Viral Quasispecies Inference from Single Observations—Mutagens as Accelerators of Quasispecies Evolution
Abstract
1. Introduction
2. Materials and Methods
2.1. Quasispecies Maturity Indicators
2.2. Delta Method
2.3. Indicators’ Variance and Standard Error by the Delta Method
2.4. Large Sample Sizes and p-Values
2.5. Effect Size
2.6. Z, t, and Cohen’s d
2.7. Quasispeces Samples, Cells, Viruses, and Drugs
2.8. Implementation
3. Results
3.1. Maturity Indicator Values on Rarefied Quasispecies
3.2. Tests
- Pass 0 (p0) quasspecies versus pass 100 (p100), with no treatment in between (Supplementary Table S3).
- Pass 110 (p110, Ctl), with extra 10 passages to p100, versus p100, with p100 used as treatment baseline (Supplementary Table S4)
- Ten passages of treatment with sofosbuvir (SOF), starting at p100, versus the base line p100 (Supplementary Table S5).
- Ten passages of treatment with ribavrine (RBV), starting at p100, versus the base line p100 (Supplementary Table S6).
- Ten passages of treatment with favipiravir (FPV), starting at p100, versus the base line p100 (Supplementary Table S7).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domingo, E.; Perales, C. Viral quasispecies. PLoS Genet. 2019, 15, e1008271. [Google Scholar] [CrossRef]
- Domingo, E.; Sheldon, J.; Perales, C. Viral Quasispecies Evolution. Microbiol. Mol. Biol. Rev. 2012, 76, 159–216. [Google Scholar] [CrossRef]
- Domingo, E.; García-Crespo, C.; Perales, C. Historical Perspective on the Discovery of the Quasispecies Concept. Annu. Rev. Virol. 2021, 8, 51–72. [Google Scholar] [CrossRef]
- Todt, D.; Walter, W.; Brown, R.; Steinmann, E. Mutagenic Effects of Ribavirin on Hepatitis E Virus—Viral Extinction versus Selection of Fitness-Enhancing Mutations. Viruses 2016, 8, 283. [Google Scholar] [CrossRef]
- Gregori, J.; Colomer-Castell, S.; Campos, C.; Ibañez-Lligoña, M.; Garcia-Cehic, D.; Rando-Segura, A.; Adombie, C.; Pintó, R.; Guix, S.; Bosch, A.; et al. Quasispecies Fitness Partition to Characterize the Molecular Status of a Viral Population. Negative Effect of Early Ribavirin Discontinuation in a Chronically Infected HEV Patient. Int. J. Mol. Sci. 2022, 23, 14654. [Google Scholar] [CrossRef]
- Colomer-Castell, S.; Gregori, J.; Garcia-Cehic, D.; Riveiro-Barciela, M.; Buti, M.; Rando-Segura, A.; Vico-Romero, J.; Campos, C.; Ibañez-Lligoña, M.; Adombi, C.M.; et al. In-Host HEV Quasispecies Evolution Shows the Limits of Mutagenic Antiviral Treatments. Int. J. Mol. Sci. 2023, 24, 17185. [Google Scholar] [CrossRef] [PubMed]
- Gregori, J.; Ibañez-Lligoña, M.; Colomer-Castell, S.; Garcia-Cehic, D.; Campos, C.; Quer, J. Association of liver damage and quasispecies maturity in chronic HCV patients: The fate of a quasispecies. Microorganisms 2024, 12, 2213. [Google Scholar] [CrossRef]
- Salicru, M.; Menendez, M.; Morales, D.; Pardo, L. Asymptotic distributions of (h,Fi)-entropies. Commun. Stat. Theory Methods 1993, 22, 2015–2031. [Google Scholar] [CrossRef]
- Pardo, l.; Morales, D.; Salicrú, M.; Menéndez, M. Large sample behavior of entropy measures when parameters are estimated. Commun. Stat.-Theory Methods 1997, 26, 483–501. [Google Scholar] [CrossRef]
- Rey, A.; Frery, A.; Lucini, M.; Gambini, J.; Chagas, E.; Ramos, H. Asymptotic Distribution of Certain Types of Entropy under the Multinomial Law. Entropy 2023, 25, 734. [Google Scholar] [CrossRef] [PubMed]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 1994. [Google Scholar] [CrossRef]
- Hesterberg, T.; Moore, D.; Monaghan, S.; Clipson, A.; Epstein, R.; G.P., M. Bootstrap Methods and Permutation Tests. In Introduction to the Practice of Statistics, 5th ed.; McCabe, W., Ed.; Freeman and Co.: New York, NY, USA, 2005; Chapter 14; pp. 14.1–14.70. [Google Scholar]
- Ramachandran, K.; Tsokos, C. Chapter 13—Empirical methods. In Mathematical Statistics with Applications in R (Third Edition), 3rd ed.; Ramachandran, K., Tsokos, C., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 531–568. [Google Scholar] [CrossRef]
- Gregori, J.; Ibañez-Lligoña, M.; Colomer-Castell, S.; Campos, C.; Quer, J. Virus Quasispecies Rarefaction: Subsampling with or without Replacement? Viruses 2024, 16, 710. [Google Scholar] [CrossRef]
- Shao, J.; Wu, C.J. A general theory for jackknife variance estimation. Ann. Stat. 1989, 17, 1176–1197. [Google Scholar] [CrossRef]
- Shao, J. Consistency of Jackknife Variance Estimators. In Technical Report 88-58; Purdue University, Department of Statistics: West Lafayette, IN, USA, 1988. [Google Scholar]
- Shao, J. Consistency of jackknife variance estimators jun. Statistics 1991, 22, 49–57. [Google Scholar] [CrossRef]
- Bera, A.; Koley, M. A History of the Delta Method and Some New Results. Sankhya B 2023, 85, 272–306. [Google Scholar] [CrossRef]
- Hosmer, D.; Lemeshow, S.; May, S. Appendix 1: The Delta Method. In Applied Survival Analysis: Regression Modeling of Time-to-Event Data; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 355–358. [Google Scholar]
- VerHoef, J. Who invented the Delta Method? Am. Stat. 2012, 66, 124–127. [Google Scholar] [CrossRef]
- Gallego, I.; Sheldon, J.; Moreno, E.; Gregori, J.; Quer, J.; Esteban, J.; Rice, C.; Domingo, E.; Perales, C. Barrier-Independent, Fitness-Associated Differences in Sofosbuvir Efficacy against Hepatitis C Virus. Antimicrob Agents Chemother 2016, 60, 3786–3793. [Google Scholar] [CrossRef] [PubMed]
- Gallego, I.; Gregori, J.; Soria, M.; García-Crespo, C.; García-Álvarez, M.; Gómez-González, A.; Valiergue, R.; Gómez, J.; Esteban, J.; Quer, J.; et al. Resistance of high fitness hepatitis C virus to lethal mutagenesis. Virology 2018, 523, 100–109. [Google Scholar] [CrossRef]
- Moreno, E.; Gallego, I.; Gregori, J.; Lucía-Sanz, A.; Soria, M.; Castro, V.; Beach, N.; Manrubia, S.; Quer, J.; Esteban, J.; et al. Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment. J. Virol. 2017, 91, e02505-16. [Google Scholar] [CrossRef] [PubMed]
- García-Crespo, C.; Gallego, I.; Soria, M.; de Ávila, A.; Martínez-González, B.; Vázquez-Sirvent, L.; Lobo-Vega, R.; Moreno, E.; Gómez, J.; Briones, C.; et al. Population Disequilibrium as Promoter of Adaptive Explorations in Hepatitis C Virus. Viruses 2021, 13, 616. [Google Scholar] [CrossRef] [PubMed]
- Gregori, J.; Colomer-Castell, S.; Ibañez-Lligoña, M.; Garcia-Cehic, D.; Campos, C.; Buti, M.; Riveiro-Barciela, M.; Andrés, C.; Piñana, M.; González-Sánchez, A.; et al. In-Host Flat-like Quasispecies: Characterization Methods and Clinical Implications. Microorganisms 2024, 12, 1011. [Google Scholar] [CrossRef]
- Duris, F.; Gazdarica, J.; Gazdaricova, I.; Strieskova, L.; Budis, J.; Turna, J.; Szemes, T. Mean and variance of ratios of proportions from categories of a multinomial distribution. J. Stat. Distrib. Appl. 2018, 5, 2. [Google Scholar] [CrossRef]
- Kim, H. Statistical notes for clinical researchers: Effect size. Restor Dent. Endod. 2015, 40, 328–331. [Google Scholar] [CrossRef]
- Nakagawa, S.; Cuthill, I. Effect size, confidence interval and statistical significance: A practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 2007, 82, 591–605. [Google Scholar] [CrossRef]
- Kelley, K.; Preacher, K. On effect size. Psychol. Methods 2012, 17, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Sawilowsky, S. New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 2009, 8, 26. [Google Scholar] [CrossRef]
- Marukian, S.; Jones, C.; Andrus, L.; Evans, M.; Ritola, K.; Charles, E.D.; Rice, C.M.; Dustin, L.B. Cell culture-produced hepatitis C virus does not infect peripheral blood mononuclear cells. Hepatology 2008, 48, 1843–1850. [Google Scholar] [CrossRef]
- Perales, C.; Beach, N.; Gallego, I.; Soria, M.; Quer, J.; Esteban, J.; Rice, C.; Domingo, E.; Sheldon, J. Response of Hepatitis C Virus to Long-Term Passage in the Presence of Alpha Interferon: Multiple Mutations and a Common Phenotype. J. Virol. 2013, 87, 7593–7607. [Google Scholar] [CrossRef]
- Sheldon, J.; Beach, N.; Moreno, E.; Gallego, I.; Piñeiro, D.; Martínez-Salas, E.; Gregori, J.; Quer, J.; Esteban, J.; Rice, C.; et al. Increased replicative fitness can lead to decreased drug sensitivity of hepatitis C virus. J. Virol. 2014, 88, 12098–12111. [Google Scholar] [CrossRef]
- Gallego, I.; Soria, M.; Gregori, J.; Quer, J.; Esteban, J.; Rice, C.; Domingo, E.; Perales, C. Lethal Mutagenesis of Hepatitis C Virus Induced by Favipiravir. PLoS ONE 2016, 11, e0164691. [Google Scholar] [CrossRef]
- Ortega-Prieto, A.; Sheldon, J.; Grande-Pérez, A.; Tejero, H.; Gregori, J.; Quer, J.; Esteban, J.; Domingo, E.; Perales, C. Extinction of Hepatitis C Virus by Ribavirin in Hepatoma Cells Involves Lethal Mutagenesis. PLoS ONE 2013, 8, e71039. [Google Scholar] [CrossRef]
- Gregori, J.; Soria, M.; Gallego, I.; Guerrero-Murillo, M.; Esteban, J.; Quer, J.; Perales, C.; Domingo, E. Rare haplotype load as marker for lethal mutagenesis. PLoS ONE 2018, 13, e0204877. [Google Scholar] [CrossRef]
- Montero, O.; Hedeland, M.; Balgoma, D. Trials and tribulations of statistical significance in biochemistry and omics. Trends Biochem. Sci. 2023, 48, 503–512. [Google Scholar] [CrossRef]
- Forshed, J. Experimental Design in Clinical ’Omics Biomarker Discovery. J. Proteome. Res. 2017, 16, 3954–3960. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Benayoun, B. Considerations for reproducible omics in aging research. Nat. Aging 2023, 3, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Domingo, E. Viruses at the edge of adaptation. Virology 2000, 270, 251–253. [Google Scholar] [CrossRef]
- Perales, C.; Gallego, I.; de Ávila, A.; Soria, M.; Gregori, J.; Quer, J.; Domingo, E. The increasing impact of lethal mutagenesis of viruses. Future Med. Chem. 2019, 11, 1645–1657. [Google Scholar] [CrossRef]
- Hassine, I.; M’hadheb, M.; Menéndez-Arias, L. Lethal Mutagenesis of RNA Viruses and Approved Drugs with Antiviral Mutagenic Activity. Viruses 2022, 14, 841. [Google Scholar] [CrossRef]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
Indicator | Description | State A | State Z |
---|---|---|---|
TopN | Fraction of reads for top N hpl. | 1.00 | 0.00 |
Master | Dominant haplotype frequency | 1.00 | 0.00 |
Rare1 | Fraction of reads for hpl | 0.00 | 1.00 |
Rare2 | Fraction of reads for hpl | 0.00 | 1.00 |
Relative logarithmic evennes at | 0.00 | 1.00 | |
Relative logarithmic evennes at | 0.00 | 1.00 | |
Relative logarithmic evennes at | 0.00 | 1.00 | |
Evenness among top k haplotypes | 0.00 | 1.00 |
ID | Reads |
---|---|
p0 | 123,587 |
p100 | 179,382 |
Ctl | 136,432 |
FPV | 191,058 |
RBV | 134,718 |
SOF | 111,299 |
(A) | ||||||
---|---|---|---|---|---|---|
ID | nHpl | Master | Top25 | Rare1 | Rare2 | dN |
p0 | 4879.0 | 0.73728 | 0.80969 | 0.23231 | 0.19061 | 0.17525 |
p100 | 7883.5 | 0.49492 | 0.74722 | 0.32811 | 0.22594 | 0.27175 |
Ctl | 8042.0 | 0.39545 | 0.75894 | 0.27743 | 0.23635 | 0.29263 |
SOF | 5939.0 | 0.61619 | 0.81265 | 0.22331 | 0.19370 | 0.20805 |
RBV | 17,702.5 | 0.18436 | 0.55210 | 0.51516 | 0.38691 | 0.44376 |
FPV | 17,138.0 | 0.12553 | 0.58100 | 0.51404 | 0.37284 | 0.47553 |
(B) | ||||||
ID | R5 | R10 | RLE1 | RLE2 | RLEinf | dN |
p0 | 0.01934 | 0.02206 | 0.27130 | 0.07163 | 0.03589 | 0.17525 |
p100 | 0.05016 | 0.05977 | 0.39069 | 0.14845 | 0.07840 | 0.27175 |
Ctl | 0.08407 | 0.02905 | 0.40351 | 0.18128 | 0.10317 | 0.29263 |
SOF | 0.07808 | 0.02405 | 0.31369 | 0.10767 | 0.05572 | 0.20805 |
RBV | 0.16893 | 0.11401 | 0.57920 | 0.29061 | 0.17286 | 0.44376 |
FPV | 0.42867 | 0.15571 | 0.58111 | 0.31728 | 0.21286 | 0.47553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregori, J.; Salicrú, M.; Ibáñez-Lligoña, M.; Colomer-Castell, S.; Campos, C.; González-Camuesco, A.; Quer, J. Viral Quasispecies Inference from Single Observations—Mutagens as Accelerators of Quasispecies Evolution. Microorganisms 2025, 13, 2029. https://doi.org/10.3390/microorganisms13092029
Gregori J, Salicrú M, Ibáñez-Lligoña M, Colomer-Castell S, Campos C, González-Camuesco A, Quer J. Viral Quasispecies Inference from Single Observations—Mutagens as Accelerators of Quasispecies Evolution. Microorganisms. 2025; 13(9):2029. https://doi.org/10.3390/microorganisms13092029
Chicago/Turabian StyleGregori, Josep, Miquel Salicrú, Marta Ibáñez-Lligoña, Sergi Colomer-Castell, Carolina Campos, Alvaro González-Camuesco, and Josep Quer. 2025. "Viral Quasispecies Inference from Single Observations—Mutagens as Accelerators of Quasispecies Evolution" Microorganisms 13, no. 9: 2029. https://doi.org/10.3390/microorganisms13092029
APA StyleGregori, J., Salicrú, M., Ibáñez-Lligoña, M., Colomer-Castell, S., Campos, C., González-Camuesco, A., & Quer, J. (2025). Viral Quasispecies Inference from Single Observations—Mutagens as Accelerators of Quasispecies Evolution. Microorganisms, 13(9), 2029. https://doi.org/10.3390/microorganisms13092029