Vectors on the Move: How Climate Change Fuels the Spread of Arboviruses in Europe
Abstract
1. Introduction
2. Methods
3. Transmission Dynamics of Vector-Borne Diseases (VBDs)
4. Clinical Manifestations of the Most Frequent Vector-Borne Diseases (VBDs)
4.1. Dengue
4.2. Chikungunya
4.3. Zika
4.4. Malaria
4.5. Leishmaniasis
4.6. West Nile Virus
4.7. Other Arboviruses
5. Pediatric Considerations and Data Gaps
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 2019, 1436, 157–173. [Google Scholar] [CrossRef]
- National Centers for Environmental Information (NCEI). Annual 2020 Global Climate Report. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202013 (accessed on 2 July 2024).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 2 July 2024).
- Snyder, C.W. Evolution of global temperature over the past two million years. Nature 2016, 538, 226–228. [Google Scholar] [CrossRef]
- Thomson, M.C.; Stanberry, L.R. Climate Change and Vectorborne Diseases. N. Engl. J. Med. 2022, 387, 1969–1978. [Google Scholar] [CrossRef] [PubMed]
- Semenza, J.C.; Paz, S. Climate change and infectious disease in Europe: Impact, projection and adaptation. Lancet Reg. Health Eur. 2021, 9, 100230. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A. Climate change brings the specter of new infectious diseases. J. Clin. Investig. 2020, 130, 553–555. [Google Scholar] [CrossRef]
- Watts, D.M.; Burke, D.S.; Harrison, B.A.; Whitmire, R.E.; Nisalak, A. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am. J. Trop. Med. Hyg. 1987, 36, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Severson, D.W.; Behura, S.K. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches. Insects 2016, 7, 58. [Google Scholar] [CrossRef]
- Dohm, D.J.; O’Guinn, M.L.; Turell, M.J. Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J. Med. Entomol. 2002, 39, 221–225. [Google Scholar] [CrossRef]
- Reisen, W.K.; Meyer, R.P.; Presser, S.B.; Hardy, J.L. Effect of temperature on the transmission of western equine encephalomyelitis and St. Louis encephalitis viruses by Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 1993, 30, 151–160. [Google Scholar] [CrossRef]
- Turell, M.J.; Rossi, C.A.; Bailey, C.L. Effect of extrinsic incubation temperature on the ability of Aedes taeniorhynchus and Culex pipiens to transmit Rift Valley fever virus. Am. J. Trop. Med. Hyg. 1985, 34, 1211–1218. [Google Scholar] [CrossRef]
- Turell, M.J.; Beaman, J.R.; Tammariello, R.F. Susceptibility of selected strains of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to chikungunya virus. J. Med. Entomol. 1992, 29, 49–53. [Google Scholar] [CrossRef]
- Goindin, D.; Delannay, C.; Ramdini, C.; Gustave, J.; Fouque, F. Parity and longevity of Aedes aegypti according to temperatures in controlled conditions and consequences on dengue transmission risks. PLoS ONE 2015, 10, e0135489. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.V.; Brooke, B.D. The effect of elevated temperatures on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Malar. J. 2017, 16, 73. [Google Scholar] [CrossRef]
- Dai, Z.; Chen, Y.; Jiang, Y.; Wu, Y.; Jin, B.; Xu, Y.; Xu, J.; Tao, F.; Hu, X. Global Assessment of current and future chikungunya virus transmission risk using optimized maxent modeling. Acta Trop. 2025, 269, 107756. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Gubler, D.J. Geographic expansion of dengue: The impact of international travel. Med. Clin. N. Am. 2008, 92, 1377-x. [Google Scholar] [CrossRef]
- Semenza, J.C.; Suk, J.E. Vector-borne diseases and climate change: A European perspective. FEMS Microbiol. Lett. 2018, 365, fnx244. [Google Scholar] [CrossRef]
- Parham, P.E.; Waldock, J.; Christophides, G.K.; Michael, E. Climate change and vector-borne diseases of humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140377. [Google Scholar] [CrossRef] [PubMed]
- Hoberg, E.P.; Brooks, D.R. Evolution in action: Climate change, biodiversity dynamics and emerging infectious disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20130553. [Google Scholar] [CrossRef]
- Hii, Y.L.; Zaki, R.A.; Aghamohammadi, N.; Rocklöv, J. Research on Climate and Dengue in Malaysia: A Systematic Review. Curr. Environ. Health Rep. 2016, 3, 81–90. [Google Scholar] [CrossRef]
- Wu, X.; Lu, Y.; Zhou, S.; Chen, L.; Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 2016, 86, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Simmons, C.P.; Farrar, J.J.; Nguyen, v.V.; Wills, B. Dengue. N. Engl. J. Med. 2012, 366, 1423–1432. [Google Scholar] [CrossRef]
- Hales, S.; de Wet, N.; Maindonald, J.; Woodward, A. Potential effect of population and climate changes on global distribution of dengue fever: An empirical model. Lancet 2002, 360, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Gubler, D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 1998, 11, 480–496. [Google Scholar] [CrossRef]
- Froxán-Grabalosa, J.; Mariani, S.; Cerecedo-Iglesias, C.; Richter-Boix, A.; Torner, A.O.; Pla, M.; Brotons, L.; Bartumeus, F. Ecological drivers of arboviral disease risk: Vector-host interfaces in a Mediterranean wetland of Northeastern Spain. PLoS Negl. Trop. Dis. 2025, 19, e0013447. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Dengue Worldwide Overview. 2 September 2024. Available online: https://www.ecdc.europa.eu/en/dengue-monthly (accessed on 2 October 2024).
- Istituto Superiore di Sanità (ISS). Febbre Dengue—News. EpiCentro. Available online: https://www.epicentro.iss.it/febbre-dengue/aggiornamenti (accessed on 2 October 2024).
- Scheld, W.M.; Grayson, M.L.; Hughes, J.M. (Eds.) Emerging Infections 9; ASM Press: Washington, DC, USA, 2010; Available online: https://onlinelibrary.wiley.com/doi/book/10.1128/9781555816803 (accessed on 27 August 2025).
- Damtew, Y.T.; Tong, M.; Varghese, B.M.; Anikeeva, O.; Hansen, A.; Dear, K.; Zhang, Y.; Morgan, G.; Driscoll, T.; Capon, T.; et al. Effects of high temperatures and heatwaves on dengue fever: A systematic review and meta-analysis. EBioMedicine 2023, 91, 104582. [Google Scholar] [CrossRef]
- Jetten, T.H.; Focks, D.A. Potential changes in the distribution of dengue transmission under climate warming. Am. J. Trop. Med. Hyg. 1997, 57, 285–297. [Google Scholar] [CrossRef]
- Chen, Y.; Li, N.; Lourenço, J.; Wang, L.; Cazelles, B.; Dong, L.; Li, B.; Liu, Y.; Jit, M.; Bosse, N.I.; et al. Measuring the effects of COVID-19-related disruption on dengue transmission in southeast Asia and Latin America: A statistical modelling study. Lancet Infect. Dis. 2022, 22, 657–667. [Google Scholar] [CrossRef]
- Kuno, G. Review of the factors modulating dengue transmission. Epidemiol. Rev. 1995, 17, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Horta, M.A.; Bruniera, R.; Ker, F.; Catita, C.; Ferreira, A.P. Temporal relationship between environmental factors and the occurrence of dengue fever. Int. J. Environ. Health Res. 2014, 24, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Limper, M.; Thai, K.T.; Gerstenbluth, I.; Osterhaus, A.D.; Duits, A.J.; van Gorp, E.C. Climate Factors as Important Determinants of Dengue Incidence in Curaçao. Zoonoses Public Health 2016, 63, 129–137. [Google Scholar] [CrossRef]
- Messina, J.P.; Brady, O.J.; Scott, T.W.; Zou, C.; Pigott, D.M.; Duda, K.A.; Bhatt, S.; Katzelnick, L.; Howes, R.E.; Battle, K.E.; et al. Global spread of dengue virus types: Mapping the 70 year history. Trends Microbiol. 2014, 22, 138–146. [Google Scholar] [CrossRef]
- Endy, T.P.; Nisalak, A.; Chunsuttiwat, S.; Libraty, D.H.; Green, S.; Rothman, A.L.; Vaughn, D.W.; Ennis, F.A. Spatial and temporal circulation of dengue virus serotypes: A prospective study of primary school children in Kamphaeng Phet, Thailand. Am. J. Epidemiol. 2002, 156, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.S.; Nisalak, A.; Johnson, D.E.; Scott, R.M. A prospective study of dengue infections in Bangkok. Am. J. Trop. Med. Hyg. 1988, 38, 172–180. [Google Scholar] [CrossRef]
- Endy, T.P.; Chunsuttiwat, S.; Nisalak, A.; Libraty, D.H.; Green, S.; Rothman, A.L.; Vaughn, D.W.; Ennis, F.A. Epidemiology of inapparent and symptomatic acute dengue virus infection: A prospective study of primary school children in Kamphaeng Phet, Thailand. Am. J. Epidemiol. 2002, 156, 40–51. [Google Scholar] [CrossRef]
- Porter, K.R.; Beckett, C.G.; Kosasih, H.; Tan, R.I.; Alisjahbana, B.; Rudiman, P.I.; Widjaja, S.; Listiyaningsih, E.; Ma’Roef, C.N.; McArdle, J.L.; et al. Epidemiology of dengue and dengue hemorrhagic fever in a cohort of adults living in Bandung, West Java, Indonesia. Am. J. Trop. Med. Hyg. 2005, 72, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Ni, H.; Xu, R.; Barrett, A.D.; Watowich, S.J.; Gubler, D.J.; Weaver, S.C. Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J. Virol. 2000, 74, 3227–3234. [Google Scholar] [CrossRef]
- Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Innis, B.L.; Nimmannitya, S.; Suntayakorn, S.; Rothman, A.L.; Ennis, F.A.; Nisalak, A. Dengue in the early febrile phase: Viremia and antibody responses. J. Infect. Dis. 1997, 176, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Gratz, N.G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 2004, 18, 215–227. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Key Messages—Zika Virus Disease: Updated 6 April 2016. Available online: https://www.cdc.gov/zika/index.html (accessed on 2 July 2024).
- Caron, M.; Paupy, C.; Grard, G.; Becquart, P.; Mombo, I.; Nso, B.B.; Kassa Kassa, F.; Nkoghe, D.; Leroy, E.M. Recent introduction and rapid dissemination of Chikungunya virus and Dengue virus serotype 2 associated with human and mosquito coinfections in Gabon, central Africa. Clin. Infect. Dis. 2012, 55, e45–e53. [Google Scholar] [CrossRef]
- Cobra, C.; Rigau-Pérez, J.G.; Kuno, G.; Vorndam, V. Symptoms of dengue fever in relation to host immunologic response and virus serotype, Puerto Rico, 1990–1991. Am. J. Epidemiol. 1995, 142, 1204–1211. [Google Scholar] [CrossRef]
- WHO. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Prommalikit, O.; Thisyakorn, U.; Thisyakorn, C. Clinical manifestations of early childhood dengue virus infection in Thailand. Med. J. Malaysia. 2021, 76, 853–856. [Google Scholar]
- Malavige, G.N.; Ranatunga, P.K.; Velathanthiri, V.G.; Fernando, S.; Karunatilaka, D.H.; Aaskov, J.; Seneviratne, S.L. Patterns of disease in Sri Lankan dengue patients. Arch. Dis. Child. 2006, 91, 396–400. [Google Scholar] [CrossRef]
- Jayarajah, U.; Madarasinghe, M.; Hapugoda, D.; Dissanayake, U.; Perera, L.; Kannangara, V.; Udayangani, C.; Peiris, R.; Yasawardene, P.; De Zoysa, I.; et al. Clinical and Biochemical Characteristics of Dengue Infections in Children From Sri Lanka. Glob. Pediatr. Health 2020, 7, 2333794X20974207. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.M.C.D.; Pires, R.C.; Monteiro, D.C.S.; Cronemberges, T.C.R.; Souza, N.V.; Colares, J.K.B.; Lima, D.M. Is there an overestimation of dengue compared with that of other acute febrile syndromes in childhood? PLoS Negl. Trop. Dis. 2024, 18, e0012137. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Dengue and Severe Dengue. Available online: https://www.who.int/health-topics/dengue-and-severe-dengue (accessed on 2 July 2024).
- Noble, C.G.; Shi, P.Y. Structural biology of dengue virus enzymes: Towards rational design of therapeutics. Antivir. Res. 2012, 96, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, M.N.; Garcia-Blanco, M.A. Targeting host factors to treat West Nile and dengue viral infections. Viruses 2014, 6, 683–708. [Google Scholar] [CrossRef]
- Precioso, A.R.; Palacios, R.; Thomé, B.; Mondini, G.; Braga, P.; Kalil, J. Clinical evaluation strategies for a live attenuated tetravalent dengue vaccine. Vaccine 2015, 33, 7121–7125. [Google Scholar] [CrossRef] [PubMed]
- Prompetchara, E.; Ketloy, C.; Thomas, S.J.; Ruxrungtham, K. Dengue vaccine: Global development update. Asian Pac. J. Allergy Immunol. 2020, 38, 178–185. [Google Scholar] [CrossRef]
- Huang, C.H.; Tsai, Y.T.; Wang, S.F.; Wang, W.H.; Chen, Y.H. Dengue vaccine: An update. Expert. Rev. Anti Infect. Ther. 2021, 19, 1495–1502. [Google Scholar] [CrossRef]
- Lumsden, W.H. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. II. General description and epidemiology. Trans. R. Soc. Trop. Med. Hyg. 1955, 49, 33–57. [Google Scholar] [CrossRef]
- Thiberville, S.D.; Moyen, N.; Dupuis-Maguiraga, L.; Nougairede, A.; Gould, E.A.; Roques, P.; de Lamballerie, X. Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy. Antivir. Res. 2013, 99, 345–370. [Google Scholar] [CrossRef] [PubMed]
- Pialoux, G.; Gaüzère, B.A.; Jauréguiberry, S.; Strobel, M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 2007, 7, 319–327. [Google Scholar] [CrossRef]
- Schilte, C.; Staikowsky, F.; Couderc, T.; Madec, Y.; Carpentier, F.; Kassab, S.; Albert, M.L.; Lecuit, M.; Michault, A. Chikungunya virus-associated long-term arthralgia: A 36-month prospective longitudinal study. PLoS Negl. Trop. Dis. 2013, 7, e2137, Erratum in PLoS Negl. Trop. Dis. 2013, 7. https://doi.org/10.1371/annotation/850ee20f-2641-46ac-b0c6-ef4ae79b6de6. [Google Scholar] [CrossRef] [PubMed]
- Volk, S.M.; Chen, R.; Tsetsarkin, K.A.; Adams, A.P.; Garcia, T.I.; Sall, A.A.; Nasar, F.; Schuh, A.J.; Holmes, E.C.; Higgs, S.; et al. Genome-scale phylogenetic analyses of chikungunya virus reveal in-dependent emergences of recent epidemics and various evolutionary rates. J. Virol. 2010, 84, 6497–6504, Erratum in J. Virol. 2011, 85, 5706. [Google Scholar] [CrossRef]
- Powers, A.M.; Brault, A.C.; Tesh, R.B.; Weaver, S.C. Re-emergence of Chikungunya and O’n-yong-nyong viruses: Evidence for distinct geographical lineages and distant evolutionary relationships. J. Gen. Virol. 2000, 81 Pt 2, 471–479. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). The Climatic Suitability for Dengue Transmission in Continental Europe. Published 26 July 2012. Available online: https://www.ecdc.europa.eu/en/publications-data/climatic-suitability-dengue-transmission-continental-europe (accessed on 1 July 2024).
- Schuffenecker, I.; Iteman, I.; Michault, A.; Murri, S.; Frangeul, L.; Vaney, M.C.; Lavenir, R.; Pardigon, N.; Reynes, J.M.; Pettinelli, F.; et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 2006, 3, e263. [Google Scholar] [CrossRef]
- Tsetsarkin, K.A.; Vanlandingham, D.L.; McGee, C.E.; Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007, 3, e201. [Google Scholar] [CrossRef]
- Rezza, G.; Nicoletti, L.; Angelini, R.; Romi, R.; Finarelli, A.C.; Panning, M.; Cordioli, P.; Fortuna, C.; Boros, S.; Magurano, F.; et al. Infection with chikungunya virus in Italy: An outbreak in a temperate region. Lancet 2007, 370, 1840–1846. [Google Scholar] [CrossRef]
- Grandadam, M.; Caro, V.; Plumet, S.; Thiberge, J.M.; Souarès, Y.; Failloux, A.B.; Tolou, H.J.; Budelot, M.; Cosserat, D.; Leparc-Goffart, I.; et al. Chikungunya virus, southeastern France. Emerg. Infect. Dis. 2011, 17, 910–913. [Google Scholar] [CrossRef]
- Fischer, D.; Thomas, S.M.; Suk, J.E.; Sudre, B.; Hess, A.; Tjaden, N.B.; Beierkuhnlein, C.; Semenza, J.C. Climate change effects on Chikungunya transmission in Europe: Geospatial analysis of vector’s climatic suitability and virus’ temperature requirements. Int. J. Health Geogr. 2013, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Caminade, C.; Medlock, J.M.; Ducheyne, E.; McIntyre, K.M.; Leach, S.; Baylis, M.; Morse, A.P. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: Recent trends and future scenarios. J. R. Soc. Interface 2012, 9, 2708–2717. [Google Scholar] [CrossRef]
- Tilston, N.; Skelly, C.; Weinstein, P. Pan-European Chikungunya surveillance: Designing risk stratified surveillance zones. Int. J. Health Geogr. 2009, 8, 61. [Google Scholar] [CrossRef]
- Vairo, F.; Di Pietrantonj, C.; Pasqualini, C.; Mammone, A.; Lanini, S.; Nicastri, E.; Castilletti, C.; Ferraro, F.; Di Bari, V.; Puro, V.; et al. The Surveillance of Chikungunya Virus in a Temperate Climate: Challenges and Possible Solutions from the Experience of Lazio Region, Italy. Viruses 2018, 10, 501. [Google Scholar] [CrossRef]
- Barr, K.L.; Vaidhyanathan, V. Chikungunya in Infants and Children: Is Pathogenesis Increasing? Viruses 2019, 11, 294. [Google Scholar] [CrossRef]
- Ward, C.E.; Chapman, J.I. Chikungunya in Children: A Clinical Review. Pediatr. Emerg. Care 2018, 34, 510–515. [Google Scholar] [CrossRef]
- Gaibani, P.; Landini, M.P.; Sambri, V. Diagnostic Methods for CHIKV Based on Serological Tools. Methods Mol. Biol. 2016, 1426, 63–73. [Google Scholar] [CrossRef]
- Faye, O.; Freire, C.C.; Iamarino, A.; Faye, O.; de Oliveira, J.V.; Diallo, M.; Zanotto, P.M.; Sall, A.A. Molecular evolution of Zika virus during its emergence in the 20(th) century. PLoS Negl. Trop. Dis. 2014, 8, e2636. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Lambert, A.J.; Holodniy, M.; Saavedra, S.; Signor Ldel, C. Phylogeny of Zika Virus in Western Hemisphere, 2015. Emerg. Infect. Dis. 2016, 22, 933–935. [Google Scholar] [CrossRef]
- Duffy, M.R.; Chen, T.H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009, 360, 2536–2543. [Google Scholar] [CrossRef]
- Parra, B.; Lizarazo, J.; Jiménez-Arango, J.A.; Zea-Vera, A.F.; González-Manrique, G.; Vargas, J.; Angarita, J.A.; Zuñiga, G.; Lopez-Gonzalez, R.; Beltran, C.L.; et al. Guillain-Barré Syndrome Associated with Zika Virus Infection in Colombia. N. Engl. J. Med. 2016, 375, 1513–1523. [Google Scholar] [CrossRef]
- Musso, D.; Rodriguez-Morales, A.J.; Levi, J.E.; Cao-Lormeau, V.M.; Gubler, D.J. Unexpected outbreaks of arbovirus infections: Lessons learned from the Pacific and tropical America. Lancet Infect. Dis. 2018, 18, e355–e361. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Shan, C.; Nunes, B.T.D.; Yun, R.; Haller, S.L.; Rafael, G.H.; Azar, S.R.; Andersen, C.R.; Plante, K.; et al. Role of mutational reversions and fitness restoration in Zika virus spread to the Americas. Nat. Commun. 2021, 12, 595. [Google Scholar] [CrossRef]
- Faria, N.R.; Azevedo, R.D.S.D.S.; Kraemer, M.U.G.; Souza, R.; Cunha, M.S.; Hill, S.C.; Thézé, J.; Bonsall, M.B.; Bowden, T.A.; Rissanen, I.; et al. Zika virus in the Americas: Early epidemiological and genetic findings. Science 2016, 352, 345–349. [Google Scholar] [CrossRef]
- Plourde, A.R.; Bloch, E.M. A Literature Review of Zika Virus. Emerg. Infect. Dis. 2016, 22, 1185–1192. [Google Scholar] [CrossRef]
- Oberlin, A.M.; Wylie, B.J. Vector-borne disease, climate change and perinatal health. Semin. Perinatol. 2023, 47, 151841. [Google Scholar] [CrossRef]
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef]
- Venturi, G.; Zammarchi, L.; Fortuna, C.; Remoli, M.E.; Benedetti, E.; Fiorentini, C.; Trotta, M.; Rizzo, C.; Mantella, A.; Rezza, G.; et al. An autochthonous case of Zika due to possible sexual transmission, Florence, Italy, 2014. Euro Surveill. 2016, 21, 30148. [Google Scholar] [CrossRef]
- Derrington, S.M.; Cellura, A.P.; McDermott, L.E.; Gubitosi, T.; Sonstegard, A.M.; Chen, S.; Garg, A. Mucocutaneous Findings and Course in an Adult with Zika Virus Infection. JAMA Dermatol. 2016, 152, 691–693. [Google Scholar] [CrossRef] [PubMed]
- Brasil, P.; Calvet, G.A.; Siqueira, A.M.; Wakimoto, M.; de Sequeira, P.C.; Nobre, A.; Quintana Mde, S.; Mendonça, M.C.; Lupi, O.; de Souza, R.V.; et al. Zika Virus Outbreak in Rio de Janeiro, Brazil: Clinical Characterization, Epidemiological and Virological Aspects. PLoS Negl. Trop. Dis. 2016, 10, e0004636. [Google Scholar] [CrossRef]
- Martelli, C.M.T.; Cortes, F.; Brandão-Filho, S.P.; Turchi, M.D.; Souza, W.V.; Araújo, T.V.B.; Ximenes, R.A.A.; Miranda-Filho, D.B. Clinical spectrum of congenital Zika virus infection in Brazil: Update and issues for research development. Rev. Soc. Bras. Med. Trop. 2024, 57, e00301. [Google Scholar] [CrossRef] [PubMed]
- Sharp, T.M.; Fischer, M.; Muñoz-Jordán, J.L.; Paz-Bailey, G.; Staples, J.E.; Gregory, C.J.; Waterman, S.H. Dengue and Zika Virus Diagnostic Testing for Patients with a Clinically Compatible Illness and Risk for Infection with Both Viruses. MMWR Recomm. Rep. 2019, 68, 1–10. [Google Scholar] [CrossRef]
- Pan American Health Organization (PAHO); World Health Organization (WHO). Zika. 10 May 2024. Available online: https://www.paho.org/en/topics/zika (accessed on 2 July 2024).
- Centers for Disease Control and Prevention (CDC). Testing for Zika. Zika Virus. 13 June 2024. Available online: https://www.cdc.gov/zika/testing/index.html (accessed on 2 July 2024).
- de la Salud, O.P. Síntesis de evidencia: Directrices para el diagnóstico y el tratamiento del dengue, el chikunguña y el zika en la Región de las Américas [Evidence synthesis: Guidelines for diagnosis and treatment of dengue, chikungunya, and zika in the Region of the AmericasSíntese de evidências: Diretrizes para o diagnóstico e o tratamento da den-gue, chikungunya e zika na Região das Américas]. Rev. Panam. Salud Publica. 2022, 46, e82. [Google Scholar] [CrossRef]
- Jansen, C.C.; Beebe, N.W. The dengue vector Aedes aegypti: What comes next. Microbes Infect. 2010, 12, 272–279. [Google Scholar] [CrossRef]
- Giron, S.; Franke, F.; Decoppet, A.; Cadiou, B.; Travaglini, T.; Thirion, L.; Durand, G.; Jeannin, C.; L’Ambert, G.; Grard, G.; et al. Vector-borne transmission of Zika virus in Europe, southern France, August 2019. Euro Surveill. 2019, 24, 1900655. [Google Scholar] [CrossRef]
- LaRocque, R.L.; Ryan, E.T. Personal Actions to Minimize Mosquito-Borne Illnesses, Including Zika Virus. Ann. Intern. Med. 2016, 165, 589–590. [Google Scholar] [CrossRef]
- Kasetsirikul, S.; Buranapong, J.; Srituravanich, W.; Kaewthamasorn, M.; Pimpin, A. The development of malaria diagnostic techniques: A review of the approaches with focus on dielectrophoretic and magnetophoretic methods. Malar. J. 2016, 15, 358. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). World Malaria Report 2017. Available online: https://www.who.int/publications/i/item/9789241565523 (accessed on 2 July 2024).
- World Health Organization (WHO). World Malaria Report 2023. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023 (accessed on 11 October 2024).
- Kouakou, Y.E.; Dely, I.D.; Doumbia, M.; Ouattara, A.; N’da, E.J.; Brou, K.E.; Zouzou, Y.A.; Cissé, G.; Koné, B. Methodological framework for assessing malaria risk associated with climate change in Côte d’Ivoire. Geospat. Health 2024, 19, 10.4081/gh.2024.1285. [Google Scholar] [CrossRef] [PubMed]
- Andrade, H.F., Jr. Bruce-Chwatt’s essential malariology. Rev. Inst. Med. Trop. São Paulo. 1995, 37, 86. [Google Scholar] [CrossRef]
- Martens, W.J.M.; Jetten, T.H.; Focks, D.A. Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim. Chang. 1997, 35, 145–156. [Google Scholar] [CrossRef]
- Detinova, T.S. Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monogr. Ser. World Health Organ. 1962, 47, 13–191. Available online: https://pubmed.ncbi.nlm.nih.gov/13885800/ (accessed on 2 July 2024). [CrossRef]
- Siraj, A.S.; Santos-Vega, M.; Bouma, M.J.; Yadeta, D.; Ruiz Carrascal, D.; Pascual, M. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 2014, 343, 1154–1158. [Google Scholar] [CrossRef]
- Chala, B.; Hamde, F. Emerging and Re-emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Front. Public Health 2021, 9, 715759. [Google Scholar] [CrossRef]
- Komen, K.; Olwoch, J.; Rautenbach, H.; Botai, J.; Adebayo, A. Long-run relative importance of temperature as the main driver to malaria transmission in Limpopo Province, South Africa: A simple econometric approach. Ecohealth 2015, 12, 131–143. [Google Scholar] [CrossRef]
- Garske, T.; Ferguson, N.M.; Ghani, A.C. Estimating air temperature and its influence on malaria transmission across Africa. PLoS ONE 2013, 8, e56487. [Google Scholar] [CrossRef]
- Paaijmans, K.P.; Blanford, S.; Bell, A.S.; Blanford, J.I.; Read, A.F.; Thomas, M.B. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl. Acad. Sci. USA 2010, 107, 15135–15139. [Google Scholar] [CrossRef]
- Egbendewe-Mondzozo, A.; Musumba, M.; McCarl, B.A.; Wu, X. Climate change and vector-borne diseases: An economic impact analysis of malaria in Africa. Int. J. Environ. Res. Public Health 2011, 8, 913–930. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, C.; Vasse, C.; Minodier, P.; Mornand, P.; Naudin, J.; Quinet, B.; Siriez, J.Y.; Sorge, F.; de Suremain, N.; Thellier, M.; et al. Erratum to “Management and prevention of imported malaria in children. Update of the French guidelines” [Med Mal Infect 50 (2020) 127-140]. Med. Mal. Infect. 2020, 50, 396. [Google Scholar] [CrossRef]
- Centre National de Référence du Paludisme. Rapports D’activités. Available online: https://cnr-paludisme.fr/activites-dexpertise/rapports-dactivites/ (accessed on 11 October 2024).
- D’Ortenzio, E.; Godineau, N.; Fontanet, A.; Houze, S.; Bouchaud, O.; Matheron, S.; Le Bras, J. Pro-longed Plasmodium falciparum infection in immigrants, Paris. Emerg. Infect. Dis. 2008, 14, 323–326. [Google Scholar] [CrossRef]
- EM consulte—Paludisme d’importation de l’enfant. Available online: https://www.em-consulte.com/article/283005/paludisme-d-importation-de-l-enfant (accessed on 11 October 2024).
- Ayanlade, A.; Sergi, C.; Ayanlade, O.S. Malaria and meningitis under climate change: Initial assessment of climate information service in Nigeria. Meteorol. Appl. 2020, 27, e1953. [Google Scholar] [CrossRef]
- Hoshen, M.B.; Morse, A.P. A weather-driven model of malaria transmission. Malar. J. 2004, 3, 32. [Google Scholar] [CrossRef]
- Ermert, V.; Fink, A.H.; Jones, A.E.; Morse, A.P. Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review. Malar. J. 2011, 10, 35. [Google Scholar] [CrossRef]
- Diouf, I.; Rodriguez-Fonseca, B.; Deme, A.; Caminade, C.; Morse, A.P.; Cisse, M.; Sy, I.; Dia, I.; Ermert, V.; Ndione, J.A.; et al. Comparison of Malaria Simulations Driven by Meteorological Observations and Reanalysis Products in Senegal. Int. J. Environ. Res. Public Health 2017, 14, 1119. [Google Scholar] [CrossRef]
- Diouf, I.; Rodriguez Fonseca, B.; Caminade, C.; Thiaw, W.M.; Deme, A.; Morse, A.P.; Ndione, J.A.; Gaye, A.T.; Diaw, A.; Ndiaye, M.K.N. Climate Variability and Malaria over West Africa. Am. J. Trop. Med. Hyg. 2020, 102, 1037–1047. [Google Scholar] [CrossRef]
- Ermert, V.; Fink, A.H.; Morse, A.P.; Paeth, H. The impact of regional climate change on malaria risk due to greenhouse forcing and land-use changes in tropical Africa. Env. Health Perspect. 2012, 120, 77–84. [Google Scholar] [CrossRef]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef]
- Desjeux, P. The increase in risk factors for leishmaniasis worldwide. Trans. R. Soc. Trop. Med. Hyg. 2001, 95, 239–243. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Leishmaniasis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 11 October 2024).
- Ready, P.D. Leishmaniasis emergence in Europe. Euro Surveill. 2010, 15, 19505. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Results Report 2020–2021. Available online: https://www.who.int/about/accountability/results/who-results-report-2020-2021 (accessed on 2 July 2024).
- Ghatee, M.A.; Taylor, W.R.; Karamian, M. The Geographical Distribution of Cutaneous Leishmaniasis Causative Agents in Iran and Its Neighboring Countries, A Review. Front. Public Health 2020, 8, 11. [Google Scholar] [CrossRef]
- Paz, S.; Majeed, A.; Christophides, G.K. Climate change impacts on infectious diseases in the Eastern Mediterranean and the Middle East (EMME)-risks and recommendations. Clim. Chang. 2021, 169, 40. [Google Scholar] [CrossRef]
- Alawieh, A.; Musharrafieh, U.; Jaber, A.; Berry, A.; Ghosn, N.; Bizri, A.R. Revisiting leishmaniasis in the time of war: The Syrian conflict and the Lebanese outbreak. Int. J. Infect. Dis. 2014, 29, 115–119. [Google Scholar] [CrossRef]
- Al-Salem, W.S.; Pigott, D.M.; Subramaniam, K.; Haines, L.R.; Kelly-Hope, L.; Molyneux, D.H.; Hay, S.I.; Acosta-Serrano, A. Cutaneous Leishmaniasis and Conflict in Syria. Emerg. Infect. Dis. 2016, 22, 931–933. [Google Scholar] [CrossRef]
- Negev, M.; Paz, S.; Clermont, A.; Pri-Or, N.G.; Shalom, U.; Yeger, T.; Green, M.S. Impacts of Climate Change on Vector Borne Diseases in the Mediterranean Basin—Implications for Preparedness and Adaptation Policy. Int. J. Environ. Res. Public Health 2015, 12, 6745–6770. [Google Scholar] [CrossRef]
- Waitz, Y.; Paz, S.; Meir, D.; Malkinson, D. Temperature effects on the activity of vectors for Leishmania tropica along rocky habitat gradients in the Eastern Mediterranean. J. Vector Ecol. 2018, 43, 205–214. [Google Scholar] [CrossRef]
- Killick-Kendrick, R. The biology and control of phlebotomine sand flies. Clin. Dermatol. 1999, 17, 279–289. [Google Scholar] [CrossRef]
- Boussaa, S.; Guernaoui, S.; Pesson, B.; Boumezzough, A. Seasonal fluctuations of phlebotomine sand fly populations (Diptera: Psychodidae) in the urban area of Marrakech, Morocco. Acta Trop. 2005, 95, 86–91. [Google Scholar] [CrossRef]
- Ready, P.D. Leishmaniasis emergence and climate change. Rev. Sci. Tech. 2008, 27, 399–412. [Google Scholar] [CrossRef]
- Guernaoui, S.; Boumezzough, A.; Laamrani, A. Altitudinal structuring of sand flies (Diptera: Psychodidae) in the High-Atlas mountains (Morocco) and its relation to the risk of leishmaniasis transmission. Acta Trop. 2006, 97, 346–351. [Google Scholar] [CrossRef]
- Martín-Sánchez, J.; Morales-Yuste, M.; Acedo-Sánchez, C.; Barón, S.; Díaz, V.; Morillas-Márquez, F. Canine leishmaniasis in southeastern Spain. Emerg. Infect. Dis. 2009, 15, 795–798. [Google Scholar] [CrossRef]
- Bates, P.A. Leishmania sand fly interaction: Progress and challenges. Curr. Opin. Microbiol. 2008, 11, 340–344. [Google Scholar] [CrossRef]
- Chalghaf, B.; Chemkhi, J.; Mayala, B.; Harrabi, M.; Benie, G.B.; Michael, E.; Ben Salah, A. Ecological niche modeling predicting the potential distribution of Leishmania vectors in the Mediterranean basin: Impact of climate change. Parasit. Vectors 2018, 11, 461. [Google Scholar] [CrossRef]
- Erguler, K.; Pontiki, I.; Zittis, G.; Proestos, Y.; Christodoulou, V.; Tsirigotakis, N.; Antoniou, M.; Kasap, O.E.; Alten, B.; Lelieveld, J. A climate-driven and field data-assimilated population dynamics model of sand flies. Sci. Rep. 2019, 9, 2469. [Google Scholar] [CrossRef]
- Palumbo, E. Visceral leishmaniasis in children: A review. Minerva Pediatr. 2010, 62, 389–439. [Google Scholar]
- Montenegro Quiñonez, C.A.; Runge-Ranzinger, S.; Rahman, K.M.; Horstick, O. Effectiveness of vector control methods for the control of cutaneous and visceral leishmaniasis: A meta-review. PLoS Negl. Trop. Dis. 2021, 15, e0009309. [Google Scholar] [CrossRef]
- Farooq, Z.; Sjödin, H.; Semenza, J.C.; Tozan, Y.; Sewe, M.O.; Wallin, J.; Rocklöv, J. European projections of West Nile virus transmission under climate change scenarios. One Health 2023, 16, 100509. [Google Scholar] [CrossRef]
- Klingelhöfer, D.; Braun, M.; Kramer, I.M.; Reuss, F.; Müller, R.; Groneberg, D.A.; Brüggmann, D. A virus becomes a global concern: Research activities on West-Nile virus. Emerg. Microbes Infect. 2023, 12, 2256424. [Google Scholar] [CrossRef]
- Ronca, S.E.; Ruff, J.C.; Murray, K.O. A 20-year historical review of West Nile virus since its initial emergence in North America: Has West Nile virus become a neglected tropical disease? PLoS Negl. Trop. Dis. 2021, 15, e0009190. [Google Scholar] [CrossRef]
- D’Amore, C.; Grimaldi, P.; Ascione, T.; Conti, V.; Sellitto, C.; Franci, G.; Kafil, S.H.; Pagliano, P. West Nile Virus diffusion in temperate regions and climate change. A systematic review. Infez. Med. 2023, 31, 20–30. [Google Scholar] [CrossRef]
- Rossi, B.; Barreca, F.; Benvenuto, D.; Braccialarghe, N.; Campogiani, L.; Lodi, A.; Aguglia, C.; Cavasio, R.A.; Giacalone, M.L.; Kontogiannis, D.; et al. Human Arboviral Infections in Italy: Past, Current, and Future Challenges. Viruses 2023, 15, 368. [Google Scholar] [CrossRef]
- Engler, O.; Savini, G.; Papa, A.; Figuerola, J.; Groschup, M.H.; Kampen, H.; Medlock, J.; Vaux, A.; Wilson, A.J.; Werner, D.; et al. European surveillance for West Nile virus in mosquito populations. Int. J. Environ. Res. Public Health 2013, 10, 4869–4895. [Google Scholar] [CrossRef]
- Wang, G.; Minnis, R.B.; Belant, J.L.; Wax, C.L. Dry weather induces outbreaks of human West Nile virus infections. BMC Infect. Dis. 2010, 10, 38. [Google Scholar] [CrossRef]
- Anderson, M.; Forman, R.; Mossialos, E. Navigating the role of the EU Health Emergency Preparedness and Response Authority (HERA) in Europe and beyond. Lancet Reg. Health Eur. 2021, 9, 100203. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Data and Maps for West Nile. West Nile Virus. 18 June 2024. Available online: https://www.cdc.gov/west-nile-virus/data-maps/index.html (accessed on 21 September 2024).
- European Centre for Disease Prevention and Control (ECDC). Surveillance Atlas of Infectious Diseases. 28 April 2023. Available online: https://www.ecdc.europa.eu/en/surveillance-atlas-infectious-diseases (accessed on 21 September 2024).
- Riccetti, N.; Fasano, A.; Ferraccioli, F.; Gomez-Ramirez, J.; Stilianakis, N.I. Host selection and for-age ratio in West Nile virus-transmitting Culex mosquitoes: Challenges and knowledge gaps. PLoS Negl. Trop. Dis. 2022, 16, e0010819. [Google Scholar] [CrossRef]
- Sejvar, J.J. The long-term outcomes of human West Nile virus infection. Clin. Infect. Dis. 2007, 44, 1617–1624. [Google Scholar] [CrossRef]
- Lindsey, N.P.; Hayes, E.B.; Staples, J.E.; Fischer, M. West Nile virus disease in children, United States, 1999–2007. Pediatrics 2009, 123, e1084–e1089. [Google Scholar] [CrossRef]
- Hayes, E.B.; O’Leary, D.R. West Nile virus infection: A pediatric perspective. Pediatrics 2004, 113, 1375–1381. [Google Scholar] [CrossRef]
- Barzon, L.; Pacenti, M.; Sinigaglia, A.; Berto, A.; Trevisan, M.; Palù, G. West Nile virus infection in children. Expert. Rev. Anti Infect. Ther. 2015, 13, 1373–1386. [Google Scholar] [CrossRef]
Disease | Temperature Increase (°C) | Vector Range Expansion | Incubation Period Change | Impact on Transmission Rate |
---|---|---|---|---|
West Nile Virus | 2–3 °C | Yes | Decreased | Higher |
Malaria | 2–4 °C | Yes | Decreased | Higher |
Dengue | 2–3 °C | Yes | Decreased | Higher |
Chikungunya | 2–3 °C | Yes | Decreased | Higher |
Leishmaniasis | 1–2 °C | Yes | Decreased | Higher |
Zika | 2–3° | Yes | Decreased | Higher |
Disease | Vector | Host | Regions of Spread | New Areas of Spread | Climate Factors Influencing Spread |
---|---|---|---|---|---|
Dengue | Aedes mosquitoes | Humans | Southeast Asia, Latin America, Africa | Southern Europe (e.g., Spain, Italy) | Temperature increase, increased rainfall, urbanization, mosquito breeding sites |
Chikungunya | Aedes mosquitoes | Humans | Africa, Asia, Americas | Caribbean, Mediterranean regions | Warmer temperatures, changes in rainfall patterns, urbanization |
Zika Virus | Aedes mosquitoes | Humans | Americas, Southeast Asia | U.S. territories (e.g., Puerto Rico) | Temperature increase, altered habitats, urbanization |
Malaria | Anopheles mosquitoes | Humans | Sub-Saharan Africa, Southeast Asia | Southern Europe (e.g., Greece) | Increased rainfall, warmer temperatures, changes in land use |
Leishmaniasis | Sandflies | Humans, dogs | Mediterranean region, parts of Asia and Africa | Southern Europe, urban areas in the Middle East | Rising temperatures, habitat changes, urbanization |
West Nile Virus | Culex mosquitoes | Birds, humans | North America, Europe, Africa | Expanded into parts of Europe | Temperature increase, altered precipitation patterns, habitat availability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbone, G.; Boiardi, G.; Infantino, C.; Cunico, D.; Esposito, S. Vectors on the Move: How Climate Change Fuels the Spread of Arboviruses in Europe. Microorganisms 2025, 13, 2034. https://doi.org/10.3390/microorganisms13092034
Carbone G, Boiardi G, Infantino C, Cunico D, Esposito S. Vectors on the Move: How Climate Change Fuels the Spread of Arboviruses in Europe. Microorganisms. 2025; 13(9):2034. https://doi.org/10.3390/microorganisms13092034
Chicago/Turabian StyleCarbone, Giulia, Giulia Boiardi, Claudia Infantino, Daniela Cunico, and Susanna Esposito. 2025. "Vectors on the Move: How Climate Change Fuels the Spread of Arboviruses in Europe" Microorganisms 13, no. 9: 2034. https://doi.org/10.3390/microorganisms13092034
APA StyleCarbone, G., Boiardi, G., Infantino, C., Cunico, D., & Esposito, S. (2025). Vectors on the Move: How Climate Change Fuels the Spread of Arboviruses in Europe. Microorganisms, 13(9), 2034. https://doi.org/10.3390/microorganisms13092034