Use of Wastewater to Monitor Antimicrobial Resistance Trends in Communities and Implications for Wastewater-Based Epidemiology: A Review of the Recent Literature
Abstract
1. Introduction
2. Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Analysis
3. Results and Discussion
3.1. Antibiotic-Resistant Bacterial Species Detected in Wastewater
3.2. Antibiotic Resistance Genes Detected in Untreated Wastewater
3.3. Antimicrobial Residues Measured in Untreated Wastewater
3.4. Community vs. Hospital Wastewater
3.5. Conflicting Reports of Temporal Variation and Seasonal Influence on AMR
3.6. Understanding AMR Variability Through WBE
3.7. Additional Considerations for WBE-AMR: The Role of Biological Mechanisms
3.8. Research Gaps and Recommendations for Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARG | Antimicrobial resistance gene(s) |
AMR | Antimicrobial resistance |
ARB | Antibiotic-resistant bacteria |
WBE | Wastewater-based epidemiology |
WWTP | Wastewater treatment plant |
HGT | Horizontal gene transfer |
MGE | Mobile genetic elements |
AA | Antibiotic agents (i.e., antibiotics, antimicrobials) |
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Podolsky, S.H. The Evolving Response to Antibiotic Resistance (1945–2018). Palgrave Commun. 2018, 4, 124. [Google Scholar] [CrossRef]
- CDC Antimicrobial Resistance Threats in the United States. 2021–2022. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/update-2022.html (accessed on 17 May 2025).
- Pei, S.; Blumberg, S.; Vega, J.C.; Robin, T.; Zhang, Y.; Medford, R.J.; Adhikari, B.; Shaman, J. Challenges in Forecasting Antimicrobial Resistance. Emerg. Infect. Dis. 2023, 29, 679–685. [Google Scholar] [CrossRef]
- Bowes, D.A. Towards a Precision Model for Environmental Public Health: Wastewater-Based Epidemiology to Assess Population-Level Exposures and Related Diseases. Curr. Epidemiol. Rep. 2024, 11, 131–139. [Google Scholar] [CrossRef]
- Sims, N.; Kannan, A.; Holton, E.; Jagadeesan, K.; Mageiros, L.; Standerwick, R.; Craft, T.; Barden, R.; Feil, E.J.; Kasprzyk-Hordern, B. Antimicrobials and Antimicrobial Resistance Genes in a One-Year City Metabolism Longitudinal Study Using Wastewater-Based Epidemiology. Environ. Pollut. 2023, 333, 122020. [Google Scholar] [CrossRef]
- Baghal Asghari, F.; Dehghani, M.H.; Dehghanzadeh, R.; Farajzadeh, D.; Yaghmaeian, K.; Mahvi, A.H.; Rajabi, A. Antibiotic Resistance and Antibiotic-Resistance Genes of Pseudomonas Spp. and Escherichia Coli Isolated from Untreated Hospital Wastewater. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2021, 84, 172–181. [Google Scholar] [CrossRef]
- Kumar, M.; Ram, B.; Sewwandi, H.; Sulfikar; Honda, R.; Chaminda, T. Treatment Enhances the Prevalence of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes in the Wastewater of Sri Lanka, and India. Environ. Res. 2020, 183, 109179. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Zhao, H. Prevalence of Antibiotic Resistance Genes in Wastewater Collected from Ornamental Fish Market in Northern China. Environ. Pollut. Barking Essex 1987 2021, 271, 116316. [Google Scholar] [CrossRef]
- Shen, W.; Chen, Y.; Wang, N.; Wan, P.; Peng, Z.; Zhao, H.; Wang, W.; Xiong, L.; Zhang, S.; Liu, R. Seasonal Variability of the Correlation Network of Antibiotics, Antibiotic Resistance Determinants, and Bacteria in a Wastewater Treatment Plant and Receiving Water. J. Environ. Manag. 2022, 317, 115362. [Google Scholar] [CrossRef] [PubMed]
- Czatzkowska, M.; Rolbiecki, D.; Zaborowska, M.; Bernat, K.; Korzeniewska, E.; Harnisz, M. The Influence of Combined Treatment of Municipal Wastewater and Landfill Leachate on the Spread of Antibiotic Resistance in the Environment—A Preliminary Case Study. J. Environ. Manag. 2023, 347, 119053. [Google Scholar] [CrossRef]
- Johar, A.A.; Salih, M.A.; Abdelrahman, H.A.; Al Mana, H.; Hadi, H.A.; Eltai, N.O. Wastewater-Based Epidemiology for Tracking Bacterial Diversity and Antibiotic Resistance in COVID-19 Isolation Hospitals in Qatar. J. Hosp. Infect. 2023, 141, 209–220. [Google Scholar] [CrossRef]
- Guo, X.; Tang, N.; Lei, H.; Fang, Q.; Liu, L.; Zhou, Q.; Song, C. Metagenomic Analysis of Antibiotic Resistance Genes in Untreated Wastewater from Three Different Hospitals. Front. Microbiol. 2021, 12, 709051. [Google Scholar] [CrossRef]
- Wu, Y.; Gong, Z.; Wang, S.; Song, L. Occurrence and Prevalence of Antibiotic Resistance Genes and Pathogens in an Industrial Park Wastewater Treatment Plant. Sci. Total Environ. 2023, 880, 163278. [Google Scholar] [CrossRef]
- Kang, M.; Yang, J.; Kim, S.; Park, J.; Kim, M.; Park, W. Occurrence of Antibiotic Resistance Genes and Multidrug-Resistant Bacteria during Wastewater Treatment Processes. Sci. Total Environ. 2022, 811, 152331. [Google Scholar] [CrossRef]
- Verburg, I.; García-Cobos, S.; Hernández Leal, L.; Waar, K.; Friedrich, A.W.; Schmitt, H. Abundance and Antimicrobial Resistance of Three Bacterial Species along a Complete Wastewater Pathway. Microorganisms 2019, 7, 312. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Cui, Y.; Huang, L.; Wei, C.; Wang, G.; Zhang, J.; Jiang, Y.; Wei, Y.; Shen, P. Changes of Composition and Antibiotic Resistance of Fecal Coliform Bacteria in Municipal Wastewater Treatment Plant. J. Environ. Sci. 2023, 146, 241–250. [Google Scholar] [CrossRef]
- Oluseyi Osunmakinde, C.; Selvarajan, R.; Mamba, B.B.; Msagati, T.A.M. Profiling Bacterial Diversity and Potential Pathogens in Wastewater Treatment Plants Using High-Throughput Sequencing Analysis. Microorganisms 2019, 7, 506. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Li, Q.; Cai, X.; Wang, Y.; Wang, Y.; Mao, Y. Dynamic Distribution and Potential Transmission of Antibiotic Resistance Genes in Activated Sludge. Appl. Microbiol. Biotechnol. 2022, 106, 6785–6797. [Google Scholar] [CrossRef]
- Zhao, J.; Li, B.; Lv, P.; Hou, J.; Qiu, Y.; Huang, X. Distribution of Antibiotic Resistance Genes and Their Association with Bacteria Iand Viruses in Decentralized Sewage Treatment Facilities. Front. Environ. Sci. Eng. 2022, 16, 35. [Google Scholar] [CrossRef]
- Rothman, J.A.; Saghir, A.; Chung, S.-A.; Boyajian, N.; Dinh, T.; Kim, J.; Oval, J.; Sharavanan, V.; York, C.; Zimmer-Faust, A.G.; et al. Longitudinal Metatranscriptomic Sequencing of Southern California Wastewater Representing 16 Million People from August 2020–2021 Reveals Widespread Transcription of Antibiotic Resistance Genes. Water Res. 2023, 229, 119421. [Google Scholar] [CrossRef] [PubMed]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Lee, J.; Beck, K.; Bürgmann, H. Wastewater Bypass Is a Major Temporary Point-Source of Antibiotic Resistance Genes and Multi-Resistance Risk Factors in a Swiss River. Water Res. 2022, 208, 117827. [Google Scholar] [CrossRef]
- Su, H.; Li, W.; Okumura, S.; Wei, Y.; Deng, Z.; Li, F. Transfer, Elimination and Accumulation of Antibiotic Resistance Genes in Decentralized Household Wastewater Treatment Facility Treating Total Wastewater from Residential Complex. Sci. Total Environ. 2024, 912, 169144. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.M.; Vaz-Moreira, I.; Calderón-Franco, D.; Weissbrodt, D.; Purkrtova, S.; Gajdos, S.; Dottorini, G.; Nielsen, P.H.; Khalifa, L.; Cytryn, E.; et al. Candidate Biomarkers of Antibiotic Resistance for the Monitoring of Wastewater and the Downstream Environment. Water Res. 2023, 247, 120761. [Google Scholar] [CrossRef] [PubMed]
- Beltrán de Heredia, I.; Garbisu, C.; Alkorta, I.; Urra, J.; González-Gaya, B.; Ruiz-Romera, E. Spatio-Seasonal Patterns of the Impact of Wastewater Treatment Plant Effluents on Antibiotic Resistance in River Sediments. Environ. Pollut. 2023, 319, 120883. [Google Scholar] [CrossRef]
- Liu, B.; Xu, Y.; Liu, F.; Li, B.; Li, X.; Zha, R.; Wang, S.; Qiu, Y. Occurrence and Removal Prediction of Pharmaceuticals Positively Correlated with Antibiotic Resistance Genes in Wastewater Treatment Processes. Environ. Technol. Innov. 2023, 32, 103425. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, L.; Gu, J.-D.; Deng, S.; Huang, C.; Luo, L. The Factors Controlling Antibiotic Resistance Genes in Different Treatment Processes of Mainstream Full-Scale Wastewater Treatment Plants. Sci. Total Environ. 2023, 900, 165815. [Google Scholar] [CrossRef]
- Escolà Casas, M.; Schröter, N.S.; Zammit, I.; Castaño-Trias, M.; Rodriguez-Mozaz, S.; Gago-Ferrero, P.; Corominas, L.l. Showcasing the Potential of Wastewater-Based Epidemiology to Track Pharmaceuticals Consumption in Cities: Comparison against Prescription Data Collected at Fine Spatial Resolution. Environ. Int. 2021, 150, 106404. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Q.; Wang, N.; Yang, S.; Qi, H. High-Risk Antibiotics Positively Correlated with Antibiotic Resistance Genes in Five Typical Urban Wastewater. J. Environ. Manag. 2023, 342, 118296. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Wang, Z.; Gu, H.; Dong, H.; Zhang, X.; Cui, N.; Zhou, L.; Chen, G.; Zou, G. Occurrence and Temporal Variation of Antibiotics and Antibiotic Resistance Genes in Hospital Inpatient Department Wastewater: Impacts of Daily Schedule of Inpatients and Wastewater Treatment Process. Chemosphere 2022, 292, 133405. [Google Scholar] [CrossRef]
- Pires, J.; Santos, R.; Monteiro, S. Antibiotic Resistance Genes in Bacteriophages from Wastewater Treatment Plant and Hospital Wastewaters. Sci. Total Environ. 2023, 892, 164708. [Google Scholar] [CrossRef]
- Hutinel, M.; Larsson, D.G.J.; Flach, C.-F. Antibiotic Resistance Genes of Emerging Concern in Municipal and Hospital Wastewater from a Major Swedish City. Sci. Total Environ. 2022, 812, 151433. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yang, X.; Qin, J.; Lu, N.; Cheng, G.; Wu, N.; Pan, Y.; Li, J.; Zhu, L.; Wang, X.; et al. Metagenome-Wide Analysis of Antibiotic Resistance Genes in a Large Cohort of Human Gut Microbiota. Nat. Commun. 2013, 4, 2151. [Google Scholar] [CrossRef]
- Zare, S.; Derakhshandeh, A.; Mohammadi, A.; Noshadi, M. Abundance of Antibiotic Resistance Genes in Bacteria and Bacteriophages Isolated from Wastewater in Shiraz. Mol. Biol. Res. Commun. 2021, 10, 73–83. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, J.; Zhao, Z.; Cao, Y.; Li, B. Hospital Wastewater as a Reservoir for Antibiotic Resistance Genes: A Meta-Analysis. Front. Public Health 2020, 8, 574968. [Google Scholar] [CrossRef]
- Quintela-Baluja, M.; Abouelnaga, M.; Romalde, J.; Su, J.-Q.; Yu, Y.; Gomez-Lopez, M.; Smets, B.; Zhu, Y.-G.; Graham, D.W. Spatial Ecology of a Wastewater Network Defines the Antibiotic Resistance Genes in Downstream Receiving Waters. Water Res. 2019, 162, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Bowes, D.A.; Driver, E.M.; Kraberger, S.; Fontenele, R.S.; Holland, L.A.; Wright, J.; Johnston, B.; Savic, S.; Newell, M.E.; Adhikari, S.; et al. Leveraging an Established Neighbourhood-Level, Open Access Wastewater Monitoring Network to Address Public Health Priorities: A Population-Based Study. Lancet Microbe 2023, 4, e29–e37. [Google Scholar] [CrossRef]
- Aziz, F.; Wang, X.; Qasim Mahmood, M.; Guild, R. Wastewater Flooding Risk Assessment for Coastal Communities: Compound Impacts of Climate Change and Population Growth. J. Hydrol. 2024, 645, 132136. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Khiadani, M.; Foroughi, M.; Alizade Siuki, H.; Mehrfar, H. Wastewater Treatment Plants: The Missing Link in Global One-Health Surveillance and Management of Antibiotic Resistance. J. Infect. Public Health 2023, 16, 217–224. [Google Scholar] [CrossRef]
- Frost, L.S.; Leplae, R.; Summers, A.O.; Toussaint, A. Mobile Genetic Elements: The Agents of Open Source Evolution. Nat. Rev. Microbiol. 2005, 3, 722–732. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, J. Wastewater-Based Epidemiology: Current Uses and Future Opportunities as a Public Health Surveillance Tool. Environ. Health Rev. 2021, 64, 44–52. [Google Scholar] [CrossRef]
- Laicans, J.; Dejus, B.; Dejus, S.; Juhna, T. Precision and Accuracy Limits of Wastewater-Based Epidemiology—Lessons Learned from SARS-CoV-2: A Scoping Review. Water 2024, 16, 1220. [Google Scholar] [CrossRef]
- Adhikari, S.; Halden, R.U. Opportunities and Limits of Wastewater-Based Epidemiology for Tracking Global Health and Attainment of UN Sustainable Development Goals. Environ. Int. 2022, 163, 107217. [Google Scholar] [CrossRef]
- Zahra, Q.; Gul, J.; Shah, A.R.; Yasir, M.; Karim, A.M. Antibiotic Resistance Genes Prevalence Prediction and Interpretation in Beaches Affected by Urban Wastewater Discharge. One Health 2023, 17, 100642. [Google Scholar] [CrossRef] [PubMed]
- Fouz, N.; Pangesti, K.N.A.; Yasir, M.; Al-Malki, A.L.; Azhar, E.I.; Hill-Cawthorne, G.A.; Abd El Ghany, M. The Contribution of Wastewater to the Transmission of Antimicrobial Resistance in the Environment: Implications of Mass Gathering Settings. Trop. Med. Infect. Dis. 2020, 5, 33. [Google Scholar] [CrossRef] [PubMed]
Sample Collection | Identification Methods | Results | Future Work |
---|---|---|---|
|
|
|
|
Context-Specific Drivers | Sample Collection Approaches | Future Challenges |
---|---|---|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malcom, H.B.; Bowes, D.A. Use of Wastewater to Monitor Antimicrobial Resistance Trends in Communities and Implications for Wastewater-Based Epidemiology: A Review of the Recent Literature. Microorganisms 2025, 13, 2073. https://doi.org/10.3390/microorganisms13092073
Malcom HB, Bowes DA. Use of Wastewater to Monitor Antimicrobial Resistance Trends in Communities and Implications for Wastewater-Based Epidemiology: A Review of the Recent Literature. Microorganisms. 2025; 13(9):2073. https://doi.org/10.3390/microorganisms13092073
Chicago/Turabian StyleMalcom, Hannah B., and Devin A. Bowes. 2025. "Use of Wastewater to Monitor Antimicrobial Resistance Trends in Communities and Implications for Wastewater-Based Epidemiology: A Review of the Recent Literature" Microorganisms 13, no. 9: 2073. https://doi.org/10.3390/microorganisms13092073
APA StyleMalcom, H. B., & Bowes, D. A. (2025). Use of Wastewater to Monitor Antimicrobial Resistance Trends in Communities and Implications for Wastewater-Based Epidemiology: A Review of the Recent Literature. Microorganisms, 13(9), 2073. https://doi.org/10.3390/microorganisms13092073