [Google Scholar]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef]
- Mvumi, B.M.; Gwenzi, W.; Mhandu, M.G. Ecotoxicological effects of citrus processing waste on earthworms, Lumbricus terrestris L. Ind. Crops Prod. 2017, 110, 123–129. [Google Scholar] [CrossRef]
- Andiloro, S.; Calabrò, P.S.; Folino, A.; Zema, D.A.; Zimbone, S.M. Evaluating the pollution risk of soil due to natural drainage of orange peel: First results. Environments 2021, 8, 43. [Google Scholar] [CrossRef]
- Karunya, S.K.; Saranraj, P. Toxic effects of pesticide pollution and its biological control by microorganisms: A review. Appl. J. Hyg. 2014, 3, 01–10. [Google Scholar]
- Hollins, O.; Lee, P.; Sims, E.; Bertham, O.; Symington, H.; Bell, N.; Pfaltzgraff, L.; Sjögren, P. Towards a Circular Economy—Waste Management in the EU. Study, Science and Technology Options Assessment; PE 581.913; European Parliamentary Research Service (EPRS), Scientific Foresight Unit (STOA): Brussels, Belgium, 2017. [Google Scholar]
- A new Circular Economy Action Plan—For a cleaner and more competitive Europe. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; COM(2020) 98 Final; European Commission: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52020DC0098 (accessed on 5 June 2025).
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on The market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003 (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg/2019/1009/oj (accessed on 5 June 2025).
- Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying Down Health Rules as Regards Animal By-Products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal by-Products Regulation). Available online: http://data.europa.eu/eli/reg/2009/1069/oj (accessed on 5 June 2025).
- Rao, M.; Bilić, L.; Bast, A.; de Boer, A. What does it take to close the loop? Lessons from a successful citrus waste valorisation business. Br. Food J. 2024, 126, 143–161. [Google Scholar] [CrossRef]
- Wikandari, R.; Millati, R.; Cahyanto, M.N.; Taherzadeh, M.J. Biogas production from citrus waste by membrane bioreactor. Membranes 2014, 4, 596–607. [Google Scholar] [CrossRef] [PubMed]
- Zema, D.A.; Fòlino, A.; Zappia, G.; Calabrò, P.S.; Tamburino, V.; Zimbone, S.M. Anaerobic digestion of orange peel in a semi-continuous pilot plant: An environmentally sound way of citrus waste management in agro-ecosystems. Sci. Total Environ. 2018, 630, 401–408. [Google Scholar] [CrossRef]
- Carvalho, A.; Fragoso, R.; Gominho, J.; Duarte, E. Effect of minimizing d-limonene compound on anaerobic co-digestion feeding mixtures to improve methane yield. Waste Biomass Valorization 2019, 10, 75–83. [Google Scholar] [CrossRef]
- Jimenez-Castro, M.P.; Buller, L.S.; Zoffreo, A.; Timko, M.T.; Forster-Carneiro, T. Two-stage anaerobic digestion of orange peel without pre-treatment: Experimental evaluation and application to São Paulo state. J. Environ. Chem. Eng. 2020, 8, 104035. [Google Scholar] [CrossRef]
- Torquato, L.D.; Pachiega, R.; Crespi, M.S.; Nespeca, M.G.; de Oliveira, J.E.; Maintinguer, S.I. Potential of biohydrogen production from effluents of citrus processing industry using anaerobic bacteria from sewage sludge. Waste Manag. 2017, 59, 181–193. [Google Scholar] [CrossRef]
- Camargo, F.P.; Sakamoto, I.K.; Bize, A.; Duarte, I.C.S.; Silva, E.L.; Varesche, M.B.A. Screening design of nutritional and physicochemical parameters on bio-hydrogen and volatile fatty acids production from citrus peel waste in batch reactors. Int. J. Hydrogen Energy 2021, 46, 7794–7809. [Google Scholar] [CrossRef]
- Saadatinavaz, F.; Karimi, K.; Denayer, J.F. Hydrothermal pretreatment: An efficient process for improvement of biobutanol, biohydrogen, and biogas production from orange waste via a biorefinery approach. Bioresour. Technol. 2021, 341, 125834. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.S.; Lee, Y.G.; Khanal, S.K.; Park, B.J.; Bae, H.J. A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Appl. Energy 2015, 140, 65–74. [Google Scholar] [CrossRef]
- Plessas, S.; Bekatorou, A.; Koutinas, A.A.; Soupioni, M.; Banat, I.M.; Marchant, R. Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation. Bioresour. Technol. 2007, 98, 860–865. [Google Scholar] [CrossRef]
- Carota, E.; Petruccioli, M.; D’Annibale, A.; Gallo, A.M.; Crognale, S. Orange peel waste–based liquid medium for biodiesel production by oleaginous yeasts. Appl. Microbiol. Biotechnol. 2020, 104, 4617–4628. [Google Scholar] [CrossRef] [PubMed]
- Matouk, A.M.; Abu-Elreesh, G.M.; Abdel-Rahman, M.A.; Desouky, S.E.; Hashem, A.H. Response surface methodology and repeated-batch fermentation strategies for enhancing lipid production from marine oleaginous Candida parapsilosis Y19 using orange peel waste. Microb. Cell Factories 2025, 24, 16. [Google Scholar] [CrossRef] [PubMed]
- Moser, B.R.; Dorado, C.; Bantchev, G.B.; Winkler-Moser, J.K.; Doll, K.M. Production and evaluation of biodiesel from sweet orange (Citrus sinensis) lipids extracted from waste seeds from the commercial orange juicing process. Fuel 2023, 342, 127727. [Google Scholar] [CrossRef]
- Fazzino, F.; Mauriello, F.; Paone, E.; Sidari, R.; Calabrò, P.S. Integral valorization of orange peel waste through optimized ensiling: Lactic acid and bioethanol production. Chemosphere 2021, 271, 129602. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Fazzino, F.; Sidari, R.; Zema, D.A. Optimization of orange peel waste ensiling for sustainable anaerobic digestion. Renew. Energy 2020, 154, 849–862. [Google Scholar] [CrossRef]
- Consoli, S.; Caggia, C.; Russo, N.; Randazzo, C.L.; Continella, A.; Modica, G.; Cacciola, S.O.; Faino, L.; Reverberi, M.; Baglieri, A.; et al. Sustainable use of citrus waste as organic amendment in orange orchards. Sustainability 2023, 15, 2482. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Pesticidal activity of citrus fruits for the development of sustainable fruit-processing waste management and agricultural production. Plants 2025, 14, 754. [Google Scholar] [CrossRef] [PubMed]
- Van Heerden, I.; Cronjé, C.; Swart, S.H.; Kotzé, J.M. Microbial, chemical and physical aspects of citrus waste composting. Bioresour. Technol. 2002, 81, 71–76. [Google Scholar] [CrossRef]
- De Medina-Salas, L.; Giraldi-Díaz, M.R.; Castillo-González, E.; Morales-Mendoza, L.E. Valorization of orange peel waste using precomposting and vermicomposting processes. Sustainability 2020, 12, 7626. [Google Scholar] [CrossRef]
- Sorgonà, A.; Abenavoli, M.R.; Cacco, G.; Gelsomino, A. Growth of tomato and zucchini seedlings in orange waste compost media: pH and implication of dosage. Compost Sci. Util. 2011, 19, 189–196. [Google Scholar] [CrossRef]
- Tuttobene, R.; Avola, G.; Gresta, F.; Abbate, V. Industrial orange waste as organic fertilizer in durum wheat. Agron. Sustain. Dev. 2009, 29, 557–563. [Google Scholar] [CrossRef]
- Shehata, S.A.; El-Metwally, I.M.; Abdelgawad, K.F.; Elkhawaga, F.A. Efficacy of agro-industrial wastes on the weed control, nutrient uptake, growth, and yield of onion crop (Allium cepa L.). J. Soil Sci. Plant Nutr. 2022, 22, 2707–2718. [Google Scholar] [CrossRef]
- Ugolini, F.; Crisci, A.; Baronti, S.; Cencetti, G.; Dal Prà, A.; Albanese, L.; Michelozzi, M.; Zabini, F.; Meneguzzo, F. Effects of orange waste extract produced by hydrodynamic cavitation on the germination of Chenopodium album L. and Lactuca sativa L. Sustainability 2024, 16, 3039. [Google Scholar] [CrossRef]
- Hussain, O.A.; Rahim, E.A.A.; Badr, A.N.; Hathout, A.S.; Rashed, M.M.; Fouzy, A.S. Total phenolics, flavonoids, and antioxidant activity of agricultural wastes, and their ability to remove some pesticide residues. Toxicol. Rep. 2022, 9, 628–635. [Google Scholar] [CrossRef]
- El Kasimi, R.; Douiri, F.; Haddi, K.; Boughdad, A. Bioactivity of essential oil from Citrus aurantium peel against the pulse beetle Callosbruchus maculatus F. on chickpea. Agriculture 2023, 13, 232. [Google Scholar] [CrossRef]
- Duong, C.T.; Thao, H.T.P.; Tien, D.T.K.; Nga, N.T.T.; Nhan, T.C.; Huong, B.T.C.; Ercisli, S.; Truc, N.T.N.; Danh, L.T. Application of essential oils extracted from peel wastes of four orange varieties to control anthracnose caused by Colletotrichum scovillei and Colletotrichum gloeosporioides on mangoes. Plants 2023, 12, 2761. [Google Scholar] [CrossRef] [PubMed]
- Sala, A.; Vittone, S.; Barrena, R.; Sánchez, A.; Artola, A. Scanning agro-industrial wastes as substrates for fungal biopesticide production: Use of Beauveria bassiana and Trichoderma harzianum in solid-state fermentation. J. Environ. Manag. 2021, 295, 113113. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K. Current applications of citrus fruit processing waste: A scientific outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Ríos Sosa, A.; Prado Barragán, L.A.; Ríos Reyes, A.; Aréchiga Carvajal, E.T. Genomic analysis and potential polyhydroxybutyrate (PHB) production from Bacillus strains isolated from extreme environments in Mexico. BMC Microbiol. 2025, 25, 15. [Google Scholar] [CrossRef]
- Gouda, M.; Abd El-Lateef, H.M.; Abou Taleb, M.F.; Abdelaziz, M.A.; Khalaf, M.M. Insight into the physicochemical characterization of composite orange peel fabricated packaging film: Fighting foodborne pathogens and oxidative stress. Int. J. Biol. Macromol. 2025, 306, 141777. [Google Scholar] [CrossRef]
- Pagliarini, E.; Minichiello, C.; Sisti, L.; Totaro, G.; Baffoni, L.; Di Gioia, D.; Saccani, A. From food waste to eco-friendly functionalized polymer composites: Investigation of orange peels as active filler. New Biotechnol. 2024, 80, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Bertolo, M.R.; Pereira, T.S.; Dos Santos, F.V.; Facure, M.H.; Dos Santos, F.; Teodoro, K.B.R.; Mercante, L.A.; Correa, D.S. Citrus wastes as sustainable materials for active and intelligent food packaging: Current advances. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70144. [Google Scholar] [CrossRef]
- Iffath, R.; Ara, R.; Ahmed, T.; Biswas, A. Fabrication and characterization of waste eggshell microparticles reinforced biodegradable composite packaging films enriched with pectin and orange peel essential oil. Appl. Food Res. 2025, 5, 100735. [Google Scholar] [CrossRef]
- Rastogi, S.; Tiwari, S.; Ratna, S.; Kumar, R. Utilization of agro-industrial waste for biosurfactant production under submerged fermentation and its synergistic application in biosorption of Pb2+. Bioresour. Technol. Rep. 2021, 15, 100706. [Google Scholar] [CrossRef]
- Kifle, D.; Bacha, K.; Gonfa, G. Antimicrobial activities of biosynthesized nanosilver using Musa paradisiaca and Citrus sinensis peel extracts against major human and plant pathogens. Sci. Rep. 2025, 15, 6600. [Google Scholar] [CrossRef]
- Desouky, M.M.; Abou-Saleh, R.H.; Moussa, T.A.; Fahmy, H.M. Nano-chitosan-coated, green-synthesized selenium nanoparticles as a novel antifungal agent against Sclerotinia sclerotiorum: In vitro study. Sci. Rep. 2025, 15, 1004. [Google Scholar] [CrossRef]
- Neisan, R.S.; Saady, N.M.C.; Bazan, C.; Zendehboudi, S. Optimization of arsenic removal from water using novel renewable adsorbents derived from orange peels. Waste Manag. Bull. 2025, 3, 21–35. [Google Scholar] [CrossRef]
- Kukowska, S.; Nowicki, P.; Szewczuk-Karpisz, K. New fruit waste-derived activated carbons of high adsorption performance towards metal, metalloid, and polymer species in multicomponent systems. Sci. Rep. 2025, 15, 1082. [Google Scholar] [CrossRef]
- Bouchelkia, N.; Tahraoui, H.; Benazouz, K.; Mameri, A.; Boudraa, R.; Moussa, H.; Hamri, N.; Merdoud, R.; Belkacemi, H.; Zoukel, A.; et al. Optimizing adsorption efficiency: A novel application of SVM_Boosting_IGWO for methylene blue dye removal using low-cost fruit peels adsorbents. Chemom. Intell. Lab. Syst. 2025, 261, 105377. [Google Scholar] [CrossRef]
- Balu, A.M.; Budarin, V.; Shuttleworth, P.S.; Pfaltzgraff, L.A.; Waldron, K.; Luque, R.; Clark, J.H. Valorisation of orange peel residues: Waste to biochemicals and nanoporous materials. ChemSusChem 2012, 5, 1694. [Google Scholar] [CrossRef]
- Abdelrazek, E.J.; Gahlan, A.A.; Gouda, G.A.; Ahmed, A.S. Cost-effective adsorption of cationic dyes using ZnO nanorods supported by orange peel-derived carbon. Sci. Rep. 2025, 15, 4123. [Google Scholar] [CrossRef]
- Schmidt, M.P.; Rupp, S.; Ashworth, D.J.; Phan, D.; Bhattacharjee, A.; Ferreira, J.F.S.; Men, Y.; Ibekwe, A.M. Feedstock selection influences performance and mechanism of DNA adsorption onto biochar. Environ. Nanotechnol. Monit. Manag. 2025, 23, 101040. [Google Scholar] [CrossRef]
- Wangchuk, S.; Promsuwan, K.; Saichanapan, J.; Soleh, A.; Saisahas, K.; Samoson, K.; Numnuam, A.; Kanatharana, P.; Thavarungkul, P.; Limbut, W. Cuprous oxide-functionalized activated porous carbon-modified screen-printed carbon electrode integrated with a smartphone for portable electrochemical nitrate detection. Talanta 2025, 287, 127581. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.P.; Nath, G. Ultrasonic processing and thermo-acoustic analysis of orange peel waste as smart acoustic material: Waste and biomass valorization. Waste Biomass Valorization 2022, 13, 2905–2916. [Google Scholar] [CrossRef]
- Mihalyi, S.; Putz, A.; Draxler, M.; Mautner, A.; Sumetzberger-Hasinger, M.; Fabbri, F.; Pellis, A.; Neureiter, M.; Quartinello, F.; Guebitz, G.M. The orange gold: Biotechnological production of PLA/P(3HB)/limonene based polyesters from orange peel waste. Sustain. Mater. Technol. 2024, 41, e01110. [Google Scholar] [CrossRef]
- Mondal, S.; Santra, S.; Rakshit, S.; Halder, S.K.; Hossain, M.; Mondal, K.C. Saccharification of lignocellulosic biomass using an enzymatic cocktail of fungal origin and successive production of butanol by Clostridium acetobutylicum. Bioresour. Technol. 2022, 343, 126093. [Google Scholar] [CrossRef] [PubMed]
- da Silva, G.F.; Mathias, S.L.; de Menezes, A.J.; Vicente, J.G.P.; Delforno, T.P.; Varesche, M.B.A.; Duarte, I.C.S. Orange bagasse pellets as a carbon source for biobutanol production. Curr. Microbiol. 2020, 77, 4053–4062. [Google Scholar] [CrossRef]
- Ricci, A.; Diaz, A.B.; Caro, I.; Bernini, V.; Galaverna, G.; Lazzi, C.; Blandino, A. Orange peels: From by-product to resource through lactic acid fermentation. J. Sci. Food Agric. 2019, 99, 6761–6767. [Google Scholar] [CrossRef]
- De la Torre, I.D.; Acedos, M.G.; Ladero, M.; Santos, V.E. On the use of resting L. delbrueckii spp. delbrueckii cells for D-lactic acid production from orange peel wastes hydrolysates. Biochem. Eng. J. 2019, 145, 162–169. [Google Scholar] [CrossRef]
- Leh, D.S.; Biz, A.; De Paula, D.H.F.; Richard, P.; Gonçalves, A.G.; Noseda, M.D.; Mitchell, D.A.; Krieger, N. Conversion of citric pectin into D-galacturonic acid with high substrate loading using a fermented solid with pectinolytic activity. Biocatal. Agric. Biotechnol. 2017, 11, 214–219. [Google Scholar] [CrossRef]
- Yu, J.; Fang, L.; Kim, S.; Kim, K.; Kim, M.; Lee, T. Valorization of fruit and vegetable byproducts for the beta-glucan production from Euglena gracilis. Bioresour. Technol. 2024, 394, 130213. [Google Scholar] [CrossRef]
- Díaz, A.B.; Alvarado, O.; De Ory, I.; Caro, I.; Blandino, A. Valorization of grape pomace and orange peels: Improved production of hydrolytic enzymes for the clarification of orange juice. Food Bioprod. Process. 2013, 91, 580–586. [Google Scholar] [CrossRef]
- Mamma, D.; Kourtoglou, E.; Christakopoulos, P. Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour. Technol. 2008, 99, 2373–2383. [Google Scholar] [CrossRef] [PubMed]
- Tao, N.G.; Shi, W.Q.; Liu, Y.J.; Huang, S.R. Production of feed enzymes from citrus processing waste by solid-state fermentation with Eupenicillium javanicum. Int. J. Food Sci. Technol. 2011, 46, 1073–1079. [Google Scholar] [CrossRef]
- Irshad, M.; Anwar, Z.; But, H.I.; Afroz, A.; Ikram, N.; Rashid, U. The industrial applicability of purified cellulase complex indigenously produced by Trichoderma viride through solid-state bio-processing of agro-industrial and municipal paper wastes. BioResources 2013, 8, 145–157. [Google Scholar] [CrossRef]
- Laswai, F.C.; Matofari, J.W.; Nduko, J.M. Pectinolytic enzyme production from orange processing waste using Aspergillus brasiliensis strain. Biomass Conver. Biorefin. 2024, 14, 25173–25186. [Google Scholar] [CrossRef]
- Moharram, A.M.; Zohri, A.N.A.; Hesham, A.E.L.; Maher, M.A.A.; Shaban Al-Bedak, O.A.H.M. Production of cocktail enzymes by three Cladosporium isolates and bioconversion of orange peel wastes into valuable enzymes. J. Pure Appl. Microbiol. 2021, 15, 2336–2346. [Google Scholar] [CrossRef]
- Marzo, C.; Díaz, A.B.; Caro, I.; Blandino, A. Valorization of agro-industrial wastes to produce hydrolytic enzymes by fungal solid-state fermentation. Waste Manag. Res. 2019, 37, 149–156. [Google Scholar] [CrossRef]
- Giese, E.C.; Dekker, R.F.; Barbosa, A.M. Orange bagasse as substrate for the production of pectinase and laccase by Botryosphaeria rhodina MAMB-05 in submerged and solid state fermentation. BioResources 2008, 3, 335–345. [Google Scholar] [CrossRef]
- Ben Hadj Hmida, B.; Ben Mabrouk, S.; Fendri, A.; Hmida-Sayari, A.; Sayari, A. Optimization of newly isolated Bacillus cereus α-amylase production using orange peels and crab shells and application in wastewater treatment. 3 Biotech 2024, 14, 119. [Google Scholar] [CrossRef]
- Ousaadi, M.I.; Merouane, F.; Berkani, M.; Almomani, F.; Vasseghian, Y.; Kitouni, M. Valorization and optimization of agro-industrial orange waste for the production of enzyme by halophilic Streptomyces sp. Environ. Res. 2021, 201, 111494. [Google Scholar] [CrossRef]
- Serra, L.A.; Mendes, T.D.; De Marco, J.L.; de Almeida, J.R.M. Application of Thermomyces lanuginosus polygalacturonase produced in Komagataella phaffii in biomass hydrolysis and textile bioscouring. Enzyme Microb. Technol. 2024, 177, 110424. [Google Scholar] [CrossRef]
- Hassabo, A.A.; Mostafa, E.E.; Saad, M.M.; Selim, M.H. Utilization of orange pulp and corn steep liquor for L-methioninase production by Wickerhamomyces subpelliculosus. Egypt. Pharm. J. 2021, 20, 8–16. [Google Scholar] [CrossRef]
- Fathy, H.M.; Abd El-Maksoud, A.A.; Cheng, W.; Elshaghabee, F.M. Value-added utilization of citrus peels in improving functional properties and probiotic viability of Acidophilus-bifidus-thermophilus (ABT)-type synbiotic yoghurt during cold storage. Foods 2022, 11, 2677. [Google Scholar] [CrossRef]
- Tsouko, E.; Maina, S.; Ladakis, D.; Kookos, I.K.; Koutinas, A. Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Renew. Energy 2020, 160, 944–954. [Google Scholar] [CrossRef]
- Luengo, E.; Álvarez, I.; Raso, J. Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innov. Food Sci. Emerg. Technol. 2013, 17, 79–84. [Google Scholar] [CrossRef]
- Victor, M.M.; David, J.M.; Cortez, M.V.; Leite, J.L.; da Silva, G.S. A high-yield process for extraction of hesperidin from orange (Citrus sinensis L. osbeck) peels waste, and its transformation to diosmetin, a valuable and bioactive flavonoid. Waste Biomass Valorization 2021, 12, 313–320. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, S.; Singh, R.S.; Schwarz, W.H.; Puri, M. Hydrolysis of citrus peel naringin by recombinant α-L-rhamnosidase from Clostridium stercorarium. J. Chem. Technol. Biotechnol. 2010, 85, 1419–1422. [Google Scholar] [CrossRef]
- Shahram, H.; Dinani, S.T. Optimization of ultrasonic-assisted enzymatic extraction of β-carotene from orange processing waste. J. Food Process Eng. 2019, 42, e13042. [Google Scholar] [CrossRef]
- Bier, M.C.J.; Medeiros, A.B.P.; De Kimpe, N.; Soccol, C.R. Evaluation of antioxidant activity of the fermented product from the biotransformation of R-(+)-limonene in solid-state fermentation of orange waste by Diaporthe sp. Biotechnol. Res. Innov. 2019, 3, 168–176. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Laredo-Alcalá, E.; Buenrostro-Figueroa, J.J.; Ascacio-Valdés, J.A.; Genisheva, Z.; Aguilar, C.; Teixeira, J. Ellagic acid production using polyphenols from orange peel waste by submerged fermentation. Electron. J. Biotechnol. 2020, 43, 1–7. [Google Scholar] [CrossRef]
- Yu, H.; Xu, X.; Hao, J.; Zuo, X.; Wang, J.; Zhu, L.; Chen, M.; Lyu, Y.; Yan, Z.; Shen, Y.; et al. Mixed fermentation of citrus peel pomace with Trichoderma koningii, Aspergillus oryzae and Lactobacillus casei: Process optimization, antioxidant activities and non-targeted metabolomics analysis. Food Biosci. 2025, 66, 106180. [Google Scholar] [CrossRef]
- Zerva, I.; Remmas, N.; Ntougias, S. Diversity and biotechnological potential of xylan-degrading microorganisms from orange juice processing waste. Water 2019, 11, 274. [Google Scholar] [CrossRef]
- Zerva, I.; Remmas, N.; Ntougias, S. Biocatalyst potential of cellulose-degrading microorganisms isolated from orange juice processing waste. Beverages 2019, 5, 21. [Google Scholar] [CrossRef]
- Zerva, I.; Remmas, N.; Melidis, P.; Tsiamis, G.; Ntougias, S. Microbial succession and identification of effective indigenous pectinolytic yeasts from orange juice processing wastewater. Waste Biomass Valorization 2021, 12, 4885–4899. [Google Scholar] [CrossRef]
- Díaz, A.B.; Bolívar, J.; De Ory, I.; Caro, I.; Blandino, A. Applicability of enzymatic extracts obtained by solid state fermentation on grape pomace and orange peels mixtures in must clarification. LWT-Food Sci. Technol. 2011, 44, 840–846. [Google Scholar] [CrossRef]
- Deka, A.; Sahu, N.P.; Jain, K.K. Utilization of fruit processing wastes in the diet of Labeo rohita fingerling. Asian-Australas. J. Anim. Sci. 2003, 16, 1661–1665. [Google Scholar] [CrossRef]
- Rego, F.C.D.A.; Lima, L.D.D.; Baise, J.; Gasparini, M.J.; Eleodoro, J.I.; Santos, M.D.D.; Zundt, M. Performance, carcass and meat characteristics of lambs in feedlot fed diets with increasing levels of fresh orange pulp replacing corn. Ciênc. Anim. Bras. 2019, 20, e50129. [Google Scholar] [CrossRef]
- Fegeros, K.; Zervas, G.; Stamouli, S.; Apostolaki, E. Nutritive value of dried citrus pulp and its effect on milk yield and milk composition of lactating ewes. J. Dairy Sci. 1995, 78, 1116–1121. [Google Scholar] [CrossRef]
- Onwuka, C.F.I.; Adetiloye, P.O.; Afolami, C.A. Use of household wastes and crop residues in small ruminant feeding in Nigeria. Small Rumin. Res. 1997, 24, 233–237. [Google Scholar] [CrossRef]
- Varela, J.A.R.; Diaz-Vargas, M.; Duque-Ramírez, C.F.; Sierra, L.M.P. Dehydrated citrus pulp in rabbit feeding. Trop. Anim. Health Prod. 2023, 55, 346. [Google Scholar] [CrossRef]
- Hussein, E.; Alhotan, R.A.; Ebrahim, A.; Selim, S. Unraveling the potential of orange pulp for improving laying rate, egg quality, oxidative stability, fatty acids composition, and reproductive tract morphology of laying hens. Animals 2023, 13, 2199. [Google Scholar] [CrossRef] [PubMed]
- Goliomytis, M.; Kostaki, A.; Avgoulas, G.; Lantzouraki, D.Z.; Siapi, E.; Zoumpoulakis, P.; Simitzis, P.; Deligeorgis, S.G. Dietary supplementation with orange pulp (Citrus sinensis) improves egg yolk oxidative stability in laying hens. Anim. Feed Sci. Technol. 2018, 244, 28–35. [Google Scholar] [CrossRef]
- Zoidis, E.; Simitzis, P.; Kampantais, D.; Katsoulas, P.; Pappas, A.C.; Papadomichelakis, G.; Goliomytis, M. Dietary orange pulp and organic selenium effects on growth performance, meat quality, fatty acid profile, and oxidative stability parameters of broiler chickens. Sustainability 2022, 14, 1534. [Google Scholar] [CrossRef]
- Tripodo, M.M.; Lanuzza, F.; Micali, G.; Coppolino, R.; Nucita, F. Citrus waste recovery: A new environmentally friendly procedure to obtain animal feed. Bioresour. Technol. 2004, 91, 111–115. [Google Scholar] [CrossRef] [PubMed]
Orange | Lemon | Grapefruit | Pomelo | Tangerine | |
---|---|---|---|---|---|
Peel Portion (% of the whole fruit) | 14.3–26.0 [2,3,4] | 36.4–48.0 [4,5] | 27.8–41.0 [4,6] | 46.9–48.6 [4,5] | 24.0–55.0 [7,8] |
Hesperidin (mg/g dw) | 21.8–48.0 [9,10] | 6.7–24.5 [11,12] | 5.0–7.2 [13,14] | 0.7–4.2 [15,16] | 21.6–41.3 [12,13] |
D-Limonene (% of the EO) | 70.0–90.0 [17,18] | 48.6–67.1 [19,20] | 74.8–75.1 [21,22] | 67.6–84.6 [23,24] | 71.7–85.1 [25,26] |
Pectin (%) | 12.5–29.1 [27,28] | 15.0–37.9 [29,30] | 22.6–27.3 [31,32] | 18.8–28.5 [33,34] | 12.8–25.6 [35,36] |
Cellulose (%) | 9.2–11.9 [37,38] | 8.2–12.7 [39,40] | 27.2 [41] | 15.7–21.3 [42,43] | 22.5 [44] |
Hemicellulose (%) | 10.5–14.5 [37,38] | 5.3–18.7 [39,40] | 6.3 [41] | 8.1 [43] | 6 [44] |
Lignin (%) | 0.8–2.2 [37,38] | 1.7 [40] | 13.1 [41] | 0.1 [43] | 8.6 [44] |
Lipids (%) | 1.9 [37] | 5 [45] | 0.2 [31] | 1.6 [43] | 1–8.7 [46,47] |
Moisture (%) | 7 [37] | 11.5 [48] | 75 [31] | 16.1 [43] | 6.1 [46] |
Ash (%) | 3.5 [37] | 1.9 [40] | 1.5 [31] | 3.4 [43] | 3.1–4 [46,47] |
Process | Products | Reference |
---|---|---|
Anaerobic digestion | Biogas (without pretreatment); Biogas of high methane yield (via D-limonene minimization) | [58,59,60,61] |
Dark fermentation | Biohydrogen production | [62,63] |
Hydrothermal pretreatment + fermentation | Enhanced biohydrogen production, biobutanol production | [64] |
Yeast fermentation | Bioethanol, Lipids for biodiesel production (39% lipid content) | [65,66,67,68] |
Lipid extraction from orange seeds | Lipids for biodiesel production (37% content; Fatty Acids: oleic, linoleic and palmitic acids) | [69] |
Ensiling | Lactic acid and bioethanol—Enhanced anaerobic digestibility (65% VS, 75% limonene reduction) | [70,71] |
Process | Products | Reference |
---|---|---|
Direct application of CPW | Phytoprotection (against weeds, insects, nematodes, fungi) via essential oils | [73] |
Co-composting | Mature compost with low phytotoxicity (mesophilic → thermophilic microbiota) | [74] |
Vermicomposting (with Eisenia fetida) | Stabilized compost from orange waste | [75] |
Compost amendment to soil | Optimal seedling growth (tomato, zucchini) at 7.5% compost rate | [76] |
Field application (4 kg/m2 orange waste) | Comparable wheat yield to mineral fertilizer | [77] |
Application in onion fields | Weed control and doubled onion bulb yield | [78] |
Extract of orange juice waste | Bioherbicidal effect (weed germination inhibition/delay without harming crop biomass) | [79] |
Use of CPW in pesticide removal | Removal of diazinon and parathion; CPW as biosorbent | [80] |
Citrus essential oil | Insecticidal protection against Callosobruchus maculatus on chickpeas | [81] |
Orange peel essential oils | Control of postharvest anthracnose (Colletotrichum gloeosporioides, C. scovillei) on mangoes | [82] |
CPW as fungal growth substrate | Cultivation of bioprotective fungi (Beauveria bassiana, Trichoderma harzianum) for biopesticide use | [83] |
Process | Products | Reference |
---|---|---|
Microbial growth on orange peels | PHB (bioplastic) production by Bacillus cereus (0.4 g/kg) | [85] |
Orange peel extract in biocomposite film | Antimicrobial and antioxidant packaging film (against Salmonella enterica and Escherichia coli) | [86] |
Orange peels in biopolymer composite | Functional packaging: antioxidant and antibacterial activity | [87] |
Film with eggshell, pectin and orange EO | Antimicrobial biocomposite (vs Staphylococcus aureus, B. cereus); good barrier and stress resistance | [89] |
Submerged fermentation of CPW | Biosurfactant production by Bacillus haynesii E1 | [90] |
AgNP synthesis using orange peel extract | Antimicrobial silver nanoparticles (active against bacteria and fungi) | [91] |
Citrus chitosan-coated selenium nanocomposite | Antifungal activity vs. Sclerotinia sclerotiorum (complete inhibition at 0.5 ppm) | [92] |
Activated carbon from CPW (TiO2-modified) | Arsenic removal (10.9 mg/g, pH 4.2, 3.3 g/L dosage) | [93] |
Microwave-activated orange peel carbon | Heavy metal removal: As (V), Se (IV), Cu (II), Cd (II) | [94] |
Orange peel as bioadsorbent | Methylene blue dye removal (~112 mg/g capacity) | [95] |
Conversion to nanoporous materials | Adsorptive materials for biochemical use | [96] |
ZnO-orange-peel porous nanocomposite | Dye removal (>90% for crystal violet and methylene blue) | [97] |
Orange peel biochar | DNA adsorption (potential to remove antibiotic resistance genes) | [98] |
Electrochemical nitrate sensor (Cu2O–carbon) | Pollution monitoring; linear detection to 1 mM, limit: 1.2 μM | [99] |
Ultrasonic-treated orange peel | Acoustic insulation material | [100] |
Process | Products | Reference |
---|---|---|
Biorefinery of orange peels with Weizmannia coagulans and Priestia megaterium | Limonene, high-activity peroxidase, lactic acid, polyhydroxybutyrate | [101] |
Enzymatic bioconversion of orange peel-based agricultural residues using Aspergillus niger SKN1 and Trametes hirsuta SKH1 | Hydrolysate fermented into biobutanol by Clostridium acetobutylicum | [102] |
Fermentation of orange bagasse pellets by Clostridium beijerinckii | Butanol | [103] |
Lactic acid fermentation by Lactobacillus casei 2246 | Lactic acid (0.88 g/g d.w.) | [104] |
Fermentation by L. delbrueckii subsp. delbrueckii | D-lactic acid | [105] |
Solid-state fermentation by Aspergillus oryzae | Galacturonic acid | [106] |
Solid-state fermentation by Aspergillus niger | Citric acid | [106] |
Cultivation of Euglena gracilis on orange peels | β-glucan | [107] |
Solid-state fermentation by Aspergillus awamori | Hydrolytic enzymes (xylanolytic, cellulolytic and pectinolytic enzymes) for juice clarification | [108] |
Solid-state fermentation by Aspergillus niger BTL, Fusarium oxysporum F3, Neurospora crassa DSM 1129, Penicillium decumbens sp. | β-xylosidase, polygalacturonase, invertase, pectate lyase, endoglucanase | [109] |
Fermentation with Eupenicillium javanicum | Endoglucanase, β-glucosidase, pectinase (~50 U/g), xylanase (~105 U/g) | [110] |
Fermentation with Trichoderma viride | Cellulolytic activity (>400 U/mL) | [111] |
Fermentation with Aspergillus brasiliensis | Polygalacturonase (up to 45 U/g) | [112] |
Fermentation with Cladosporium spp. | Endoglucanase, exoglucanase, xylanase, pectinase, amylase | [113] |
Fermentation of orange peels + sugar beet cossettes | Xylanase, exo-polygalacturonase; improved hydrolysis with added cellulases | [114] |
Fermentation by Botryosphaeria rhodina MAMB-05 | Pectinase | [115] |
Treatment of orange peels with Bacillus cereus | α-amylase (8.5 U/mL) | [116] |
Fermentation with a halophilic Streptomyces sp. | α-amylase (12.19 U/mL) | [117] |
Heterologous expression in Komagataella phaffii | Recombinant pectinase (460 U/mL) | [118] |
Processing by Wickerhamomyces subpelliculosus | L-methioninase (94.08 U/mL) | [119] |
Process | Products | Reference |
---|---|---|
Biorefinery approach on orange peels | Essential oils, phenolics, pectin, cellulosic material | [121] |
Pulsed electric field treatment (7 kV/cm) | Increased recovery of naringin and hesperidin | [122] |
Biotransformation of hesperidin from orange peels | Antioxidant diosmetin | [123] |
Recombinant α-L-rhamnosidase hydrolysis of naringin | Rhamnose | [124] |
Enzymatic hydrolysis combined with ultrasonic treatment | Bioconversion of orange waste to β-carotene | [125] |
Solid-state fermentation of orange waste by Diaporthe sp. | Antioxidant products from bioconversion of limonene | [126] |
Submerged fermentation of orange peel waste | Antioxidant and antibacterial ellagic acid (19 mg/g yield) | [127] |
Mixed fermentation of orange peel pomace (with microbes) | Increased antioxidant capacity; biomolecules like pinoresinol, gentisic acid and quercetin derivatives | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavrakakis, I.; Melidis, P.; Kavroulakis, N.; Goliomytis, M.; Simitzis, P.; Ntougias, S. Bioeconomy-Based Approaches for the Microbial Valorization of Citrus Processing Waste. Microorganisms 2025, 13, 1891. https://doi.org/10.3390/microorganisms13081891
Stavrakakis I, Melidis P, Kavroulakis N, Goliomytis M, Simitzis P, Ntougias S. Bioeconomy-Based Approaches for the Microbial Valorization of Citrus Processing Waste. Microorganisms. 2025; 13(8):1891. https://doi.org/10.3390/microorganisms13081891
Chicago/Turabian StyleStavrakakis, Ioannis, Paraschos Melidis, Nektarios Kavroulakis, Michael Goliomytis, Panagiotis Simitzis, and Spyridon Ntougias. 2025. "Bioeconomy-Based Approaches for the Microbial Valorization of Citrus Processing Waste" Microorganisms 13, no. 8: 1891. https://doi.org/10.3390/microorganisms13081891
APA StyleStavrakakis, I., Melidis, P., Kavroulakis, N., Goliomytis, M., Simitzis, P., & Ntougias, S. (2025). Bioeconomy-Based Approaches for the Microbial Valorization of Citrus Processing Waste. Microorganisms, 13(8), 1891. https://doi.org/10.3390/microorganisms13081891