Genotypic Features of Clinical and Bovine Escherichia coli O157 Strains Isolated in Countries with Different Associated-Disease Incidences
Abstract
:1. Introduction
2. Incidence of E. coli O157 Infections and HUS in Different Countries
3. Genetic Features of the Isolates
3.1. LSPA-6 Analysis
3.2. Clade Analysis
3.3. stx-Genotype Analysis
3.4. Anti-terminator Q Alleles Analysis
3.5. Putative Virulence Determinants Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control. Isolation of E. coli O157:H7 from sporadic cases of hemorrhagic colitis—United States. MMWR Morb. Mortal. Wkly Rep. 1982, 31, 580–585. [Google Scholar]
- Griffin, P.M.; Tauxe, R.V. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic syndrome. Epidemiol. Rev. 1991, 13, 60–98. [Google Scholar] [CrossRef] [PubMed]
- Gianantonio, C.; Vitacco, M.; Mendilaharzu, F.; Rutty, A.; Mendilaharzu, J. The hemolytic uremic syndrome. J. Pediatr. 1964, 64, 478–491. [Google Scholar] [CrossRef]
- Mele, C.; Remuzzi, G.; Noris, M. Hemolytic uremic síndrome. Semin. Immunopathol. 2014, 36, 399–420. [Google Scholar] [CrossRef] [PubMed]
- Walsh, P.R.; Johnson, S. Treatment and managment of children with haemolytic uraemic síndrome. Arch. Dis. Child. 2018, 103, 285–291. [Google Scholar] [PubMed]
- Mellmann, A.; Bielaszewska, M.; Köck, R.; Friedrich, A.W.; Fruth, A.; Middendorf, B.; Harmsen, D.; Schmidt, M.A.; Karch, H. Analysis of collection of Hemolytic Uremic Syndrome-associated Enterohemorragic Escherichia coli. Emerg. Infect. Dis. 2008, 14, 12871290. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, S.E.; Scallan, E.; Jones-Bitton, A.; Sargeant, J.M.; Stapleton, J.; Angulo, F.J.; Yeung, D.H.; Kirk, M.D. Global incidence of human Shiga toxin-producing Escherichia coli infections and deaths: A systematic review and knowledge synthesis. Foodborne Pathog. Dis. 2014, 11, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Pennington, H. Escherichia coli O157. Lancet 2010, 376, 1428–1435. [Google Scholar] [CrossRef]
- Innocent, G.T.; Mellor, D.J.; McEwen, S.A.; Reilly, W.J.; Smallwood, J.; Locking, M.E.; Shaw, D.J.; Michel, P.; Taylor, D.J.; Steele, W.B.; et al. Wellcome Trust-funded IPRAVE Consortium. Spatial and temporal epidemiology of sporadic human cases of Escherichia coli O157 in Scotland 1996–1999. Epidemiol. Infect. 2005, 133, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Spizzirri, F.D.; Rahman, R.C.; Bibiloni, N.; Ruscasso, J.D.; Amoreo, O.R. Childhood hemolytic uremic syndrome in Argentina: Long term follow-up and prognostic features. Pediatr. Nephrol. 1997, 11, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Boletín Integrado de Vigilancia N° 344–SE 3–Enero de 2017. Available online: http://www.msal.gob.ar/images/stories/boletines/Boletin-Integrado-De-Vigilancia-N344-SE3.pdf (accessed on 28 March 2018).
- Gyles, C.L. Shiga toxin-producing Escherichia coli: An overview. J. Anim. Sci. 2007, 85, E45–E62. [Google Scholar] [CrossRef] [PubMed]
- Milnes, A.S.; Stewart, I.; Clifton-Hadley, F.A.; Davies, R.H.; Newell, D.G.; Sayers, A.R.; Cheasty, T.; Cassar, C.; Ridley, A.; Cook, A.J.; et al. Intestinal carriage of verocytotoxigenic Escherichia coli O157, Salmonella, thermophilic Campylobacter and Yersinia enterocolitica in cattle, sheep and pigs at slaughter in Great Britain during 2003. Epidemiol. Infect. 2008, 136, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Iowa State University Center for Food security and Public health. Enterohemorragic Escherichia coli and Other E. coli Causing Hemolytic Uremic Syndrome. Center for Food Security and Public Health Technical Factsheets.61. Available online: https://lib.dr.iastate.edu/cfsph_factsheets/61 (accessed on 17 April 2018).
- Tanaro, J.D.; Pianciola, L.A.; D’Astek, B.A.; Piaggio, M.C.; Mazzeo, M.L.; Zolezzi, G.; Rivas, M. Virulence profile of Escherichia coli O157 strains isolated from surface water in cattle breeding areas. Lett. Appl. Microbiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Snedeker, K.G.; Shaw, D.J.; Locking, M.E.; Prescott, R. Primary and secondary cases in Escherichia coli O157 outbreaks: A statistical analysis. BMC Infect. Dis. 2009, 9, 144. [Google Scholar] [CrossRef] [PubMed]
- Painter, J.A.; Hoekstra, R.M.; Ayers, T.; Tauxe, R.V.; Braden, C.R.; Angulo, F.J.; Griffin, P. Attribution of Foodborne Illnesses, Hospitalizations, and Deaths to Food Commodities by using Outbreak Data, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Parry, S.M.; Salmon, R.L. Sporadic STEC O157 Infections: Secondary household transmission in Wales. Emerg. Infect. Dis. 1998, 4, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Lampel, K.A.; Karch, H.; Whittam, T.S. Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. J. Infect. Dis. 1998, 177, 1750–1753. [Google Scholar] [CrossRef] [PubMed]
- Karch, H.; Bielaszewska, M. Sorbitol-fermenting Shiga toxin-producing Escherichia coli O157:H-strains: Epidemiology, phenotypic and molecular characteristics, and microbiological diagnosis. J. Clin. Microbiol. 2001, 39, 2043–2049. [Google Scholar] [CrossRef] [PubMed]
- Wick, L.M.; Qi, W.; Lacher, D.W.; Whittam, T.S. Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J. Bacteriol. 2005, 187, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Leopold, S.R.; Magrini, V.; Holt, N.J.; Shaikh, N.; Mardis, E.R.; Cagno, J.; Ogura, Y.; Iguchi, A.; Hayashi, T.; Mellmann, A.; et al. A precise reconstruction of the emergence and constrained radiations of Escherichia coli O157 portrayed by backbone concatenomic analysis. PNAS 2009, 106, 8713–8718. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Makino, K.; Ohnishi, M.; Kurokawa, K.; Ishii, K.; Yokoyama, K.; Han, C.G.; Ohtsubo, E.; Nakayama, K.; Murata, T.; et al. Complete Genome Sequence of Enterohemorrhagic Escherichia coli O157:H7 and Genomic Comparison with a Laboratory Strain K-12. DNA Res. 2001, 8, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Perna, N.T.; Plunkett, G., 3rd; Burland, V.; Mau, B.; Glasner, J.D.; Rose, D.J.; Mayhew, G.F.; Evans, P.S.; Gregor, J.; Kirkpatrick, H.A.; et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 2001, 409, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Dallman, T.J.; Byrne, L.; Ashton, P.M.; Cowley, L.A.; Perry, N.T.; Adak, G.; Petrovska, L.; Ellis, R.J.; Elson, R.; Underwood, A.; et al. Whole-Genome Sequencing for National Surveillance of Shiga Toxin–Producing Escherichia coli O157. Clin. Infect. Dis. 2015, 61, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Karmali, M.A. Infection by Shiga toxin-producing Escherichia coli: An overview. Mol. Biotechnol. 2004, 26, 117–122. [Google Scholar] [CrossRef]
- Scheutz, F.; Teel, L.D.; Beutin, L.; Pierard, D.; Buvens, G.; Karch, H.; Mellmann, A.; Caprioli, A.; Tozzoli, R.; Morabito, S.; et al. A multi-center evaluation of a sequence-based protocol to subtype Shiga toxins and standardize Stx nomenclature. J. Clin. Microbiol. 2012, 50, 2951–2963. [Google Scholar] [CrossRef] [PubMed]
- Reiland, H.A.; Omolo, M.A.; Johnson, T.J.; Baumler, D.J. A Survey of Escherichia coli O157:H7 Virulence Factors: The First 25 Years and 13 Genomes. Adv. Microbiol. 2014, 4, 390–423. [Google Scholar] [CrossRef]
- Franz, E.; van Hoek, A.H.A.M.; van der Wal, F.J.; de Boer, A.; Zwartkruis-Nahuis, A.; van der Zwaluw, K.; Aarts, H.J.M.; Heuvelink, A.E. Genetic features differentiating bovine, food, and human isolates of Shiga toxin-producing Escherichia coli O157 in The Netherlands. J. Clin. Microbiol. 2012, 50, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Withworth, J.H.; Fegan, N.; Keller, J.; Gobius, K.S.; Bono, J.L.; Call, D.R.; Hancock, D.D.; Besser, T.E. International comparison of clinical, bovine, and environmental Escherichia coli O157 isolates on the basis of Shiga toxin-encoding bacteriophage insertion site genotypes. Appl. Environ. Microbiol. 2008, 74, 7447–7450. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.Z.; Musikiwa, A.; Islam, K.; Ahmed, S.; Chowdjury, S.; Ahad, A.; Biswas, P.K. Regional variation in the prevalence of E. coli O157 in cattle: A meta-analysis and meta-regression. PLoS ONE 2014, 9, e93299. [Google Scholar] [CrossRef] [PubMed]
- Chinen, I.; Otero, J.L.; Miliwebsky, E.S.; Rold, M.L.; Baschkier, A.; Chillemi, G.M.; Nóboli, C.; Frizzo, L.; Rivas, M. Isolation and characterisation of Shiga toxin-producing Escherichia coli O157:H7 from calves in Argentina. Res. Vet. Sci. 2003, 74, 283–286. [Google Scholar] [CrossRef]
- Fernandez, D.; Irino, K.; Sanz, M.E.; Padola, N.L.; Parma, A.E. Characterization of Shiga toxin-producing Escherichia coli isolated from dairy cows in Argentina. Lett. Appl. Microbiol. 2010, 51, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Masana, M.O.; Leotta, G.A.; Castillo, L.L.D.; Dastek, B.A.; Palladino, P.M.; Galli, L.; Vilacoba, E.; Carbonari, C.; Rodríguez, H.R.; Rivas, M. Prevalence, characterization, and genotypic analysis of Escherichia coli O157:H7/NM from selected beef exporting abattoirs of Argentina. J. Food. Prot. 2010, 73, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Meichtri, L.; Miliwebsky, E.; Gioffre, A.; Chinen, I.; Baschkier, A.; Chillemi, G.; Guth, B.E.; Masana, M.O.; Cataldi, A.; Rodríguez, H.R.; et al. Shiga toxin-producing Escherichia coli in healthy young beef steers from Argentina: Prevalence and virulence properties. Int. J. Food. Microbiol. 2004, 96, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Tanaro, J.D.; Leotta, G.A.; Lound, L.H.; Galli, L.; Piaggio, M.C.; Carbonari, C.C.; Araujo, S.; Rivas, M. Escherichia coli O157 in bovine feces and surface water streams in a beef cattle farm of Argentina. Foodborne Pathog. Dis. 2010, 7, 475–477. [Google Scholar] [CrossRef] [PubMed]
- LeJeune, J.T.; Abedon, S.T.; Takemura, K.; Christie, N.P.; Sreevatsan, S. Human Escherichia coli O157:H7 genetic marker in isolates of bovine origin. Emerg. Infect. Dis. 2004, 10, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Besser, T.E.; Shaikh, N.; Holt, N.J.; Tarr, P.I.; Konkel, M.E.; Malik-Kale, P.; Walsh, C.W.; Whittam, T.S.; Bono, J.L. Greater diversity of Shiga Toxin-encoding bacteriophage insertion sites among Escherichia coli O157:H7 isolates from cattle than in those from humans. Appl. Environ. Microbiol. 2007, 73, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.K.; Bono, J.L.; Clawson, M.L.; Leopold, S.R.; Shringi, S.; Besser, T.E. Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli O157:H7. Appl. Environ. Microbiol. 2013, 79, 7036–7041. [Google Scholar] [CrossRef] [PubMed]
- Callaway, T.R.; Carr, M.A.; Edrington, T.S.; Anderson, R.C.; Nisbet, D.J. Diet, Escherichia coli O157:H7, and cattle: A review after 10 years. Curr. Issues Mol. Biol. 2009, 11, 67–80. [Google Scholar] [PubMed]
- Widgren, S.; Söderlund, R.; Eriksson, E.; Fasth, C.; Aspan, A.; Emanuelson, U.; Alenius, S.; Lindberg, A. Longitudinal observational study over 38 months of verotoxigenic Escherichia coli O157:H7 status in 126 cattle herds. Prev. Vet. Med. 2015, 121, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Kudva, I.T.; Evans, P.S.; Perna, N.T.; Barrett, T.J.; Ausubel, F.M.; Blattner, F.R.; Calderwood, S.B. Strains of Escherichia coli O157:H7 differ primarily by insertions or deletions, not single-nucleotide polymorphisms. J. Bacteriol. 2002, 184, 1873–1879. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, N.; Tarr, P.I. Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: Integrations, excisions, truncations, and evolutionary implications. J. Bacteriol. 2003, 185, 3596–3605. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Nietfeldt, J.; Benson, A.K. Octamer-based genome scanning distinguishes a unique subpopulation of Escherichia coli O157:H7 strains in cattle. PNAS 1999, 96, 13288–13293. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Kovar, J.; Kim, J.; Nietfeldt, J.; Smith, D.; Moxley, R.A.; Olson, M.E.; Fey, P.D.; Benson, A.K. Identification of common subpopulations of non-sorbitol-fermenting, ß-glucuronidase-negative Escherichia coli O157:H7 from bovine production environments and human clinical samples. Appl. Environ. Microbiol. 2004, 70, 6846–6854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Laing, C.; Zhang, Z.; Hallewell, J.; You, C.; Ziebell, K.; Johnson, R.P.; Kropinski, A.M.; Thomas, J.E.; Karmali, M.; et al. Lineage and host source are both correlated with levels of Shiga toxin 2 production by Escherichia coli O157:H7 strains. Appl. Environ. Microbiol. 2010, 76, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Elhadidy, M.; Elkhatib, W.F.; Abo Elfadl, E.A.; Verstraete, K.; Denayer, S.; Barbau-Piednoire, E.; De Zutter, L.; Verhaegen, B.; De Rauw, K.; Piérard, D.; et al. Genetic diversity of Shiga toxin-producing Escherichia coli O157:H7 recovered from human and food sources. Microbiology 2015, 161, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Sharapov, U.M.; Wendel, A.M.; Davis, J.P.; Keene, W.E.; Farrar, J.; Sodha, S.; Hyytia-Trees, E.; Leeper, M.; Gerner-Smidt, P.; Griffin, P.M.; et al. Multistate outbreak of Escherichia coli O157:H7 infections associated with consumption of fresh spinach: United States, 2006. J. Food Prot. 2016, 79, 2024–2030. [Google Scholar] [CrossRef] [PubMed]
- Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 2005, 11, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, H.; Hashizume, T.; Morita, Y.; Tanaka, J.; Azuma, K.; Mizumoto, Y.; Kaneno, M.; Matsuura, M.; Konma, K.; Kitani, T. Clinical experiences in Sakai City Hospital during the massive outbreak of enterohemorrhagic Escherichia coli O157 infections in Sakai City, 1996. Pediatr. Int. 1999, 41, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Manning, S.D.; Motiwala, A.S.; Springman, C.; Qi, W.; Lacher, D.W.; Ouellette, L.M.; Mladonicky, J.M.; Somsel, P.; Rudrik, J.T.; Dietrich, S.E.; et al. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. PNAS 2008, 105, 4868–4873. [Google Scholar] [CrossRef] [PubMed]
- Kulasekara, B.R.; Jacobs, M.; Zhou, Y.; Wu, Z.; Sims, E.; Saenphimmachak, C.; Rohmer, L.; Ritchie, J.M.; Radey, M.; McKevitt, M.; et al. Analysis of the genome of the Escherichia coli O157:H7 2006 spinach-associated outbreak isolate indicates candidate genes that may enhance virulence. Infect. Immun. 2009, 77, 3713–3721. [Google Scholar] [CrossRef] [PubMed]
- Neupane, M.; Abu-Ali, G.S.; Mitra, A.; Lacher, D.W.; Manning, S.D. Shiga toxin 2 overexpression in Escherichia coli O157:H7 strains associated with severe human disease. Microb. Pathog. 2011, 51, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Dowd, S.E.; Crippen, T.L.; Sun, Y.; Gontcharova, V.; Youn, E.; Muthaiyan, A.; Wolcott, R.D.; Callaway, T.R.; Ricke, S.C. Microarray analysis and draft genomes of two Escherichia coli O157:H7 lineage II cattle isolates FRIK966 and FRIK2000 investing lack of Shiga toxin expression. Foodborne Pathog. Dis. 2010, 7, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Lowe, R.M.S.; Baines, D.; Selinger, L.B.; Thomas, J.E.; McAllister, T.A.; Sharma, R. Escherichia coli O157:H7 strain origin, lineage, and Shiga toxin 2 expression affect colonization of cattle. Appl. Environ. Microbiol. 2009, 75, 5074–5081. [Google Scholar] [CrossRef] [PubMed]
- Abu-Ali, G.S.; Ouellette, L.M.; Henderson, S.T.; Lacher, D.W.; Riordan, J.T.; Whittam, T.S.; Manning, S.D. Increased adherence and expression of virulence genes in a lineage of Escherichia coli O157:H7 commonly associated with human infections. PLoS ONE 2010, 5, e10167. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Zurek, L. Evaluation of the anti-terminator Q933 gene as a marker for Escherichia coli O157:H7 with high Shiga toxin production. Curr. Microbiol. 2006, 53, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Wagner, P.L.; Neely, M.N.; Zhang, X.; Acheson, D.W.K.; Waldor, M.K.; Friedman, D.I. Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J. Bacteriol. 2001, 183, 2081–2085. [Google Scholar] [CrossRef] [PubMed]
- Barth, S.A.; Menge, C.; Eichhorn, I.; Semmler, T.; Wieler, L.H.; Pickard, D.; Belka, A.; Berens, C.; Geue, L. The accesory genome of Shiga toxin-producing Escherichia coli (STEC) defines a persistent colonization type in cattle. Appl. Environ. Microbiol. 2016, 82, 5455–5464. [Google Scholar] [CrossRef] [PubMed]
- Pianciola, L.; Chinen, I.; Mazzeo, M.; Miliwebsky, E.; González, G.; Müller, C.; Carbonari, C.; Navello, M.; Zitta, E.; Rivas, M. Genotypic characterization of Escherichia coli O157:H7 strains that cause diarrhea and hemolytic uremic syndrome in Neuquén, Argentina. Int. J. Med. Microbiol. 2014, 303, 499–504. [Google Scholar]
- Pianciola, L.; D’Astek, B.A.; Mazzeo, M.; Chinen, I.; Masana, M.; Rivas, M. Genetic features of human and bovine Escherichia coli O157:H7 strains isolated in Argentina. Int. J. Med. Microbiol. 2016, 306, 123–130. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.J. VTEC: Risk factors and epidemiology in humans. In Proceedings of the Pathogenic E. coli Network Conference. Epidemiology and Transmission of VTEC and other Pathogenic Escherichia coli, Stockholm, Sweden, 25–26 September 2008; pp. 92–98. [Google Scholar]
- Mellor, G.E.; Sim, E.M.; Barlow, R.S.; D’Astek, B.A.; Galli, L.; Chinen, I.; Rivas, M.; Gobius, K.S. Phylogenetically related Argentinean and Australian Escherichia coli O157 isolates are distinguished by virulence clades and alternative Shiga toxin 1 and 2 prophages. Appl. Environ. Microbiol. 2012, 78, 4724–4731. [Google Scholar] [CrossRef] [PubMed]
- Vally, H.; Hall, G.; Dyda, A.; Raupach, J.; Knope, K.; Combs, B.; Desmarchelier, P. Epidemiology of Shiga toxin producing Escherichia coli in Australia. BMC Public Health 2012, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Rivas, M. Epidemiología del Síndrome Urémico Hemolítico en Argentina Situación Actual e Innovaciones Diagnósticas. Jornada de Síndrome Urémico Hemolítico Homenaje al Dr. Carlos A. Gianantonio. Buenos Aires, Argentina. 19 de Agosto de 2016. Available online: http://www.sap.org.ar/uploads/archivos/files_dra-rivas-epidemiologia-del-sindrome-uremico-hemolitico-en-argentina-situacion-actual-e-innovaciones-diagnosticas_1494446234.pdf (accessed on 21 March 2018).
- Centers for Disease Control and Prevention. National Enteric Disease Surveillance: Shiga Toxin-Producing Escherichia coli (STEC) Annual Report. 2015. Available online: https://www.cdc.gov/nationalsurveillance/’pdfs/STEC_Annual_Summary_2015-508c.pdf (accessed on 18 April 2018).
- Centers for Disease Control. Incidence and Trends of Infections with Pathogens Transmitted Commonly Through Food and the Effect of Increasing Use of Culture-Independent Diagnostic Tests on Surveillance —Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2013–2016. MMWR Morb. Mortal. Wkly Rep. 2017, 66, 397–403. [Google Scholar]
- National Institute of Infectious Diseases, Ministry of Health, Labour and Welfare, Japan. Pathogen Surveillance System in Japan and Infectious Agents Surveillance Report (IASR). Infect Agents Surveill Rep. Available online: https://nesid4g.mhlw.go.jp/Byogentai/Pdf/data77e.pdf (accessed on 21 March 2018).
- Kawasaki, Y.; Suyama, K.; Maeda, R.; Yugeta, E.; Takano, K.; Suzuki, S.; Sakuma, H.; Nemoto, K.; Sato, T.; Nagasawa, K.; et al. Incidence and index of severity of hemolytic uremic syndrome in a 26 year period in Fukushima Prefecture, Japan. Pediatr. Int. 2014, 56, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Surveillance Atlas of Infectious Diseases. European Centre for Disease Prevention and Control. Available online: http://atlas.ecdc.europa.eu/public/index.aspx (accessed on 18 February 2018).
- BC Centre for Disease Control. E. coli (shigatoxigenic). Available online: http://www.bccdc.ca/resource-gallery/Documents/Statistics%20and%20Research/Statistics%20and%20Reports/Epid/Annual%20Reports/eColiShigatoxigenic.pdf (accessed on 28 March 2018).
- McLaine, P.N.; Rowe, P.C.; Orrbine, E. Experiences with HUS in Canada: What have we learned about childhood HUS in Canada? Kidney Int. 2009, 75, S25–S28. [Google Scholar] [CrossRef] [PubMed]
- Sundborger, C. Public Health Agency of Sweden. Personal communication, 2018. [Google Scholar]
- Laboratory of Microbiology and Infection Control, UZ Brussel. National Reference Centre for Shiga Toxin/Verotoxin-Producing Escherichia coli (NRC STEC/VTEC). Annual Report. 2016. Available online: https://nrchm.wiv-isp.be/nl/ref_centra_labo/shiga_toxine_verotoxine/Rapporten/Annual%20report%20NRC%20STEC%202016.pdf (accessed on 28 March 2018).
- Health Protection Scotland. STEC in Scotland 2016: Enhanced Surveillance and Reference Laboratory Data. 2017, 51. (32). Available online: http://www.hps.scot.nhs.uk/ewr/issuesearch.aspx (accessed on 18 February 2018).
- Pianciola, L.; Chinen, I.; Mazzeo, M.; Zolezzi, G.; González, G.; D’Astek, B.; Deza, N.; Navello, M.; Rivas, M. Hypervirulent Escherichia coli O157:H7 strains that cause hemolytic uremic syndrome in Neuquén, Argentina. In 8th International Symposium on Shiga Toxin (Verocytotoxin) Producing Escherichia coli Infections; VTEC: Amsterdam, The Netherlands, 2012; p. 130. [Google Scholar]
- Löfdahl, S. How global is VTEC? In Proceedings of the Pathogenic E. coli Network Conference. Epidemiology and Transmission of VTEC and other Pathogenic Escherichia coli, Stockholm, Sweden, 25–26 September 2008; pp. 65–67. [Google Scholar]
- Mellor, G.E.; Besser, T.E.; Davis, M.A.; Beavis, B.; Jung, W.; Smith, H.V.; Jennison, A.V.; Doyle, C.J.; Chandry, P.S.; Gobius, K.S.; et al. Multilocus genotype analysis of Escherichia coli O157 isolates from Australia and the United States provides evidence of geographic divergence. Appl. Environ. Microbiol. 2013, 79, 5050–5058. [Google Scholar] [CrossRef] [PubMed]
- Mellor, G.E.; Fegan, N.; Gobius, K.S.; Smith, H.V.; Jennison, A.V.; D’Astek, B.A.; Rivas, M.; Shringi, S.; Baker, K.N.K.; Besser, T.E. Geographically distinct Escherichia coli O157 differ by lineage, Shiga toxin genotype and total Shiga toxin production. J. Clin. Microbiol. 2015, 53, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Hartzell, A.; Chen, C.; Lewis, C.; Liu, K.; Reynolds, S.; Dudley, E.G. Escherichia coli O157:H7 of genotype Lineage-Specific Polymorphism Assay 211111 and clade 8 are common clinical isolates within Pennsylvania. Foodborne Pathog. Dis. 2011, 8, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Laing, C.; Pegg, C.; Yawney, D.; Ziebell, K.; Steele, M.; Johnson, R.; Thomas, J.E.; Taboada, E.N.; Zhang, Y.; Gannon, V.P.J. Rapid determination of Escherichia coli O157:H7 lineage types and molecular subtypes by using comparative genomic fingerprinting. Appl. Environ. Microbiol. 2008, 74, 6606–6615. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Standford, K.; Louie, M.; Munns, K.; John, S.J.; Zhang, Y.; Gannon, V.; Chui, L.; Read, R.; Topp, E.; et al. Escherichia coli O157:H7 lineages in health beef and dairy cattle and clinical human cases in Alberta, Canada. J. Food Protect. 2009, 72, 601–607. [Google Scholar] [CrossRef]
- Strachan, N.J.; Rotariu, O.; Lopes, B.; MacRae, M.; Fairley, S.; Laing, C.; Gannon, V.; Allison, L.J.; Hanson, M.F.; Dallman, T.; et al. Whole genome sequencing demonstrates that geographic variation of Escherichia coli O157 genotypes dominates host association. Sci. Rep. 2015, 5, 14145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoyama, E.; Hirai, S.; Hashimoto, R.; Uchimura, M. Clade analysis of enterohemorragic Escherichia coli serotype O157H7/H-strains and hierarchy of their phylogenetic relationships. Infect. Genet. Evol. 2012, 12, 1724–1728. [Google Scholar] [CrossRef] [PubMed]
- Hirai, S.; Yokoyama, E.; Etoh, Y.; Seto, J.; Ichihara, S.; Suzuki, Y.; Maeda, E.; Sera, N.; Horikawa, K.; Yamamoto, T. Analysis of the population genetics of clades of enterohaemorrhagic Escherichia coli O157:H7/H-isolated in three areas in Japan. J. Appl. Microbiol. 2014, 117, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Elhadidy, M.M.; Elkhatib, W.F. Multilocus genotypic characterization of Escherichia coli O157:H7 recovered from food sources. Epidemiol. Infect. 2015, 143, 2367–2372. [Google Scholar] [CrossRef] [PubMed]
- Iyoda, S.; Manning, S.D.; Seto, K.; Kimata, K.; Isobe, J.; Etoh, Y.; Ichihara, S.; Migita, Y.; Ogata, K.; Honda, M.; et al. Phylogenetic clades 6 and 8 of enterohemorragic Escherichia coli O157:H7 with particular stx sybtypes are more frequently found in isolates from Hemolytic Uremic Syndrome patients than from asymptomatic carriers. Open Forum Infect. Dis. 2014, 1, ofu061. [Google Scholar] [CrossRef] [PubMed]
- Amigo, N.; Mercado, E.; Bentancor, A.; Singh, P.; Vilte, D.; Gerhardt, E.; Zotta, E.; Ibarra, C.; Manning, S.D.; Larzábal, M.; et al. Clade 8 and clade 6 strains of Escherichia coli O157:H7 from cattle in Argentina have hypervirulent-like phenotypes. PLoS ONE 2015, 10, e0127710. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, E.; Soderlund, R.; Bovqvist, S.; Aspan, A. Genotypic characterization to identify markers associated with putative hypervirulence in Swedish Escherichia coli O157:H7 cattle strains. J. Appl. Microbiol. 2010, 110, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Ogura, Y.; Mondal, S.I.; Islam, M.R.; Mako, T.; Arisawa, K.; Katsura, K.; Ooka, T.; Gotoh, Y.; Murase, K.; Ohnishi, M.; et al. The shiga toxin 2 production level in enterohemorragic Escherichia coli O157:H7 is correlated with the subtypes of toxin-encoding phage. Sci. Rep. 2015, 5, 16663. [Google Scholar] [CrossRef] [PubMed]
- Aspán, A.; Eriksson, E. Verotoxigenic Escherichia coli O157:H7 from Swedish cattle; isolates from prevalence studies versus strains linked to human infections. A retrospective study. BMC Vet. Res. 2010, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Kawano, K.; Ono, H.; Iwashita, O.; Kurogi, M.; Haga, T.; Maeda, K.; Goto, Y. Stx genotype and molecular epidemiological analyses of Shiga toxin-producing Eschercihia coli O157:H7/H- in human and cattle isolates. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Buvens, G.; De Gheldre, Y.; Dediste, A.; de Moreau, A.I.; Mascart, G.; Simon, A.; Allemeersch, D.; Scheutz, F.; Lauwers, S.; Piérard, D. Incidence and Virulence Determinants of Verocytotoxin-Producing Escherichia coli Infections in the Brussels-Capital Region, Belgium, in 2008–2010. J. Clin. Microbiol. 2012, 50, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Suzuki, M.; Takahashi, M.; Hirose, K.; Minagawa, H.; Ohta, M. Identification and epidemiological description of enterohemorragic Escherichia coli O157 strains producing low amounts of Shiga toxin 2 in Aichi Prefecture, Japan. Jpn. J. Infect. Dis. 2008, 61, 442–445. [Google Scholar] [PubMed]
- Shimizu, T.; Tsutsuki, H.; Matsumoto, A.; Nakaya, H.; Noda, M. The nitric oxide reductase of enterohemorrhagic Escherichia coli plays an important role for the survival within macrophages. Mol. Microbiol. 2012, 85, 492–512. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Hirai, S.; Yokoyama, E.; Ichimura, K.; Noda, M. An evolutionary analysis of nitric oxid reductase gene norV in enterohemorragic Escherichia coli O157. Infect. Genet. Evol. 2015, 33, 176–181. [Google Scholar] [CrossRef] [PubMed]
Country | E. coli O157 Infections | HUS | References |
---|---|---|---|
Australia | 0.23 | 0.49 | [63,64] |
Argentina | 0.42 | 8.8 | [11,65] |
US | 0.97 | 1.18 | [66,67] |
Japan | 0.71 | 0.88/10⁵ < 15 years * | [68,69] |
The Netherlands | 0.46 | 0.80 | [70] |
Canada | 0.84 | 1.04 | [71,72] |
Sweden | 0.64 | 1.19 | [70,73] |
Belgium | 0.36 | 4.5 | [70,74] |
Scotland | 3.4 | 3.4 | [75] |
(a) | ||||
Bovine | ||||
Country | LSPA-LI | LSPA-LI/II | LSPA-LII | References |
Australia | 1.0–3.0 | 81.0–85.0 | 12.0–18.0 | [63,78,79] |
Argentina | 0–7.0 | 93.0–100 | 0 | [61,63,79] |
US | 45.0–63.0 | 17.0–31.0 | 3.0–38.0 | [78,80] |
The Netherlands | 1.4 | 35.6 | 63.0 | [29] |
Canada | 49.5–75.5 | 1.5–4.7 | 20.4–45.8 | [81,82] |
Scotland | 0 | 100 | 0 | [83] |
No data available for Japan, Sweden and Belgium. | ||||
(b) | ||||
Human | ||||
Country | LSPA-LI | LSPA-LI/II | LSPA-LII | References |
Australia | 4.0–5.0 | 95.0–96.0 | 0 | [63,78,79] |
Argentina | 0–4.0 | 96.0–100 | 0 | [61,63,79] |
US | 72.0 | 12.0–14.0 | 14.0–16.0 | [78,79] |
Japan | 51.1–58.5 | 30.7–34.4 | 10.5–14.5 | [84,85] |
The Netherlands | 14.1 | 77.6 | 8.2 | [29] |
Canada | 72.8–92.0 | 4.0–13.6 | 4.0–15.0 | [81,82] |
Belgium | 10.9 | 77.2 | 11.9 | [86] |
Scotland | 1.4 | 91.9 | 6.7 | [83] |
No data available for Sweden. |
(a) | ||||||||||
Country | Bovine Clades (%) | References | ||||||||
1 | 2 | 3 | 4/5 | 6 | 7 | 8 | ||||
Australia | 0 | 0 | 2 | 0 | 23.0 | 74.0 | 2.0 | [63] | ||
Argentina | 0 | 0 | 0–8.0 | 33.3–42.0 | 0 | 0 | 50.0–59.3 | [62,63] | ||
The Netherlands | ND | ND | ND | ND | ND | ND | 41.1 | [29] | ||
Sweden | 0 | 0 | 0 | 66.7 | 0 | 0 | 33.3 | [89] | ||
Scotland | ND | ND | ND | 96.2 | 3.8 | [83] | ||||
ND: no data available for US, Japan, Canada and Belgium. | ||||||||||
(b) | ||||||||||
Country | Human Clades (%) | References | ||||||||
1 | 2 | 3 | 4/5 | 6 | 7 | 8 | Other | |||
Australia | 0 | 2.0 | 0 | 0 | 6.0 | 92.0 | 0 | 0 | [63] | |
Argentina | 0 | 0 | 0–3.0 | 7.2–16.0 | 0 | 0 | 81.0–91.4 | 0 | [60,61,63] | |
US | 0.5 | 47.4 | 9.7 | 5.2 | 3.2 | 5.7 | 24.1 | 4.2 | [51] | |
Japan | 1.5–3.4 | 9.2–22.9 | 16.8–34.0 | 0–1.7 | 3.9–5.2 | 16.5–53.8 | 6.7–12.8 | 0–12.8 | [84,85,87,90] | |
The Netherlands | ND | ND | ND | ND | ND | ND | 38.8 | ND | [29] | |
Sweden | 0 | 1.0 | 8.0 | 24.0 | 12.0 | 17.0 | 37.0 | 1.0 | [91] | |
Scotland | ND | ND | 1.4 | 91.8 | 6.8 | ND | [83] | |||
No data available for Canada and Belgium. |
(a) | ||||||||
Country | Bovine stx Genotypes (%) | References | ||||||
1 | 1/2a | 1/2a/2c | 1/2c | 2a | 2a/2c | 2c | ||
Australia | 0–2.0 | 1.0–4.0 | 0 | 60.0–71.0 | 0–0.5 | 0–3.0 | 25.0–36.1 | [63,78,79] |
Argentina | 0–7.0 | 4.0–7.4 | 7.4–10.0 | 1.9–13.0 | 9.3–12.0 | 33.0–55.5 | 16.6–20.0 | [61,63,79] |
US | 2.1–4.0 | 44.0–60.0 | 0–1.4 | 6.7–21.0 | 4.0–13.7 | 0–11.1 | 6.7–23.8 | [78,79,80] |
Japan | 0–7.0 | 29.9–30.0 | 0–0.9 | 7.0–19.7 | 9.0–12.0 | 0–6.8 | 30.7–47.0 | [88,90,91,92] |
Sweden | 0–1.4 | 0 | 0 | 39.1–46.7 | 0–2.7 | 30.4–40.0 | 13.3–26.4 | [86,87,89,90,91] |
No data available for The Netherlands, Canada, Belgium and Scotland. | ||||||||
(b) | ||||||||
Country | Human stx Genotypes (%) | References | ||||||
1 | 1/2a | 1/2a/2c | 1/2c | 2a | 2a/2c | 2c | ||
Australia | 7.6–10.0 | 3.0–8.0 | 0 | 57.0–76.0 | 0–1.3 | 0–4.0 | 4.0–30.0 | [63,78,79] |
Argentina | 0–4.0 | 0 | 2.2–10.0 | 0–8.0 | 16.0–20.8 | 53.0–76.1 | 0.9–8.0 | [61,63,79] |
US | 0–2.8 | 60.0–63.7 | 0–1.1 | 5.0–8.0 | 17.3–24.0 | 4.0–4.5 | 4.0–5.0 | [78,79] |
Japan | 0–0.6 | 44.0–44.3 | 0–1.5 | 4.0–4.9 | 13.0–16.2 | 4.0–11.0 | 21.5–35.0 | [87,92] |
Belgium | 0–3.0 | 0–5.9 | 0–2.9 | 0–35.3 | 20.6–44.4 | 8.8–26.0 | 26.5–27.0 | [47,93] |
No data available for The Netherlands, Canada, Sweden and Scotland. |
(a) | |||||
Country | Bovine q Alleles (%) | References | |||
q21 | q933 | q21 + q933 | None | ||
Australia | 100 | 0 | 0 | 0 | [37] |
Argentina | 24.1 | 16.7 | 59.2 | 0 | [61] |
US | 54.0 | 44.0 | 2.0 | 0 | [37] |
Japan | 82.0 | 18.0 | 0 | 0 | [37] |
The Netherlands | 84.9 | 9.6 | 1.4 | 4.1 | [29] |
Scotland | 25.0 | 0 | 75.0 | 0 | [37] |
No data available for Canada, Sweden and Belgium. | |||||
(b) | |||||
Country | Human q Alleles (%) | References | |||
q21 | q933 | q21 + q933 | None | ||
Argentina | 1.8–2.9 | 15.9 | 81.2–81.3 | 0 | [60,61] |
Japan | 19.4 | 74.6 | 6.0 | 0 | [94] |
The Netherlands | 38.8 | 34.1 | 23.5 | 3.5 | [29] |
Belgium | 20.0 | 61.0 | 19.0 | 0 | [47] |
No data available for Australia, US, Canada, Sweden and Scotland. |
Country | Putative Virulence Factors * in Human Strains (%) | References | |||||
0242 | 1773 | 2687 | 2870/2872 | 3286 | 3620 | ||
Australia | 92.0 | 23.0 | 90.0 | 40.0 | 2.0 | 97.0 | [78] |
Argentina | 93.0–100 | 21.0–33.5 | 77.0–82.7 | 63.0–85.7 | 60.0–88.6 | 95–100 | [1,60,78] |
US | 35.0 | 8.0 | 31.0 | 28.0 | 27.0 | 42.0 | [52] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pianciola, L.; Rivas, M. Genotypic Features of Clinical and Bovine Escherichia coli O157 Strains Isolated in Countries with Different Associated-Disease Incidences. Microorganisms 2018, 6, 36. https://doi.org/10.3390/microorganisms6020036
Pianciola L, Rivas M. Genotypic Features of Clinical and Bovine Escherichia coli O157 Strains Isolated in Countries with Different Associated-Disease Incidences. Microorganisms. 2018; 6(2):36. https://doi.org/10.3390/microorganisms6020036
Chicago/Turabian StylePianciola, Luis, and Marta Rivas. 2018. "Genotypic Features of Clinical and Bovine Escherichia coli O157 Strains Isolated in Countries with Different Associated-Disease Incidences" Microorganisms 6, no. 2: 36. https://doi.org/10.3390/microorganisms6020036
APA StylePianciola, L., & Rivas, M. (2018). Genotypic Features of Clinical and Bovine Escherichia coli O157 Strains Isolated in Countries with Different Associated-Disease Incidences. Microorganisms, 6(2), 36. https://doi.org/10.3390/microorganisms6020036