Screening of Various Metabolites in Six Barley Varieties Grown under Natural Climatic Conditions (2016–2018)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Barley Samples
2.2. Analysis of Metabolites
2.3. Statistical Data Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chakraborty, S.; Newton, A.C. Climate change, plant diseases and food security: An overview. Plant Pathol. 2011, 60, 2–14. [Google Scholar] [CrossRef]
- Parikka, P.; Hakala, K.; Tiilikkala, K. Expected shifts in Fusarium species’ composition on cereal grain in Northern Europe due to climatic change. Food Addit. Contam. Part A 2012, 29, 1543–1555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; van der Lee, T.; Waalwijk, C.; Chen, W.; Xu, J.; Xu, J.; Zhang, Y.; Feng, J. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS ONE 2012, 7, e31722. [Google Scholar] [CrossRef] [PubMed]
- Janhanger, J. Mycotoxins—An Increasing Problem?—The Effect of Climate Changes on Fusarium Mould Populations and the Occurrence of Fusarotoxins in Swedish Cereals; Independent Project in Food Science; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2018; Available online: https://stud.epsilon.slu.se/13677/12/janhager_j-180821.pdf (accessed on 16 August 2019).
- Commission Regulation (EC) No 1881/2006. Off. J. Eur. Union 2006, 364, 5–24.
- Warth, B.; Sulyok, M.; Berthiller, F.; Schuhmacher, R.; Krska, R. New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicol. Lett. 2013, 220, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A 2014, 1362, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Langseth, W.; Elen, O. The occurrence of deoxynivalenol in Norwegian cereals—Differences between years and districts, 1988–1996. Acta Agric. Scand. B 1997, 47, 176–184. [Google Scholar] [CrossRef]
- Lemmens, M.; Steiner, B.; Sulyok, M.; Nicholson, P.; Mesterhazy, A.; Buerstmayer, H. Masked mycotoxins: Does breeding for enhanced Fusarium head blight resistance result in more deoxynivalenol-3-glucoside in new wheat varieties? World Mycotoxin J. 2016, 9, 741–754. [Google Scholar] [CrossRef]
- Tucker, J.R.; Badea, A.; Blagden, R.; Pleskach, K.; Tittlemier, S.A.; Fernando, W.G.D. Deoxynivalenol-3-Glucoside content is highly associated with deoxynivalenol levels in two-row barley genotypes of importance to Canadian barley breeding programs. Toxins 2019, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.; Schwarz, Q.S.Y.; Zhou, B.; Xu, Y.; Barr, J.M.; Horsley, R.D.; Gillespie, D.J. Occurrence of deoxynivalenol-3-glucoside on barley from the Upper Midwestern United States. J. Am. Soc. Brew. Chem. 2014, 72, 208–213. [Google Scholar] [CrossRef]
- Ikediobi, C.O.; Ibrahim, S. Ikoku Ogbonna, A Linamarase from Fusarium equiseti. Appl. Microbiol. Biotechnol. 1987, 25, 327–333. [Google Scholar] [CrossRef]
- Sadasivam, S.; Thayumanayan, B. Molecular Host Plant Resistance to Pests, 1st ed.; CRC Press, Marcel Dekker Inc.: New York, NY, USA, 2003. [Google Scholar]
- Szlavko, C.M. Tryptophol, tyrosol and phenylethanol-the aromatic higher alcohols in beer. J. Inst. Brew. 1973, 79, 283–288. [Google Scholar] [CrossRef]
- Ingenbleek, L.; Sulyok, M.; Adegboye, A.; Hossou, S.E.; Koné, A.Z.; Oyedele, A.D.; Kisito, C.S.K.; Dembele, Y.K.; Eyangoh, S.; Verger, P.; et al. Regional Sub-Saharan Africa total diet study in Benin, Cameroon, Mali and Nigeria reveals the presence of 164 mycotoxins and other secondary metabolites in foods. Toxins 2019, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Muller, H.M.; Reimann, J.; Schumacher, U.; Schwadorf, K. Fusarium toxins in wheat harvested during six years in an area of southwest Germany. Nat. Toxins 1997, 5, 24–30. [Google Scholar] [CrossRef]
- Doohan, F.; Brennan, J.; Cooke, B. Influence of climatic factors on Fusarium species pathogenic to cereals. Eur. J. Plant Pathol. 2003, 109, 755–768. [Google Scholar] [CrossRef]
- Schöneberg, T.; Musa, T.; Forrer, H.R.; Mascher, F.; Bucheli, T.D.; Bertossa, M.; Keller, B.; Vogelgsang, S. Infection conditions of Fusarium graminearum in barley are variety specific and different from those in wheat. Eur. J. Plant Pathol. 2018, 151, 975–989. [Google Scholar] [CrossRef]
- Bencze, S.; Puskas, K.; Vida, G.; Karsai, I.; Balla, K.; Komaromi, J.; Veisz, O. Rising atmospheric CO2 concentration may imply higher risk of Fusarium mycotoxin contamination of wheat grains. Mycotoxin Res. 2017, 33, 229–236. [Google Scholar] [CrossRef] [PubMed]
Mean Precipitation (mm) | Total Precipitation (mm) | Mean Temperature (°C) | |
---|---|---|---|
2015–2016 | 66.11 | 594.99 | 8.3 |
2016–2017 | 46.20 | 415.83 | 9.1 |
2017–2018 | 60.43 | 543.90 | 10.2 |
2016 | 2017 | 2018 | |
---|---|---|---|
Temperature (°C) | |||
May | 16.35c | 17.35b | 20.05a |
June | 21.15b | 22.25a | 20.09b |
Precipitation (mm) | |||
May | 63.0a | 50.5b | 27.3c |
June | 99.3b | 45.3c | 126.6a |
Toxin (µg kg−1) | Barun (Dual) | Bingo (Feed) | Bravo (Feed) | ||||||
---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | |
15-Acetyldeoxynivalenol | <LOD | 25.37a | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
15-Hydroxyculmorin | 2.57b | 1.40c | 9.19a | 1.64a | 1.38c | 1.59b | 10.5a | 3.31b | 1.24c |
15-Hydroxyculmoron | 27.4a | <LOD | <LOD | 1.51c | 57.7a | 12.4b | <LOD | <LOD | <LOD |
3-Acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
5-Hydroxyculmorin | 42.1a | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Alternariol | 0.59b | 0.86a | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0.71a |
Alternariolmethylether | 0.47a | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Alternariolmethylether-glucoside | 24.8b | 24.3c | 28.8a | 14.2b | 21.9a | <LOD | 10.8b | 7.90c | 25.3a |
Brevianamid | 10.6a | 4.35c | 8.41b | 9.86a | 5.41b | <LOD | 12.5a | 9.28b | 5.46c |
Citreorosein | 9.21a | 8.38b | 0.83c | 5.52a | 0.83b | <LOD | 2.28a | <LOD | 1.99b |
Culmorin | 6.72b | 1.20c | 17.60a | 11.8a | 7.52b | 2.94c | 10.4a | 4.67b | 3.08c |
Cyclo(L-Pro-L-Tyr) | 21.1a | 5.21c | 12.5b | 15.1a | 9.29b | <LOD | 25.4a | 11.5b | 5.61c |
Cyclo(L-Pro-L-Val) | 18.8a | 3.40c | 15.1b | 20.1a | 10.4b | <LOD | 21.6a | 14.9b | 4.40c |
Deoxynivalenol | 55.5c | 80.0a | 57.9b | 34.6a | 24.9b | 0.75c | 63.5b | 39.4c | 86.0a |
DON-3-glucoside | <LOD | <LOD | 2.90a | <LOD | <LOD | <LOD | <LOD | 1.73a | <LOD |
Emodin | 7.73a | 4.37b | 0.46c | 4.87a | 0.27b | <LOD | 1.32a | <LOD | 0.97b |
Enniatin A | 0.12a | <LOD | <LOD | <LOD | <LOD | <LOD | 0.28a | <LOD | <LOD |
Enniatin A1 | 1.46a | 0.49b | <LOD | 3.70a | <LOD | <LOD | 1.35a | 0.15b | <LOD |
Enniatin B | 9.54a | 2.50b | <LOD | 1.15a | <LOD | <LOD | 0.43b | 0.79a | 0.11c |
Enniatin B1 | 7.91a | 3.72b | <LOD | 4.70a | <LOD | <LOD | 1.57a | 0.86b | <LOD |
Enniatin B2 | 0.33a | 0.16b | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Fumonisin B1 | <LOD | 7.86a | 7.10b | 7.32a | 6.01b | <LOD | 10.9a | 9.91b | 6.74c |
HT-2 toxin | <LOD | <LOD | <LOD | 12.3a | <LOD | <LOD | <LOD | <LOD | <LOD |
Lotaustralin | 8.90b | 9.08a | 7.71c | 8.46a | 7.24b | 6.41c | 8.40b | 8.13c | 9.31a |
Moniliformin | <LOD | <LOD | <LOD | 0.38b | 2.16a | <LOD | 2.13b | 2.48a | 1.88c |
Monocerin | 2.79a | <LOD | <LOD | 0.63a | <LOD | <LOD | 0.31a | 0.12b | <LOD |
Rugulusovin | 2.30a | 0.99b | 0.94c | 1.05a | 0.54b | <LOD | 1.80a | 0.64c | 1.19b |
T-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0.80b | 1.48 |
Tentoxin | 0.17a | 0.11b | 0.08c | 0.30a | 0.24b | <LOD | 0.47a | 0.28b | <LOD |
Tryptophol | 69.1a | 31.3c | 33.4b | 37.6b | 38.0a | 2.51c | 84.0a | 45.4b | 29.3c |
Toxin (µg kg−1) | Lukas (Dual) | Maxim (Dual) | Vanessa (Brewing) | ||||||
---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | |
15-Acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
15-Hydroxyculmorin | 5.69b | 17.6a | 1.70c | 5.27a | 5.14b | 3.99c | 4.19b | 8.60a | 1.85c |
15-Hydroxyculmoron | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 33.44a | <LOD |
3-Acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
5-Hydroxyculmorin | <LOD | <LOD | <LOD | 59.9a | <LOD | <LOD | <LOD | <LOD | <LOD |
Alternariol | 1.50b | <LOD | 8.61a | <LOD | <LOD | 8.52a | <LOD | <LOD | 4.74a |
Alternariolmethylether | <LOD | <LOD | 3.90a | <LOD | <LOD | 2.51a | <LOD | <LOD | 0.75a |
Alternariolmethylether-glucoside | 11.4c | 12.5b | 24.1a | 16.1b | 23.8a | 15.0c | 12.2b | 22.8a | 7.15c |
Brevianamid | 9.23a | 5.58b | 4.46c | 23.2a | 17.4b | 6.99c | 9.05a | 7.46b | 3.40c |
Citreorosein | 2.33b | <LOD | 3.54a | 4.84b | <LOD | 7.39a | 9.76b | 13.3a | 6.60c |
Culmorin | 18.6b | 36.2a | 0.15c | <LOD | 23.5a | 4.05b | 15.8b | 16.7a | 5.04c |
Cyclo(L-Pro-L-Tyr) | 23.0a | 8.08b | 3.79c | 26.6a | 17.6b | 5.64c | 24.1a | 14.7b | 4.36c |
Cyclo(L-Pro-L-Val) | 19.1a | 9.32b | 3.03c | 30.1a | 21.0b | 4.15c | 19.8a | 15.2b | 1.79c |
Deoxynivalenol | 75.5b | 75.8a | 68.5c | 67.4c | 107.2a | 75.1b | 51.0a | 40.9c | 60.2b |
DON-3-glucoside | 2.82b | 10.6a | <LOD | 1.64b | 3.35a | <LOD | 1.86b | 3.59a | <LOD |
Emodin | 1.94a | 0.08 | 1.51b | 5.33a | 0.19 | 5.14b | 9.06a | 4.23c | 5.86b |
Enniatin A | <LOD | <LOD | <LOD | 0.03a | <LOD | <LOD | <LOD | <LOD | <LOD |
Enniatin A1 | 0.22a | <LOD | <LOD | 0.16a | <LOD | <LOD | <LOD | <LOD | <LOD |
Enniatin B | 1.48a | 0.02c | 0.04b | 0.77a | <LOD | 0.08b | 0.08a | <LOD | <LOD |
Enniatin B1 | 0.87a | 0.11b | <LOD | 0.39a | <LOD | <LOD | 0.06a | <LOD | <LOD |
Enniatin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Fumonisin B1 | 4.95c | 5.45a | 5.22b | 8.15a | 5.92b | 5.56c | 6.64b | 7.34a | 5.43c |
HT-2 toxin | <LOD | 2.61a | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 4.57a |
Lotaustralin | 10.4a | 8.65c | 8.95b | 10.4b | 11.2a | 9.60c | 9.67a | 8.58c | 9.08b |
Moniliformin | 1.25b | 1.79a | <LOD | <LOQ | 2.69a | <LOD | 0.17 | 3.14a | 1.28b |
Monocerin | 3.77a | <LOD | <LOD | 1.33a | 0.20b | <LOD | <LOD | <LOD | <LOD |
Rugulusovin | 2.36a | 0.70 | 0.91b | 2.63a | 1.94b | 1.50c | 1.48a | 0.60c | 0.77b |
T-2 toxin | 1.26b | 1.65a | <LOD | <LOD | 0.44b | 0.50a | 1.79b | 0.05c | 13.1a |
Tentoxin | 0.31b | <LOD | 0.33a | <LOD | <LOD | 0.21a | <LOD | 0.42a | <LOD |
Tryptophol | 61.6a | 37.1c | 38.3b | 64.3a | 41.6b | 39.0c | 53.6a | 40.7c | 41.2b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habschied, K.; Krska, R.; Sulyok, M.; Šarkanj, B.; Krstanović, V.; Lalić, A.; Šimić, G.; Mastanjević, K. Screening of Various Metabolites in Six Barley Varieties Grown under Natural Climatic Conditions (2016–2018). Microorganisms 2019, 7, 532. https://doi.org/10.3390/microorganisms7110532
Habschied K, Krska R, Sulyok M, Šarkanj B, Krstanović V, Lalić A, Šimić G, Mastanjević K. Screening of Various Metabolites in Six Barley Varieties Grown under Natural Climatic Conditions (2016–2018). Microorganisms. 2019; 7(11):532. https://doi.org/10.3390/microorganisms7110532
Chicago/Turabian StyleHabschied, Kristina, Rudolf Krska, Michael Sulyok, Bojan Šarkanj, Vinko Krstanović, Alojzije Lalić, Gordana Šimić, and Krešimir Mastanjević. 2019. "Screening of Various Metabolites in Six Barley Varieties Grown under Natural Climatic Conditions (2016–2018)" Microorganisms 7, no. 11: 532. https://doi.org/10.3390/microorganisms7110532
APA StyleHabschied, K., Krska, R., Sulyok, M., Šarkanj, B., Krstanović, V., Lalić, A., Šimić, G., & Mastanjević, K. (2019). Screening of Various Metabolites in Six Barley Varieties Grown under Natural Climatic Conditions (2016–2018). Microorganisms, 7(11), 532. https://doi.org/10.3390/microorganisms7110532