Comparison of Yeasts as Hosts for Recombinant Protein Production
Abstract
:1. Introduction
2. Availability of Genetic Tools.
2.1. DNA Assembly Methods
2.2. Genetic Elements Applied to Recombinant Protein Production
2.3. Vector Availability
2.4. Genome Editing Techniques
3. Post-Translational Modifications Related to Bioactive Recombinant Proteins
4. Yeast Secretion Factors
5. Cultivation Strategies for Maximization of Recombinant Proteins in Bioreactors
5.1. Recombinant Genes under the Control of Constitutive Promoters
5.2. Recombinant Genes under the Control of Inducible Promoters
6. Perspectives in Recombinant Protein Production
Acknowledgments
Conflicts of Interest
References
- Baeshen, N.A.; Baeshen, M.N.; Sheikh, A.; Bora, R.S.; Ahmed, M.M.M.; Ramadan, H.A.I.; Saini, K.S.; Redwan, E.M. Cell factories for insulin production. Microb. Cell Factories 2014, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Protein Expression Market worth 2850.5 Million USD by 2022. Available online: https://www.marketsandmarkets.com/PressReleases/protein-expression.asp (accessed on 26 April 2018).
- Lagassé, H.A.D.; Alexaki, A.; Simhadri, V.L.; Katagiri, N.H.; Jankowski, W.; Sauna, Z.E.; Kimchi-Sarfaty, C. Recent advances in (therapeutic protein) drug development. F1000Research 2017, 6, 113. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Jeon, C.O. High-throughput recombinant protein expression in Escherichia coli: Current status and future perspectives. Open Biol. 2016, 6, 160196. [Google Scholar] [CrossRef] [PubMed]
- Boettner, M.; Prinz, B.; Holz, C.; Stahl, U.; Lang, C. High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. J. Biotechnol. 2002, 99, 51–62. [Google Scholar] [CrossRef]
- Bordes, F.; Fudalej, F.; Dossat, V.; Nicaud, J.M.; Marty, A. A new recombinant protein expression system for high-throughput screening in the yeast Yarrowia lipolytica. J. Microbiol. Methods 2007, 70, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Plasson, C.; Michel, R.; Lienard, D.; Saint-Jore-Dupas, C.; Sourrouille, C.; de March, G.G.; Gomord, V. Production of recombinant proteins in suspension-cultured plant cells. Methods Mol. Biol. 2009, 483, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Wurm, F.M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 2004, 22, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Ward, O.P. Production of recombinant proteins by filamentous fungi. Biotechnol. Adv. 2012, 30, 1119–1139. [Google Scholar] [CrossRef] [PubMed]
- Ikonomou, L.; Schneider, Y.J.; Agathos, S.N. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 2003, 62, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Mattanovich, D.; Branduardi, P.; Dato, L.; Gasser, B.; Sauer, M.; Porro, D. Recombinant protein production in yeasts. In Methods in Molecular Biology (Clifton, N.J.); Humana Press: Totowa, NJ, USA, 2012; Volume 824, pp. 329–358. ISBN 978-1-61779-432-2. [Google Scholar]
- Nielsen, J. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering. Bioengineered 2013, 4, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Bao, J.; Nielsen, J. Biopharmaceutical protein production by Saccharomyces cerevisiae: Current state and future prospects. Pharm. Bioprocess. 2014, 2, 167–182. [Google Scholar] [CrossRef]
- Jozala, A.F.; Geraldes, D.C.; Tundisi, L.L.; de Feitosa, V.A.; Breyer, C.A.; Cardoso, S.L.; Mazzola, P.G.; de Oliveira-Nascimento, L.; de Rangel-Yagui, C.O.; de Magalhães, P.O.; et al. Biopharmaceuticals from microorganisms: From production to purification. Braz. J. Microbiol. 2016, 47, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Pichia Produced Products. Available online: http://www.pichia.com/science-center/commercialized-products/ (accessed on 3 February 2018).
- Kurtzman, C.P. Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella pha Y i as determined from multigene. J. Ind. Microbiol. Biotechnol. 2009, 36, 1435–1438. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Anumanthan, A.; Gao, X.G.; Ilangovan, K.; Suzara, V.V.; Duzgunes, N.; Renugopalakrishnan, V. Expression of recombinant proteins in Pichia pastoris. Appl. Biochem. Biotechnol. 2007, 142, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Macauley-Patrick, S.; Fazenda, M.L.; McNeil, B.; Harvey, L.M. Heterologous protein production using the Pichia pastoris expression system. Yeast 2005, 22, 249–270. [Google Scholar] [CrossRef] [PubMed]
- Looser, V.; Brühlmann, B.; Bumbak, F.; Stenger, C.; Costa, M.; Camattari, A.; Fotiadis, D.; Kovar, K. Cultivation strategies to enhance productivity of Pichia pastoris: A review. Biotechnol. Adv. 2015, 33, 1177–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çelik, E.; Çalık, P. Production of recombinant proteins by yeast cells. Biotechnol. Adv. 2012, 30, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Spohner, S.C.; Schaum, V.; Quitmann, H.; Czermak, P. Kluyveromyces lactis: An emerging tool in biotechnology. J. Biotechnol. 2016, 222, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.A.Z.; Amaral, P.F.F.; Belo, I. Yarrowia lipolytica: An industrial workhorse. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 930–944. [Google Scholar]
- Bankar, A.V.; Kumar, A.R.; Zinjarde, S.S. Environmental and industrial applications of Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 2009, 84, 847–865. [Google Scholar] [CrossRef] [PubMed]
- Madzak, C. Yarrowia lipolytica: Recent achievements in heterologous protein expression and pathway engineering. Appl. Microbiol. Biotechnol. 2015, 99, 4559–4577. [Google Scholar] [CrossRef] [PubMed]
- Beckerich, J.M.; Boisramé-Baudevin, A.; Gaillardin, C. Yarrowia lipolytica: A model organism for protein secretion studies. Int. Microbiol. 1998, 1, 123–130. [Google Scholar] [PubMed]
- Wagner, J.M.; Alper, H.S. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances. Fungal Genet. Biol. 2016, 89, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Löbs, A.-K.; Schwartz, C.; Wheeldon, I. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications. Synth. Syst. Biotechnol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Chao, R.; Yuan, Y.; Zhao, H. Recent advances in DNA assembly technologies. FEMS Yeast Res. 2015, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Addgene. Available online: https://www.addgene.org/plasmid-reference/cloning-choice/ (accessed on 26 April 2018).
- Shao, Z.; Zhao, H.; Zhao, H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 2009, 37, e16. [Google Scholar] [CrossRef] [PubMed]
- Jakočiūnas, T.; Jensen, E.D.; Jensen, M.K.; Keasling, J.D. Assembly and multiplex genome integration of metabolic pathways in yeast using CasEMBLR. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2018; Volume 1671, pp. 185–201. ISBN 9780128007228. [Google Scholar]
- Prielhofer, R.; Barrero, J.J.; Steuer, S.; Gassler, T.; Zahrl, R.; Baumann, K.; Sauer, M.; Mattanovich, D.; Gasser, B.; Marx, H. GoldenPiCS: A Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Syst. Biol. 2017, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Casini, A.; Storch, M.; Baldwin, G.S.; Ellis, T. Bricks and blueprints: Methods and standards for DNA assembly. Nat. Rev. Mol. Cell Biol. 2015, 16, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Celińska, E.; Ledesma-Amaro, R.; Larroude, M.; Rossignol, T.; Pauthenier, C.; Nicaud, J.M. Golden Gate Assembly system dedicated to complex pathway manipulation in Yarrowia lipolytica. Microb. Biotechnol. 2017, 10, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Yoo, S.J.; Kang, H.A. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res. 2015, 15, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Partow, S.; Siewers, V.; Bjørn, S.; Nielsen, J.; Maury, J. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 2010, 27, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tyo, K.E.J.; Martínez, J.L.; Petranovic, D.; Nielsen, J. Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2012, 109, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Mumberg, D.; Muller, R.; Funk, M. Regulatable promoters of saccharomyces cerevisiae: Comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 1994, 22, 5767–5768. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, M.; Ishibashi, M.; Tatsuda, D.; Tokunaga, H. Secretion of mouse alpha-amylase from Kluyveromyces lactis. Yeast 1997, 13, 699–706. [Google Scholar] [CrossRef]
- Chen, X.; Gao, B.; Shi, W.; Li, Y. Expression and secretion of human interferon alpha A in yeast Kluyveromyces lactis. Acta Genet. Sin. 1992, 19, 284–288. [Google Scholar] [PubMed]
- Wang, H.; Zhang, L.; Shi, G. Secretory expression of a phospholipase A2from Lactobacillus casei DSM20011 in Kluyveromyces lactis. J. Biosci. Bioeng. 2015, 120, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Cavallius, J.; Zoll, W.; Chakraburtty, K.; Merrick, W.C. Characterization of yeast EF-1 alpha: Non-conservation of post-translational modifications. Biochim. Biophys. Acta 1993, 1163, 75–80. [Google Scholar] [CrossRef]
- Trassaert, M.; Vandermies, M.; Carly, F.; Denies, O.; Thomas, S.; Fickers, P.; Nicaud, J.M. New inducible promoter for gene expression and synthetic biology in Yarrowia lipolytica. Microb. Cell Factories 2017, 16, 141. [Google Scholar] [CrossRef] [PubMed]
- Juretzek, T.; Wang, H.-J.; Nicaud, J.-M.; Mauersberger, S.; Barth, G. Comparison of promoters suitable for regulated overexpression of β-galactosidase in the alkane-utilizing yeastYarrowia lipolytica. Biotechnol. Bioprocess. Eng. 2000, 5, 320–326. [Google Scholar] [CrossRef]
- Karaoglan, M.; Karaoglan, F.E.; Inan, M. Comparison of ADH3 promoter with commonly used promoters for recombinant protein production in Pichia pastoris. Protein Expr. Purif. 2016, 121, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Colussi, P.A.; Taron, C.H. Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl. Environ. Microbiol. 2005, 71, 7092–7098. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, N.A.; Srikrishnan, S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res. 2012, 12, 197–214. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 2014, 98, 5301–5317. [Google Scholar] [CrossRef] [PubMed]
- Balbás, P.; Lorence, A. Recombinant Gene Expression Reviews and Protocols; Springer: Berlin, Germany, 2004; Volume 267, ISBN 1592597742. [Google Scholar]
- Güldener, U.; Heck, S.; Fiedler, T.; Beinhauer, J.; Hegemann, J.H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996, 24, 2519–2524. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Ishibashi, M.; Tatsuda, D.; Tokunaga, H.; Tokunaga, M. Efficient expression, purification and characterization of mouse salivary alpha-amylase secreted from methylotrophic yeast, Pichia pastoris. Yeast 2001, 18, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Fickers, P.; Le Dall, M.T.; Gaillardin, C.; Thonart, P.; Nicaud, J.M. New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J. Microbiol. Methods 2003, 55, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Gueldener, U.; Heinisch, J.; Koehler, G.J.; Voss, D.; Hegemann, J.H. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002, 30, e23. [Google Scholar] [CrossRef] [PubMed]
- Amen, T.; Kaganovich, D. Integrative modules for efficient genome engineering in yeast. Microb. Cell 2017, 4, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Vogl, T.; Gebbie, L.; Palfreyman, R.W.; Speight, R. Effect of Plasmid Design and Type of Integration Event on Recombinant Protein Expression in Pichia pastoris. Appl. Environ. Microbiol. 2018, 84, e02712-17. [Google Scholar] [CrossRef] [PubMed]
- Dudich, E.; Dudich, I.; Semenkova, L.; Benevolensky, S.; Morozkina, E.; Marchenko, A.; Zatcepin, S.; Dudich, D.; Soboleva, G.; Khromikh, L.; et al. Engineering of the Saccharomyces cerevisiae yeast strain with multiple chromosome-integrated genes of human alpha-fetoprotein and its high-yield secretory production, purification, structural and functional characterization. Protein Expr. Purif. 2012, 84, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Aw, R.; Polizzi, K.M. Can too many copies spoil the broth? Microb. Cell Factories 2013, 12, 128. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Otoupal, P.; Pan, A.; Alper, H.S. Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function. FEMS Yeast Res. 2014, 14, 1124–1127. [Google Scholar] [CrossRef] [PubMed]
- Juretzek, T.; Le Dall, M.; Mauersberger, S.; Gaillardin, C.; Barth, G.; Nicaud, J. Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 2001, 18, 97–113. [Google Scholar] [CrossRef]
- Kooistra, R.; Hooykaas, P.J.J.; Steensma, H.Y. Efficient gene targeting inKluyveromyces lactis. Yeast 2004, 21, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Näätsaari, L.; Mistlberger, B.; Ruth, C.; Hajek, T.; Hartner, F.S.; Glieder, A. Deletion of the pichia pastoris ku70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS ONE 2012, 7, e39720. [Google Scholar] [CrossRef] [PubMed]
- Bredeweg, E.L.; Pomraning, K.R.; Dai, Z.; Nielsen, J.; Kerkhoven, E.J.; Baker, S.E. A molecular genetic toolbox for Yarrowia lipolytica. Biotechnol. Biofuels 2017, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Tsakraklides, V.; Brevnova, E.; Stephanopoulos, G.; Shaw, A.J. Improved gene targeting through cell cycle synchronization. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liang, Y.; Ang, E.L.; Zhao, H. A New Era of Genome Integration—Simply Cut and Paste! ACS Synth. Biol. 2017, 6, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Raschmanová, H.; Weninger, A.; Glieder, A.; Kovar, K.; Vogl, T. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects. Biotechnol. Adv. 2018, in press. [Google Scholar]
- Gaj, T. ZFN, TALEN and CRISPR/Cas based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Dicarlo, J.E.; Norville, J.E.; Mali, P.; Rios, X.; Aach, J.; Church, G.M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013, 41, 4336–4343. [Google Scholar] [CrossRef] [PubMed]
- Weninger, A.; Fischer, J.E.; Raschmanová, H.; Kniely, C.; Vogl, T.; Glieder, A. Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers. J. Cell. Biochem. 2018, 119, 3183–3198. [Google Scholar] [CrossRef] [PubMed]
- Juergens, H.; Varela, J.A.; de Vries, A.R.G.; Perli, T.; Gast, V.J.M.; Gyurchev, N.Y.; Rajkumar, A.S.; Mans, R.; Pronk, J.T.; Morrissey, J.P.; et al. Genome editing in Kluyveromyces and Ogataea yeasts using a broad-host-range Cas9/gRNA co-expression plasmid. FEMS Yeast Res. 2018, 18. [Google Scholar] [CrossRef] [PubMed]
- Holkenbrink, C.; Dam, M.I.; Kildegaard, K.R.; Beder, J.; Dahlin, J.; Doménech Belda, D.; Borodina, I. EasyCloneYALI: CRISPR/Cas9-Based Synthetic Toolbox for Engineering of the Yeast Yarrowia lipolytica. Biotechnol. J. 2018. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.M.; Hussain, M.S.; Blenner, M.; Wheeldon, I. Synthetic RNA polymerase III promoters facilitate high efficiency CRISPR-Cas9 mediated genome editing in Yarrowia lipolytica. ACS Synth. Biol. 2016, 5, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, S.; Lippens, G.; Steen, H.; Gunawardena, J. Post-translational modification: Nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip. Rev. Syst. Biol. Med. 2012, 4, 565–583. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Wang, W.; Jiang, G.; Wang, X.; Liu, X.; Cao, H.; Tao, Y.; Yu, X. Enhanced expression of recombinant elastase in Pichia pastoris through addition of N-glycosylation sites to the propeptide. Biotechnol. Lett. 2014, 36, 2467–2471. [Google Scholar] [CrossRef] [PubMed]
- Zufferey, R.; Knauer, R.; Burda, P.; Stagljar, I.; te Heesen, S.; Lehle, L.; Aebi, M. STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo. EMBO J. 1995, 14, 4949–4960. [Google Scholar] [CrossRef] [PubMed]
- Parodi, A.J.; Caramelo, J.J.; D’Alessio, C. UDP-glucose: Glycoprotein glucosyltransferase 1,2 (UGGT1,2). In Handbook of Glycosyltransferases and Related Genes, 2nd ed.; Springer: Tokyo, Japan, 2014; Volume 1, pp. 15–30. ISBN 9784431542407. [Google Scholar]
- Takeuchi, M.; Inoue, N.; Strickland, T.W.; Kubota, M.; Wada, M.; Shimizu, R.; Hoshi, S.; Kozutsumi, H.; Takasaki, S.; Kobata, A. Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 1989, 86, 7819–7822. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, G.A.; Barton, N.W.; Pastores, G.; Dambrosia, J.M.; Banerjee, T.K.; McKee, M.A.; Parker, C.; Schiffmann, R.; Hill, S.C.; Brady, R.O. Enzyme therapy in type 1 Gaucher disease: Comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann. Intern. Med. 1995, 122, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Friedman, B.; Vaddi, K.; Preston, C.; Mahon, E.; Cataldo, J.R.; McPherson, J.M. A comparison of the pharmacological properties of carbohydrate remodeled recombinant and placental-derived beta-glucocerebrosidase: Implications for clinical efficacy in treatment of Gaucher disease. Blood 1999, 93, 2807–2816. [Google Scholar] [PubMed]
- Conde, R.; Cueva, R.; Pablo, G.; Polaina, J.; Larriba, G. A search for hyperglycosylation signals in yeast glycoproteins. J. Biol. Chem. 2004, 279, 43789–43798. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Wang, S.; Wang, J.; Song, M.; Xu, M.; Zhang, M.; Shen, Y.; Hou, J.; Bao, X. N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae. Sci. Rep. 2016, 6, 25654. [Google Scholar] [CrossRef] [PubMed]
- Bretthauer, R.K.; Castellino, F.J. Glycosylation of Pichia pastoris -derived proteins. Biotechnol. Appl. Biochem. 1999, 30, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Innis, M.A.; Holland, M.J.; McCabe, P.C.; Cole, G.E.; Wittman, V.P.; Tal, R.; Watt, K.W.; Gelfand, D.H.; Holland, J.P.; Meade, J.H. Expression, Glycosylation, and Secretion of an Aspergillus Glucoamylase by Saccharomyces cerevisiae. Science 1985, 228, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Heimo, H.; Palmu, K.; Suominen, I. Expression in Pichia pastoris and purification of Aspergillus awamori glucoamylase catalytic domain. Protein Expr. Purif. 1997, 10, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Laron, Z. Insulin-like growth factor 1 (IGF-1): A growth hormone. Mol. Pathol. 2001, 54, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Enderlin, C.S.; Ogrydziak, D.M. Cloning, nucleotide sequence and functions of XPR6, which codes for a dibasic processing endoprotease from the yeast Yarrowia lipolytica. Yeast 1994, 10, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Fabre, E.; Nicaud, J.M.; Lopez, M.C.; Gaillardin, C. Role of the proregion in the production and secretion of the Yarrowia lipolytica alkaline extracellular protease. J. Biol. Chem. 1991, 266, 3782–3790. [Google Scholar] [PubMed]
- Matoba, S.; Morano, K.A.; Klionsky, D.J.; Kim, K.; Ogrydziak, D.M. Dipeptidyl aminopeptidase processing and biosynthesis of alkaline extracellular protease from Yarrowia lipolytica. Microbiology 1997, 143, 3263–3272. [Google Scholar] [CrossRef] [PubMed]
- Pignède, G.; Wang, H.; Fudalej, F.; Gaillardin, C.; Seman, M.; Nicaud, J.M. Characterization of all extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J. Bacteriol. 2000, 182, 2802–2810. [Google Scholar] [CrossRef] [PubMed]
- Jolivet, P.; Bordes, F.; Fudalej, F.; Cancino, M.; Vignaud, C.; Dossat, V.; Burghoffer, C.; Marty, A.; Chardot, T.; Nicaud, J.M. Analysis of Yarrowia lipolytica extracellular lipase Lip2p glycosylation. FEMS Yeast Res. 2007, 7, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Han, B.; Gui, X.; Wang, G.; Xu, L.; Yan, Y.; Madzak, C.; Pan, D.; Wang, Y.; Zha, G.; et al. Engineering Yarrowia lipolytica to Simultaneously Produce Lipase and Single Cell Protein from Agro-industrial Wastes for Feed. Sci. Rep. 2018, 8, 758. [Google Scholar] [CrossRef] [PubMed]
- Laurent, J.M.; Young, J.H.; Kachroo, A.H.; Marcotte, E.M. Efforts to make and apply humanized yeast. Brief. Funct. Genom. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.R.; Gerngross, T.U. Glycosylation engineering in yeast: The advent of fully humanized yeast. Curr. Opin. Biotechnol. 2007, 18, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Asami, Y.; Nagano, H.; Ikematsu, S.; Murasugi, A. An approach to the removal of yeast specific O-linked oligo-mannoses from human midkine expressed in Pichia pastoris using site-specific mutagenesis. J. Biochem. 2000, 128, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Miura, M.; Hirose, M.; Miwa, T.; Kuwae, S.; Ohi, H. Cloning and characterization in Pichia pastoris of PNO1 gene required for phosphomannosylation of N-linked oligosaccharides. Gene 2004, 324, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Uccelletti, D.; Farina, F.; Rufini, S.; Magnelli, P.; Abeijon, C.; Palleschi, C. The Kluyveromyces lactis α1,6-mannosyltransferase KlOch1p is required for cell-wall organization and proper functioning of the secretory pathway. FEMS Yeast Res. 2006, 6, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Zanni, E.; Farina, F.; Ricci, A.; Mancini, P.; Frank, C.; Palleschi, C.; Uccelletti, D. The Golgi α-1,6 mannosyltransferase KlOch1p of Kluyveromyces lactis is required for Ca2+/calmodulin-based signaling and for proper mitochondrial functionality. BMC Cell Biol. 2009, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Gong, X.; Chang, S.; Yang, Y.; Song, M.; Duan, D.; Wang, L.; Ma, Q.; Wu, J. Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis. J. Biotechnol. 2009, 143, 95–102. [Google Scholar] [CrossRef] [PubMed]
- De Pourcq, K.; Vervecken, W.; Dewerte, I.; Valevska, A.; Van Hecke, A.; Callewaert, N. Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2. Microb. Cell Factories 2012, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Gasser, B.; Saloheimo, M.; Rinas, U.; Dragosits, M.; Rodríguez-Carmona, E.; Baumann, K.; Giuliani, M.; Parrilli, E.; Branduardi, P.; Lang, C.; et al. Protein folding and conformational stress in microbial cells producing recombinant proteins: A host comparative overview. Microb. Cell Factories 2008, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.C.; Tsou, C.L. Protein disulfide isomerase is both an enzyme and a chaperone. FASEB J. 1993, 7, 1515–1517. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Wu, M.; Wang, H.B.; Naranmandura, H.; Chen, S.Q. The effect of gene copy number and co-expression of chaperone on production of albumin fusion proteins in Pichia pastoris. Appl. Microbiol. Biotechnol. 2012, 96, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Inan, M.; Aryasomayajula, D.; Sinha, J.; Meagher, M.M. Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnol. Bioeng. 2006, 93, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Tutar, L.; Tutar, Y. Heat shock proteins; an overview. Curr. Pharm. Biotechnol. 2010, 11, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Čiplys, E.; Aučynaite, A.; Slibinskas, R. Generation of human ER chaperone BiP in yeast Saccharomyces cerevisiae. Microb. Cell Factories 2014, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.S.; Bockhaus, J.A.; Voegler, A.C.; Wittrup, K.D. Reduction of BiP levels decreases heterologous protein secretion in Saccharomyces cerevisiae. J. Biol. Chem. 1996, 271, 10017–10022. [Google Scholar] [CrossRef] [PubMed]
- Mattanovich, D.; Gasser, B.; Hohenblum, H.; Sauer, M. Stress in recombinant protein producing yeasts. J. Biotechnol. 2004, 113, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Gasser, B.; Maurer, M.; Rautio, J.; Sauer, M.; Bhattacharyya, A.; Saloheimo, M.; Penttilä, M.; Mattanovich, D. Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions. BMC Genom. 2007, 8, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valkonen, M.; Penttilä, M.; Saloheimo, M. Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69, 2065–2072. [Google Scholar] [CrossRef] [PubMed]
- Kurjan, J.; Herskowitz, I. Structure of a yeast pheromone gene (MFα): A putative α-factor precursor contains four tandem copies of mature α-factor. Cell 1982, 30, 933–943. [Google Scholar] [CrossRef]
- Brake, A.J.; Merryweather, J.P.; Coit, D.G.; Heberlein, U.A.; Masiarz, F.R.; Mullenbach, G.T.; Urdea, M.S.; Valenzuela, P.; Barr, P.J. Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1984, 81, 4642–4646. [Google Scholar] [CrossRef] [PubMed]
- Lin-Cereghino, G.P.; Stark, C.M.; Kim, D.; Chang, J.; Shaheen, N.; Poerwanto, H.; Agari, K.; Moua, P.; Low, L.K.; Tran, N.; et al. The effect of α-mating factor secretion signal mutations on recombinant protein expression in Pichia pastoris. Gene 2013, 519, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Kottmeier, K.; Ostermann, K.; Bley, T.; Rödel, G. Hydrophobin signal sequence mediates efficient secretion of recombinant proteins in Pichia pastoris. Appl. Microbiol. Biotechnol. 2011, 91, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Nicaud, J.M.; Fabre, E.; Gaillardin, C. Expression of invertase activity in Yarrowia lipolytica and its use as a selective marker. Curr. Genet. 1989, 16, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Sandal, T.; Kamp-Hansen, P.; Dalbøge, H. Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 1998, 14, 1267–1283. [Google Scholar] [CrossRef]
- Park, C.S.; Chang, C.C.; Kim, J.Y.; Ogrydziak, D.M.; Ryu, D.D. Expression, secretion, and processing of rice alpha-amylase in the yeast Yarrowia lipolytica. J. Biol. Chem. 1997, 272, 6876–6881. [Google Scholar] [CrossRef] [PubMed]
- Laloi, M.; McCarthy, J.; Morandi, O.; Gysler, C.; Bucheli, P. Molecular and biochemical characterisation of two aspartic proteinases TcAP1 and TcAP2 from Theobroma cacao seeds. Planta 2002, 215, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.M.; Zhang, B.Y.; Zhang, Y.S.; Hiroshi, F. Secretory Expression of Porcine Insulin Precursor in Kluyveromyces lactis and Its Conversion into Human Insulin. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao 1997, 29, 129–134. [Google Scholar] [PubMed]
- Bergkamp, R.J.M.; Kool, I.M.; Geerse, R.H.; Planta, R.J. Multiple-copy integration of the α-galactosidase gene from Cyamopsis tetragonoloba into the ribosomal DNA of Kluyveromyces lactis. Curr. Genet. 1992, 21, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Fermiñán, E.; Domínguez, A. Heterologous protein secretion directed by a repressible acid phosphatase system of Kluyveromyces lactis: Characterization of upstream region-activating sequences in the KIPH05 gene. Appl. Environ. Microbiol. 1998, 64, 2403–2408. [Google Scholar] [PubMed]
- Fleer, R.; Yeh, P.; Amellal, N.; Maury, I.; Fournier, A.; Bacchetta, F.; Baduel, P.; Jung, G.; L’hôte, H.; Becquart, J.; et al. Stable multicopy vectors for high–level secretion of recombinant human serum albumin by Kluyveromyces Yeasts. Nat. Biotechnol. 1991, 9, 968–975. [Google Scholar] [CrossRef]
- Liang, S.; Li, C.; Ye, Y.; Lin, Y. Endogenous signal peptides efficiently mediate the secretion of recombinant proteins in Pichia pastoris. Biotechnol. Lett. 2013, 35, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Mori, A.; Hara, S.; Sugahara, T.; Kojima, T.; Iwasaki, Y.; Kawarasaki, Y.; Sahara, T.; Ohgiya, S.; Nakano, H. Signal peptide optimization tool for the secretion of recombinant protein from Saccharomyces cerevisiae. J. Biosci. Bioeng. 2015, 120, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Koyabu, N.; Imoto, T. Effects of signal sequences on the secretion of hen lysozyme by yeast: Construction of four secretion cassette vectors. Protein Eng. 1998, 11, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Baumann, K.; Carnicer, M.; Dragosits, M.; Graf, A.B.; Stadlmann, J.; Jouhten, P.; Maaheimo, H.; Gasser, B.; Albiol, J.; Mattanovich, D.; et al. A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC Syst. Biol. 2010, 4, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragosits, M.; Stadlmann, J.; Albiol, J.; Baumann, K.; Maurer, M.; Gasser, B.; Sauer, M.; Altmann, F.; Ferrer, P.; Mattanovich, D. The effect of temperature on the proteome of recombinant Pichia pastoris. J. Proteome Res. 2009, 8, 1380–1392. [Google Scholar] [CrossRef] [PubMed]
- Dragosits, M.; Stadlmann, J.; Graf, A.; Gasser, B.; Maurer, M.; Sauer, M.; Kreil, D.P.; Altmann, F.; Mattanovich, D. The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genom. 2010, 11, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Ortega, X.; Ferrer, P.; Montesinos, J.L.; Valero, F. Fed-batch operational strategies for recombinant Fab production with Pichia pastoris using the constitutive GAP promoter. Biochem. Eng. J. 2013, 79, 172–181. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Z. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Biotechnol. Adv. 2017, 36, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Vega, O.; Sabatié, J.; Brown, S.W. Industrial production of heterologous proteins by fed-batch cultures of the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 1994, 15, 369–410. [Google Scholar] [CrossRef] [PubMed]
- Fuzi, S.F.Z.M.; Razali, F.; Jahim, J.M.; Rahman, R.A.; Illias, R.M. Simplified feeding strategies for the fed-batch cultivation of Kluyveromyces lactis GG799 for enhanced recombinant xylanase production. Bioprocess Biosyst. Eng. 2014, 37, 1887–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.C.; Ryu, D.D.Y.; Park, C.S.; Kim, J.Y.; Ogrydziak, D.M. Recombinant bioprocess optimization for heterologous protein production using two-stage, cyclic fed-batch culture. Appl. Microbiol. Biotechnol. 1998, 49, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Cos, O.; Ramón, R.; Montesinos, J.L.; Valero, F. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: A review. Microb. Cell Factories 2006, 5, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Sun, Y.; Ke, F.; Zhao, H.; Liu, T.; Xu, L.; Liu, Y.; Yan, Y. Constitutive expression of Yarrowia lipolytica lipase LIP2 in Pichia pastoris using GAP as promoter. Appl. Biochem. Biotechnol. 2012, 166, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Çalik, P.; Ata, Ö.; Güneş, H.; Massahi, A.; Boy, E.; Keskin, A.; Öztürk, S.; Zerze, G.H.; Özdamar, T.H. Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters. Biochem. Eng. J. 2015, 95, 20–36. [Google Scholar] [CrossRef]
- Burgard, J.; Valli, M.; Graf, A.B.; Gasser, B.; Mattanovich, D. Biomarkers allow detection of nutrient limitations and respective supplementation for elimination in Pichia pastoris fed-batch cultures. Microb. Cell Factories 2017, 16, 117. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hou, J.; Martínez, J.L.; Petranovic, D.; Nielsen, J. Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2013, 97, 8955–8962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer, M.; Kühleitner, M.; Gasser, B.; Mattanovich, D. Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris. Microb. Cell Factories 2006, 5, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanz, A.L.; Nimtz, M.; Rinas, U. Decrease of UPR- and ERAD-related proteins in Pichia pastoris during methanol-induced secretory insulin precursor production in controlled fed-batch cultures. Microb. Cell Factories 2014, 13, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prielhofer, R.; Cartwright, S.P.; Graf, A.B.; Valli, M.; Bill, R.M.; Mattanovich, D.; Gasser, B. Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level. BMC Genom. 2015, 16, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cos, O.; Serrano, A.; Montesinos, J.L.; Ferrer, P.; Cregg, J.M.; Valero, F. Combined effect of the methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in Pichia pastoris fed-batch cultures. J. Biotechnol. 2005, 117, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Jordà, J.; Jouhten, P.; Cámara, E.; Maaheimo, H.; Albiol, J.; Ferrer, P. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures. Microb. Cell Factories 2012, 11, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordà, J.; De Jesus, S.S.; Peltier, S.; Ferrer, P.; Albiol, J. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived13C-labelling data from proteinogenic amino acids. New Biotechnol. 2014, 31, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Heyland, J.; Fu, J.; Blank, L.M.; Schmid, A. Quantitative Physiology of Pichia pastoris During Glucose-Limited High-Cell Density Fed-Batch Cultivation for Recombinant Protein Production. Biotechnol. Bioeng. 2010, 107, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Panula-Perälä, J.; Vasala, A.; Karhunen, J.; Ojamo, H.; Neubauer, P.; Mursula, A. Small-scale slow glucose feed cultivation of Pichia pastoris without repression of AOX1 promoter: Towards high throughput cultivations. Bioprocess Biosyst. Eng. 2014, 37, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, N.; Ayed, A.; Ammar, B.B.H.; Zrigui, R.; Nicaud, J.M.; Kallel, H. Development of a cultivation process for the enhancement of human interferon alpha 2b production in the oleaginous yeast, Yarrowia lipolytica. Microb. Cell Factories 2011, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Ryu, D.D.Y.; Park, C.S.; Kim, J.Y. Improvement of heterologous protein productivity using recombinant Yarrowia lipolytica and cyclic fed-batch process strategy. Biotechnol. Bioeng. 1998, 59, 379–385. [Google Scholar] [CrossRef]
- Hsieh, H.B.; Da Silva, N.A. Development of a LAC4 promoter-based gratuitous induction system in Kluyveromyces lactis. Biotechnol. Bioeng. 2000, 67, 408–416. [Google Scholar] [CrossRef]
- Panuwatsuk, W.; Da Silva, N.A. Application of a gratuitous induction system in Kluyveromyces lactis for the expression of intracellular and secreted proteins during fed-batch culture. Biotechnol. Bioeng. 2003, 81, 712–718. [Google Scholar] [CrossRef] [PubMed]
Host. | Constitutive Promoters | Inducible Promoters |
---|---|---|
S. cerevisiae | ADH1, GAPDH, PGK1, TPI, ENO, PYK1, TEF | GAL1-10, CUP1, ADH2 |
K. lactis | PGK | LAC4, ADH4 |
Y. lipolytica | TEF, RPS7, XPR2/hp4d | POX2, POT1, ICL1 |
K. phaffii | GAP, TEF, PGK, YPT1 | AOX1, FLD1, PEX8 |
Yeast | Recombinant Protein | Protein secreted | Secretion factor | Secretion Signal Source | Ref. |
---|---|---|---|---|---|
K. phaffii | EGFP | -- a | HBFI | Trichoderma reesei Hydrophobin | [112] |
Y. lipolytica | Invertase | -- | XPR2 pre c | Y. lipolytica Alkaline extracellular protease precursor | [113] |
Y. lipolytica | Galactanase I | 3 mg/L | XPR2 pre c | Y. lipolytica Alkaline extracellular protease precursor | [114] |
Y. lipolytica | α-amylase | -- | XPR2 pre-pro c | Y. lipolytica Alkaline extracellular protease precursor | [115] |
Y. lipolytica | Aspartic proteinase II | -- | Hybrid LIP2/XPR2 pre-pro c | Y. lipolytica Alkaline extracellular protease precursor | [116] |
K. lactis | α-amylase | 0.527 U/mL | KT | Synthetic | [39] |
K. lactis | Insulin precursor | 30 mg/L | α-MF | S. cerevisiae α-mating factor | [117] |
K. lactis | a-galactosidase | 2 mg/L | SUC2 pre | S. cerevisiae invertase | [118] |
K. lactis | Growth hormone | -- | PHO5 | K. lactis acid phosphatase | [119] |
K. lactis | Serum albumin (HSA) | 3 g/L | HSA pre-pro | - | [120] |
K. phaffii | Horseradish peroxidase | -- | α-MF | S. cerevisiae α-mating factor | [111] |
K. phaffii | α1-antitrypsin | -- | SUC2 | S. cerevisiae invertase | [116] |
K. phaffii | α1-antitrypsin | -- | PIR1 | Proteins with internal repeats (PIR) from K. phaffii | [39] |
K. phaffii | Porcine Pepsinogen | -- | PHO1 | K. phaffii acid phosphatase | [117] |
K. phaffii | α-amylase | 2.5 g/L | SUC2 | S. cerevisiae invertase | [118] |
K. phaffii | α-amylase | 240 ug/mL | pGKL | PGKL killer protein | [51] |
K. phaffii | EGFP | -- | SCW, DSE, and EXG | Endogenous signal peptides | [121] |
K. phaffii | EGFP | -- | PIR1 | Proteins with internal repeats (PIR) from K. phaffii | [39] |
S. cerevisiae | β-galactosidase | 0.8 b | AGA2 | S. cerevisiae Adhesion subunit of a-agglutinin | [122] |
S. cerevisiae | β-galactosidase | 0.9 b | EXG | S. cerevisiae Exo-1,3-B-Glucanase | |
S. cerevisiae | β-galactosidase | 0.9 b | α-MF | S. cerevisiae α-mating factor | |
S. cerevisiae | β-galactosidase | 0.9 b | CRH | S. cerevisiae Chitin trans-glycosylase | |
S. cerevisiae | β-galactosidase | 0.65 b | PLB | S. cerevisiae Phospholipase B | |
S. cerevisiae | β-galactosidase | 0.85 b | SUN | Cell wall protein related to glucanases of S. cerevisiae | |
S. cerevisiae | Hen Lysozyme | 13 mg/L | α-MF | S. cerevisiae α-mating factor | [123] |
S. cerevisiae | Hen Lysozyme | 2.6 mg/L | KILM1 | S. cerevisiae Killer toxin type 1 | |
S. cerevisiae | Hen Lysozyme | 2.1 mg/L | PHO1 | S. cerevisiae Acid phosphatase | |
S. cerevisiae | Hen Lysozyme | 2.0 mg/L | SUC2 | S. cerevisiae invertase |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira Gomes, A.M.; Souza Carmo, T.; Silva Carvalho, L.; Mendonça Bahia, F.; Parachin, N.S. Comparison of Yeasts as Hosts for Recombinant Protein Production. Microorganisms 2018, 6, 38. https://doi.org/10.3390/microorganisms6020038
Vieira Gomes AM, Souza Carmo T, Silva Carvalho L, Mendonça Bahia F, Parachin NS. Comparison of Yeasts as Hosts for Recombinant Protein Production. Microorganisms. 2018; 6(2):38. https://doi.org/10.3390/microorganisms6020038
Chicago/Turabian StyleVieira Gomes, Antonio Milton, Talita Souza Carmo, Lucas Silva Carvalho, Frederico Mendonça Bahia, and Nádia Skorupa Parachin. 2018. "Comparison of Yeasts as Hosts for Recombinant Protein Production" Microorganisms 6, no. 2: 38. https://doi.org/10.3390/microorganisms6020038