Quality and Safety of Fresh Chicken Fillets after High Pressure Processing: Survival of Indigenous Brochothrix thermosphacta and Inoculated Listeria monocytogenes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Preparation of Chicken Fillet Samples
2.2. Inoculation of the Chicken Fillet Samples
2.3. High-Pressure Processing (HPP)
2.4. Microbiological and pH Analyses
2.5. Isolation and Growth of Listeria sp. and Brochothrix sp.
2.6. Pulsed-Field Gel Electrophoresis
2.7. Sensory Analysis
2.8. Statistical Analysis
3. Results
3.1. Population Dynamics/Inactivation of the Indigenous Microbiota
3.2. Population Dynamics/Inactivation of Listeria monocytogenes
3.3. Effect of HPP on the Brochothrix Isolates According to PFGE Analysis
3.4. Effect of HPP on the Different Listeria Strains According to PFGE Analysis
3.5. Sensory Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rouger, A.; Moriceau, N.; Prevost, H.; Remenant, B.; Zagorec, M. Diversity of bacterial communities in French chicken cuts stored under modified atmosphere packaging. Food Microbiol. 2018, 70, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Chaillou, S.; Chaulot-Talmon, A.; Caekebeke, H.; Cardinal, M.; Christieans, S.; Denis, C.; Desmonts, M.H.; Dousset, X.; Feurer, C.; Hamon, E.; et al. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J. 2015, 9, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- Argyri, A.A.; Panagou, E.Z.; Nychas, G.J.E. Advances in traditional, vacuum and modified atmosphere packaging MAP of fresh and processed poultry products. In Advances in Meat, Poultry and Seafood Packaging, 1st ed.; Kerry, J.P., Ed.; Elsevier: London, UK, 2012; pp. 205–247. [Google Scholar]
- Nychas, G.J.E.; Skandamis, P.N.; Tassou, C.C.; Koutsoumanis, K.P. Meat spoilage during distribution. Meat Sci. 2008, 78, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Nychas, G.J.E.; Skandamis, P.N. Fresh meat spoilage and modified atmosphere packaging MAP. Improving the Safety of Fresh Meat. Woodhead Publ. 2005, 461–502. [Google Scholar]
- Al-Nehlawi, A.; Guri, S.; Guamis, B.; Saldo, J. Synergistic effect of carbon dioxide atmospheres and high hydrostatic pressure to reduce spoilage bacteria on poultry sausages. LWT Food Sci. Technol. 2014, 58, 404–411. [Google Scholar] [CrossRef]
- Stanborough, T.; Fegan, N.; Powell, S.M.; Tamplin, M.; Chandry, P.S. Insight into the.genome of Brochothrix thermosphacta, a problematic meat spoilage bacterium. Appl. Environ. Microbiol. 2017, 83, e02786-16. [Google Scholar] [CrossRef]
- Pennacchia, C.; Villani, F.; Ercolini, D. Development of a Real-Time PCR assay for the specific detection of Brochothrix thermosphacta in fresh and spoiled meat. Int. J. Food Microbiol. 2009, 134, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Del Olmo, A.; Calzada, J.; Nunez, M. Effect of lactoferrin and its derivatives, high hydrostatic pressure, and their combinations, on Escherichia coli O157:H7 and Pseudomonas fluorescens in chicken filets Innovative. Innov. Food Sci. Emerg. Technol. 2012, 13, 51–56. [Google Scholar] [CrossRef]
- EFSA European Food Safety Authority. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/5077 (accessed on 12 December 2017).
- Gonçalves-Tenório, A.; Nunes Silva, B.; Rodrigues, V.; Cadavez, V.; Gonzales-Barron, U. Prevalence of Pathogens in Poultry Meat: A Meta-Analysis of European Published Surveys. Foods 2018, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.J.; Walecka-Zacharska, E.; Chen, J.C.; Kosek-Paszkowska, K.; Devlieghere, F.; Van Meervenne, E.; Osek, J.; Wieczorek, K.; Bania, J. Listeria Monocytogenes: An Examination of Food Chain Factors Potentially Contributing to Antimicrobial Resistance. Food Microbiol. 2018, 54, 178–189. [Google Scholar] [CrossRef]
- Ferreira, M.; Almeida, A.; Delgadillo, I.; Saraiva, J.; Cunha, A. Susceptibility of Listeria monocytogenes to high pressure processing: A review. Food Rev. Int. 2016, 32, 377–399. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Han, Y.Q.; Cao, J.X.; Xu, X.L.; Zhou, G.H.; Zhang, W.Y. The spoilage of air-packaged broiler meat during storage at normal and fluctuating storage temperatures. Poultry Sci. 2012, 91, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W.; Wu, S.Z.; Lu, J.K.; Shyu, Y.T.; Wang, C.Y. Current status and future trends of high-pressure processing in food industry. Food Control 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Bravo, D.; de Alba, M.; Medina, M. Combined treatments of high-pressure with the lactoperoxidase system or lactoferrin on the inactivation of Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 in beef carpaccio. Food Microbiol. 2014, 41, 27–32. [Google Scholar] [CrossRef]
- Hugas, M.; Garriga, M.; Monfort, J.M. New mild technologies in meat processing: High pressure as a model technology. Meat Sci. 2002, 62, 359–371. [Google Scholar] [CrossRef]
- Chien, S.Y.; Sheen, S.; Sommers, C.H.; Sheen, L.Y. Modeling the Inactivation of Intestinal Pathogenic Escherichia coli O157:H7 and Uropathogenic E. coli in Ground Chicken by High Pressure Processing and Thymol. Front. Microbiol. 2016, 7, 920. [Google Scholar] [CrossRef] [Green Version]
- Simonin, H.; Duranton, F.; de Lamballerie, M. New Insights into the High-Pressure Processing of Meat and Meat Products. Comp. Rev. Food Sci. Food Saf. 2012, 11, 285–306. [Google Scholar] [CrossRef]
- Hayman, M.M.; Baxter, I.; O’Riordan, P.J.; Stewart, C.M. Effects of High-Pressure Processing on the Safety, Quality, and Shelf Life of Ready-to-Eat Meats. J. Food Prot. 2004, 67, 1709–1718. [Google Scholar] [CrossRef]
- Jofré, A.; Aymerich, T.; Grebol, N.; Garriga, M. Efficiency of high hydrostatic pressure at 600 MPa against food-borne microorganisms by challenge tests on convenience meat products. LWT Food Sci. Technol. 2009, 42, 924–928. [Google Scholar] [CrossRef]
- Lerasle, M.; Guillou, S.; Simonin, H.; Anthoine, V.; Chéret, R.; Federighi, M.; Membré, J.-M. Assessment of Salmonella and Listeria monocytogenes level in ready-to-cook poultry meat: Effect of various high pressure treatments and potassium lactate concentrations. Int. J. Food Microbiol. 2014, 186, 74–83. [Google Scholar] [CrossRef]
- Rendueles, E.; Omer, M.K.; Alvseike, O.; Alonso-Calleja, C.; Capita, R.; Prieto, M. Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT Food Sci. Technol. 2011, 44, 1251–1260. [Google Scholar] [CrossRef]
- Liu, Y.; Betti, M.; Ganzle, M.G. High Pressure Inactivation of Escherichia coli, Campylobacter jejuni, and Spoilage Microbiota on Poultry Meat. J. Food Prot. 2012, 75, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Argyri, A.A.; Papadopoulou, O.S.; Nisiotou, A.; Tassou, C.C.; Chorianopoulos, N. Effect of high pressure processing on the survival of Salmonella Enteritidis and shelf-life of chicken fillets. Food Microbiol. 2018, 70, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Hereu, A.; Dalgaard, P.; Garriga, M.; Aymerich, T.; Bover-Cid, S. Analyzing and modelling the growth behavior of Listeria monocytogenes on RTE cooked meat products after a high pressure treatment at 400 MPa. Int. J. Food Microbiol. 2014, 186, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Rubio, B.; Possas, A.; Rincon, F.; García-Gímeno, R.M.; Martínez, B. Model for Listeria monocytogenes inactivation by high hydrostatic pressure processing in Spanish chorizo sausage. Food Microbiol. 2018, 69, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Valdramidis, V.P.; Patterson, M.F.; Linton, M. Modelling the recovery of Listeria monocytogenes in high pressure processed simulated cured meat. Food Control 2015, 47, 353–358. [Google Scholar] [CrossRef]
- Stratakos, A.C.H.; Linton, M.; Patterson, M.F.; Koidis, A. Effect of high-pressure processing on the shelf life, safety and organoleptic characteristics of lasagne ready meals during storage at refrigeration and abuse temperature. Innov. Food Sci. Emerg. Technol. 2015, 30, 1–7. [Google Scholar] [CrossRef]
- Papadopoulou, O.S.; Doulgeraki, A.I.; Botta, C.; Cocolin, L.; Nychas, G.J.-E. Genotypic characterization of Brochothrix thermosphacta isolated during storage of minced pork under aerobic or modified atmosphere packaging conditions. Meat Sci. 2012, 92, 735–738. [Google Scholar] [CrossRef]
- Doulgeraki, A.I.; Paramithiotis, S.; Nychas, G.-J.E. Characterization of the Enterobacteriaceae community that developed during storage of minced beef under aerobic or modified atmosphere packaging conditions. Int. J. Food Microbiol. 2011, 145, 77–83. [Google Scholar] [CrossRef]
- Yuste, J.; Capellas, M.; Fung, D.Y.C.; Mor-Mur, M. Inactivation and sublethal injury of foodborne pathogens by high pressure processing: Evaluation with conventional media and thin agar layer method. Food Res. Int. 2001, 37, 861–866. [Google Scholar] [CrossRef]
- Han, Y.; Jiang, Y.; Xu, Y.; Sun, X.; Xu, B.; Zhou, G. Effect of high pressure treatment on microbial populations of sliced vacuum-packed cooked ham. Meat Sci. 2011, 88, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Calleja, M.; Cruz-Romero, M.C.; O’Sullivan, M.G.; García-López, M.L.; Kerry, J.P. High-pressure-based hurdle strategy to extend the shelf-life of fresh chicken breast fillets. Food Control 2012, 25, 516–524. [Google Scholar] [CrossRef]
- Han, Y.; Xu, Y.; Jiang, Y.; Zhou, G.; Sun, X.; Xu, B. Inactivation of food spoilage bacteria by high pressure processing: Evaluation with conventional media and PCR–DGGE analysis. Food Res. Int. 2010, 43, 1719–1724. [Google Scholar] [CrossRef]
- Samapundo, S.; de Baenst, I.; Aerts, M.; Cnockaert, M.; Devlieghere, F.; Van Damme, P. Tracking the sources of psychrotrophic bacteria contaminating chicken cuts during processing. Food Microbiol. 2019, 81, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Illikoud, N.; Rossero, A.; Chauvet, R.; Courcoux, P.; Pilet, M.-F.; Charrier, T.; Jaffres, E.; Zagorec, M. Genotypic and phenotypic characterization of the food spoilage bacterium Brochothrix thermosphacta. Food Microbiol. 2019, 81, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Casaburi, A.; De Filippis, F.; Villani, F.; Ercolini, D. Activities of strains of Brochothrix thermosphacta in vitro and in meat. Food Res. Int. 2014, 62, 366–374. [Google Scholar] [CrossRef]
- Jofré, A.; Garriga, M.; Aymerich, T. Inhibition of Salmonella sp. Listeria monocytogenes and Staphylococcus aureus in cooked ham by combining antimicrobials, high hydrostatic pressure and refrigeration. Meat Sci. 2008, 78, 53–59. [Google Scholar]
- Bover-Cid, S.; Serra-Castellóa, C.; Dalgaard, P.; Garriga, M.; Jofré, A. New insights on Listeria monocytogenes growth in pressurised cooked ham: A piezo-stimulation effect enhanced by organic acids during storage. Int. J. Food Microbiol. 2019, 290, 150–158. [Google Scholar] [CrossRef]
- Scheinberg, J.A.; Svoboda, A.L.; Cutter, C.N. High-pressure processing and boiling water treatments for reducing Listeria monocytogenes, Escherichia coli O157:H7, Salmonella spp.; and Staphylococcus aureus during beef jerky processing. Food Control 2014, 39, 105–110. [Google Scholar] [CrossRef]
- Marcos, B.; Jofre, A.; Aymerich, T.; Monfort, J.P.; Garriga, M. Combined effect of natural antimicrobials and high pressure processing to prevent Listeria monocytogenes growth after a cold chain break during storage of cooked ham. Food Control 2008, 19, 76–81. [Google Scholar] [CrossRef]
- Balamurugan, S.; Ahmed, R.; Chibeu, A.; Gao, A.; Koutchma, T.; Strange, P. Effect of salt types and concentrations on the high-pressure inactivation of Listeria monocytogenes in ground chicken. Int. J. Food Microbiol. 2016, 218, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Bover-Cid, S.; Belletti, N.; Garriga, M.; Aymerich, T. Model for Listeria monocytogenes inactivation on dry-cured ham by high hydrostatic pressure processing. Food Microbiol. 2011, 28, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Kruk, Z.A.; Yun, H.; Rutley, D.L.; Lee, E.J.; Kim, Y.J.; Jo, C. The effect of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet. Food Control 2011, 22, 6–12. [Google Scholar] [CrossRef]
- Evert-Arriagada, K.; Trujilloa, A.G.; Amador-Espejob, G.G.; Hernández-Herreroa, M.M. High pressure processing effect on different Listeria spp. in a commercial starter-free fresh cheese. Food Microbiol. 2018, 76, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Jofré, A.; Aymerich, T.; Bover-Cid, S.; Garriga, M. Inactivation and recovery of Listeria monocytogenes, Salmonella enterica and Staphylococcus aureus after high hydrostatic pressure treatments up to 900 MPa. Int. Microbiol. 2010, 13, 105–112. [Google Scholar]
- Kagli, D.M.; Iliopoulos, V.; Stergiou, V.; Lazaridou, A.; Nychas, G.J. Differential Listeria monocytogenes Strain Survival and Growth in Katiki, a Traditional Greek Soft Cheese, at Different Storage Temperatures. Appl. Environ. Microbiol. 2009, 75, 3621–3626. [Google Scholar] [CrossRef]
- Papadopoulou, O.; Chorianopoulos, N. Production of a functional fresh cheese enriched with the probiotic strain Lb. plantarum T571 isolated from traditional Greek product. Curr. Res. Nutr. Food Sci. 2016, 4, 169–181. [Google Scholar]
- Papadopoulou, O.S.; Argyri, A.A.; Varzakis, E.E.; Tassou, C.C.; Chorianopoulos, N.G. Greek functional Feta cheese: Enhancing quality and safety using a Lactobacillus plantarum strain with probiotic potential. Food Microbiol. 2018, 74, 21–33. [Google Scholar] [CrossRef]
T (°C) | Treatment | Storage Time | Group | |||||||
---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | Total Isolates | |||
4 °C | Control | Beginning | 0 | 2 a | 2 | 1 | 3 | 3 | 0 | 11 |
End | 0 | 4 | 7 | 1 | 0 | 3 | 0 | 15 | ||
HPP | Beginning b | 0 | 4 | 0 | 1 | 0 | 7 | 0 | 12 | |
End | 5 | 1 | 2 | 0 | 0 | 6 | 0 | 14 | ||
12 °C | Control | Beginning | 0 | 0 | 0 | 2 | 6 | 6 | 0 | 14 |
End | 0 | 0 | 0 | 1 | 6 | 4 | 1 | 12 | ||
HPP | Beginning b | 0 | 2 | 7 | 0 | 1 | 0 | 0 | 10 | |
End | 0 | 3 | 19 | 0 | 0 | 0 | 0 | 22 | ||
Total isolates | 5 | 16 | 37 | 6 | 16 | 29 | 1 | 110 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyri, A.A.; Papadopoulou, O.S.; Sourri, P.; Chorianopoulos, N.; Tassou, C.C. Quality and Safety of Fresh Chicken Fillets after High Pressure Processing: Survival of Indigenous Brochothrix thermosphacta and Inoculated Listeria monocytogenes. Microorganisms 2019, 7, 520. https://doi.org/10.3390/microorganisms7110520
Argyri AA, Papadopoulou OS, Sourri P, Chorianopoulos N, Tassou CC. Quality and Safety of Fresh Chicken Fillets after High Pressure Processing: Survival of Indigenous Brochothrix thermosphacta and Inoculated Listeria monocytogenes. Microorganisms. 2019; 7(11):520. https://doi.org/10.3390/microorganisms7110520
Chicago/Turabian StyleArgyri, Anthoula A., Olga S. Papadopoulou, Patra Sourri, Nikos Chorianopoulos, and Chrysoula C. Tassou. 2019. "Quality and Safety of Fresh Chicken Fillets after High Pressure Processing: Survival of Indigenous Brochothrix thermosphacta and Inoculated Listeria monocytogenes" Microorganisms 7, no. 11: 520. https://doi.org/10.3390/microorganisms7110520
APA StyleArgyri, A. A., Papadopoulou, O. S., Sourri, P., Chorianopoulos, N., & Tassou, C. C. (2019). Quality and Safety of Fresh Chicken Fillets after High Pressure Processing: Survival of Indigenous Brochothrix thermosphacta and Inoculated Listeria monocytogenes. Microorganisms, 7(11), 520. https://doi.org/10.3390/microorganisms7110520