Broad Host Range Peptide Nucleic Acids Prevent Gram-Negative Biofilms Implicated in Catheter-Associated Urinary Tract Infections
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Antisense-PNA Design and Synthesis
2.3. Antisense-PNA Treatment
2.4. Drying a Cocktail of PNAs onto 96-Well Plates
2.5. Bacterial Viability Assessments
2.6. Biofilm Biomass Quantification
2.7. Statistical Analyses
3. Results
3.1. PNA Design
3.2. A Cocktail of PNAs Inhibited Biofilm Formation in PAO1 and Reduced Bacterial Viability
3.3. Antisense-PNAs Inhibited Biofilm Formation in Their Intended Species with No Meaningful Reduction in Bacterial Viability
3.4. Antisense-PNAs Reduced Biofilm Biomass in Polymicrobial Samples
3.5. Dried Antisense-PNAs Retained Their Anti-Biofilm Effect
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAUTIs | Catheter-associated urinary tract infections |
QS | Quorum sensing |
PNAs | Peptide nucleic acids |
CPP | Cell-wall permeabilizing peptide |
TSA | Tryptic soy agar |
MAC | MacConkey agar |
LB | Luria Bertani |
OD | Optical density |
CFU | Colony-forming units |
cPNA | Cocktail of PNAs, which refers to rsmA 0, amrZ 0, and rpoS 0 |
MeOH | Methanol |
CV | Crystal violet |
s.d. | Standard deviation |
ANOVA | Analysis of variance |
Appendix A
Appendix B
References
- Assefa, M.; Amare, A. Biofilm-Associated Multi-Drug Resistance in Hospital-Acquired Infections: A Review. Infect. Drug Resist. 2022, 15, 5061–5068. [Google Scholar] [CrossRef]
- U.S. Centers for Disease Control and Prevention. Catheter-Associated Urinary Tract Infection Basics. Available online: https://www.cdc.gov/uti/about/cauti-basics.html?CDC_AAref_Val=https://www.cdc.gov/hai/ca_uti/uti.html (accessed on 2 July 2024).
- Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front. Microbiol. 2020, 11, 928. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Weiner-Lastinger, L.M.; Abner, S.; Edwards, J.R.; Kallen, A.J.; Karlsson, M.; Magill, S.S.; Pollock, D.; See, I.; Soe, M.M.; Walters, M.S.; et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 2020, 41, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Stickler, D.J. Clinical complications of urinary catheters caused by crystalline biofilms: Something needs to be done. J. Intern. Med. 2014, 276, 120–129. [Google Scholar] [CrossRef]
- Assadi, F. Strategies for preventing catheter-associated urinary tract infections. Int. J. Prev. Med. 2018, 9, 50. [Google Scholar] [CrossRef]
- Lila, A.S.A.; Rajab, A.A.H.; Abdallah, M.H.; Rizvi, S.M.; Moin, A.; Khafagy, E.S.; Tabrez, S.; Hegazy, W.A.H. Biofilm Lifestyle in Recurrent Urinary Tract Infections. Life 2023, 13, 148. [Google Scholar] [CrossRef]
- Pickard, R.; Lam, T.; MacLennan, G.; Starr, K.; Kilonzo, M.; McPherson, G.; Gillies, K.; McDonald, A.; Walton, K.; Buckley, B.; et al. Types of urethral catheter for reducing symptomatic urinary tract infections in hospitalised adults requiring short-term catheterisation: Multicentre randomised controlled trial and economic evaluation of antimicrobial- and antisepticimpregnated urethral catheters (the CATHETER trial). Health Technol. Assess. 2012, 16, 1–197. [Google Scholar] [CrossRef]
- Dubern, J.-F.; Hook, A.L.; Carabelli, A.M.; Chang, C.-Y.; Lewis-Lloyd, C.A.; Luckett, J.C.; Burroughs, L.; Dundas, A.A.; Humes, D.J.; Irvine, D.J.; et al. Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation. Sci. Adv. 2023, 9, eadd7474. [Google Scholar] [CrossRef]
- Hu, J.; Xia, Y.; Xiong, Y.; Li, X.; Su, X. Inhibition of biofilm formation by the antisense peptide nucleic acids targeted at the motA gene in Pseudomonas aeruginosa PAO1 strain. World J. Microbiol. Biotechnol. 2011, 27, 1981–1987. [Google Scholar] [CrossRef]
- Narenji, H.; Gholizadeh, P.; Aghazadeh, M.; Rezaee, M.A.; Asgharzadeh, M.; Kafil, H.S. Peptide nucleic acids (PNAs): Currently potential bactericidal agents. Biomed. Pharmacother. 2017, 93, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Pellestor, F.; Paulasova, P. The peptide nucleic acids (PNAs), powerful tools for molecular genetics and cytogenetics. Eur. J. Hum. Genet. 2004, 12, 694–700. [Google Scholar] [CrossRef] [PubMed]
- PNA Bio. Custom PNA Oligos. 2022. Available online: https://www.pnabio.com/products/PNA_oligo.htm (accessed on 3 April 2023).
- Swenson, C.S.; Heemstra, J.M. Peptide Nucleic Acids Harness Dual Information Codes in a Single Molecule. Chem. Commun. 2020, 56, 1926–1935. [Google Scholar] [CrossRef]
- Menchise, V.; De Simone, G.; Tedeschi, T.; Corradini, R.; Sforza, S.; Marchelli, R.; Capasso, D.; Saviano, M.; Pedone, C. Insights into peptide nucleic acid (PNA) structural features: The crystal structure of a D-lysine-based chiral PNA-DNA duplex. Proc. Natl. Acad. Sci. USA 2003, 14, 12021–12026. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, P.; Alexander, J.C.; Seleem, M.N.; Jain, N.; Sriranganathan, N.; Wattam, A.R.; Setubal, J.C.; Boyle, S.M. Peptide nucleic acids inhibit growth of Brucella suis in pure culture and in infected murine macrophages. Int. J. Antimicrob. Agents 2013, 41, 358–362. [Google Scholar] [CrossRef]
- Kulkarni, P.R.; Jia, T.; Kuehne, S.A.; Kerkering, T.M.; Morris, E.R.; Searle, M.S.; Heeb, S.; Rao, J.; Kulkarni, R.V. A sequence-based approach for prediction of CsrA/RsmA targets in bacteria with experimental validation in Pseudomonas aeruginosa. Nucleic Acids Res. 2014, 42, 6811–6825. [Google Scholar] [CrossRef]
- PNA Bio. PNA Tool. Available online: https://www.pnabio.com/support/PNA_Tool.htm (accessed on 1 August 2025).
- El-Fateh, M.; Chatterjee, A.; Zhao, X. A systematic review of peptide nucleic acids (PNAs) with antibacterial activities: Efficacy, potential and challenges. Int. J. Antimicrob. Agents 2024, 63, 107083. [Google Scholar] [CrossRef]
- Col, N.A.; Rao, J.; Rajagopalan, G.; Sriranganathan, N. Design and Evaluation Novel Gene-Specific, Cell-Permeable Antisense Peptide Nucleic Acids to Prevent Staphylococcus Aureus Biofilm Formation. Infect. Dis. Diagn. Treat. 2024, 8, 270. [Google Scholar] [CrossRef]
- Louden, B.C.; Haarmann, D.; Lynne, A.M. Use of Blue Agar CAS Assay for Siderophore Detection. J. Microbiol. Biol. Educ. 2011, 12, 51–53. [Google Scholar] [CrossRef]
- Kang, K.N.; Klein, D.R.; Kazi, M.I.; Guérin, F.; Cattoir, V.; Brodbelt, J.S.; Boll, J.M. Colistin heteroresistance in Enterobacter cloacae is regulated by PhoPQ-dependent 4-amino-4-deoxy-l-arabinose addition to lipid A. Mol. Microbiol. 2019, 111, 1604–1616. [Google Scholar] [CrossRef]
- Rao, J.; DiGiandomenico, A.; Artamonov, M.; Leitinger, N.; Amin, A.R.; Goldberg, J.B. Host derived inflammatory phospholipids regulate rahU (PA0122) Gene, Protein, and Biofilm Formation in Pseudomonas aeruginosa. Cell. Immunol. 2011, 270, 95–102. [Google Scholar] [CrossRef]
- Wilson, C.; Lukowicz, R.; Merchant, S.; Valquier-Flynn, H.; Caballero, J.; Sandoval, J.; Okuom, M.; Huber, C.; Brooks, T.D.; Wilson, E.; et al. Quantitative and Qualitative Assessment Methods for Biofilm Growth: A Mini-review HHS Public Access. Res. Rev. J. Eng. Technol. 2017, 6. [Google Scholar]
- Jones, C.J.; Ryder, C.R.; Mann, E.E.; Wozniak, D.J. AmrZ modulates Pseudomonas aeruginosa biofilm architecture by directly repressing transcription of the psl operon. J. Bacteriol. 2013, 195, 1637–1644. [Google Scholar] [CrossRef]
- Mika, F.; Hengge, R. Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli. RNA Biol. 2014, 11, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Vakulskas, C.A.; Potts, A.H.; Babitzke, P.; Ahmer, B.M.M.; Romeo, T. Regulation of Bacterial Virulence by Csr (Rsm) Systems. Microbiol. Mol. Biol. Rev. 2015, 79, 193–224. [Google Scholar] [CrossRef] [PubMed]
- Hollenbeak, C.; Schilling, A. The attributable cost of catheter-associated urinary tract infections in the United States: A systematic review. Am. J. Infect. Control 2018, 46, 751–757. [Google Scholar] [CrossRef]
- Kemnic, T.R.; Gulick, P.G. HIV Antiretroviral Therapy Continuing Education Activity. NCBI Bookshelf. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513308/ (accessed on 3 April 2023).
- Nye, T.M.; Zou, Z.; Obernuefemann, C.L.P.; Pinkner, J.S.; Lowry, E.; Kleinschmidt, K.; Bergeron, K.; Klim, A.; Dodson, K.W.; Flores-Mireles, A.L.; et al. Microbial co-occurrences on catheters from long-term catheterized patients. Nat. Commun. 2024, 15, 61. [Google Scholar] [CrossRef]
- Su, Y.; Yrastorza, J.T.; Matis, M.; Cusick, J.; Zhao, S.; Wang, G.; Xie, J. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. Adv. Sci. 2022, 9, 2203291. [Google Scholar] [CrossRef]
- Karp, H.; Nowak, E.; Su, G.; Akguc, N.; Schulz, M.; Sriranganathan, N.; Rao, J. P-1087. Novel Antisense Wide-Range Peptide Nucleic Acids Coated on Polystyrene Plates to Prevent Bacterial Biofilm. Open Forum Infect. Dis. 2025, 12, ofae631-1275. [Google Scholar] [CrossRef]
Antisense-PNA | Sequence | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rsmA 0 (P. aeruginosa) | G | A | A | A | G | G | A | A | T | G | C | T | ||
rsmA 1 (Klebsiella spp., Enterobacter spp., and E. coli) | G | C | A | A | A | G | A | A | T | G | C | T | ||
amrZ 0 (P. aeruginosa) | A | A | T | G | T | A | T | G | C | G | C | C | ||
amrZ 1 (E. coli) | G | T | C | A | T | A | T | G | A | G | C | A | ||
amrZ 2 (Enterobacter spp.) | G | C | G | C | C | A | T | G | A | C | G | A | ||
rpoS 0 (P. aeruginosa) | G | G | A | T | A | A | C | G | A | C | A | T | G | |
motA 0 (P. aeruginosa) | C | C | T | C | A | T | G | T | C | A | A | A | A | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karp, H.Q.; Nowak, E.S.; Kropp, G.A.; Col, N.A.; Schulz, M.D.; Sriranganathan, N.; Rao, J. Broad Host Range Peptide Nucleic Acids Prevent Gram-Negative Biofilms Implicated in Catheter-Associated Urinary Tract Infections. Microorganisms 2025, 13, 1948. https://doi.org/10.3390/microorganisms13081948
Karp HQ, Nowak ES, Kropp GA, Col NA, Schulz MD, Sriranganathan N, Rao J. Broad Host Range Peptide Nucleic Acids Prevent Gram-Negative Biofilms Implicated in Catheter-Associated Urinary Tract Infections. Microorganisms. 2025; 13(8):1948. https://doi.org/10.3390/microorganisms13081948
Chicago/Turabian StyleKarp, Hannah Q., Elizabeth S. Nowak, Gillian A. Kropp, Nihan A. Col, Michael D. Schulz, Nammalwar Sriranganathan, and Jayasimha Rao. 2025. "Broad Host Range Peptide Nucleic Acids Prevent Gram-Negative Biofilms Implicated in Catheter-Associated Urinary Tract Infections" Microorganisms 13, no. 8: 1948. https://doi.org/10.3390/microorganisms13081948
APA StyleKarp, H. Q., Nowak, E. S., Kropp, G. A., Col, N. A., Schulz, M. D., Sriranganathan, N., & Rao, J. (2025). Broad Host Range Peptide Nucleic Acids Prevent Gram-Negative Biofilms Implicated in Catheter-Associated Urinary Tract Infections. Microorganisms, 13(8), 1948. https://doi.org/10.3390/microorganisms13081948