Identification, Genotyping and Antimicrobial Susceptibility Testing of Brucella spp. Isolated from Livestock in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification
Identification by MALDI-TOF MS
2.2. Genomic DNA Extraction and Purification
2.3. Molecular Identification and Differentiation
2.4. Antimicrobial Susceptibility Testing
2.5. Molecular Detection of Antimicrobial Resistance-Associated Genes
2.6. PCR Amplicon Sequencing and Data Analysis
3. Results
3.1. Microbiological Identification
3.2. Molecular Identification and Differentiation
3.3. Antimicrobial Susceptibility Profiling
3.4. Detection of Antimicrobial Resistance-Associated Genes and Mutations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moreno, E. Retrospective and prospective perspectives on zoonotic brucellosis. Front. Microbiol. 2014, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Georgi, E.; Walter, M.C.; Pfalzgraf, M.T.; Northoff, B.H.; Holdt, L.M.; Scholz, H.C.; Zoeller, L.; Zange, S.; Antwerpen, M.H. Whole genome sequencing of Brucella melitensis isolated from 57 patients in Germany reveals high diversity in strains from middle east. PLoS ONE 2017, 12, e0175425. [Google Scholar] [CrossRef] [PubMed]
- Whatmore, A.M.; Davison, N.; Cloeckaert, A.; Al Dahouk, S.; Zygmunt, M.S.; Brew, S.D.; Perrett, L.L.; Koylass, M.S.; Vergnaud, G.; Quance, C.; et al. Brucella papionis sp. Nov., isolated from baboons (Papio spp.). Int. J. Syst. Evol. Microbiol. 2014, 64, 4120–4128. [Google Scholar] [CrossRef] [PubMed]
- Scholz, H.C.; Revilla-Fernandez, S.; Al Dahouk, S.; Hammerl, J.A.; Zygmunt, M.S.; Cloeckaert, A.; Koylass, M.; Whatmore, A.M.; Blom, J.; Vergnaud, G.; et al. Brucella vulpis sp. Nov., isolated from mandibular lymph nodes of red foxes (Vulpes vulpes). Int. J. Syst. Evol. Microbiol. 2016, 66, 2090–2098. [Google Scholar] [PubMed]
- Shome, R.; Kalleshamurthy, T.; Shome, B.R.; Sahay, S.; Natesan, K.; Bambal, R.G.; Sairiwal, L.; Mohandoss, N.; Barbuddhe, S.B. Lateral flow assay for brucellosis testing in multiple livestock species. J. Microbiol. Methods 2018, 148, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Morgan, W.J. Brucella classification and regional distribution. Dev. Biol. Stand. 1984, 56, 43–53. [Google Scholar]
- Miller, M.A.; Burgess, T.L.; Dodd, E.M.; Rhyan, J.C.; Jang, S.S.; Byrne, B.A.; Gulland, F.M.; Murray, M.J.; Toy-Choutka, S.; Conrad, P.A.; et al. Isolation and characterization of a novel marine Brucella from a southern sea otter (Enhydra lutris nereis), California, USA. J. Wildl. Dis. 2017, 53, 215–227. [Google Scholar] [CrossRef]
- Richomme, C.; Gauthier, D.; Fromont, E. Contact rates and exposure to inter-species disease transmission in mountain ungulates. Epidemiol. Infect. 2006, 134, 21–30. [Google Scholar] [CrossRef]
- Singh, B.B.; Dhand, N.K.; Gill, J.P. Economic losses occurring due to brucellosis in Indian livestock populations. Prev. Vet. Med. 2015, 119, 211–215. [Google Scholar] [CrossRef]
- Godfroid, J. Brucellosis in livestock and wildlife: Zoonotic diseases without pandemic potential in need of innovative one health approaches. Arch. Public Health 2017, 75, 6. [Google Scholar] [CrossRef]
- Refai, M. Incidence and control of brucellosis in the near east region. Vet. Microbiol. 2002, 90, 81–110. [Google Scholar] [CrossRef]
- Menshawy, A.M.; Perez-Sancho, M.; Garcia-Seco, T.; Hosein, H.I.; Garcia, N.; Martinez, I.; Sayour, A.E.; Goyache, J.; Azzam, R.A.; Dominguez, L.; et al. Assessment of genetic diversity of zoonotic Brucella spp. Recovered from livestock in Egypt using multiple locus vntr analysis. Biomed. Res. Int. 2014, 2014, 7. [Google Scholar] [CrossRef] [PubMed]
- Wareth, G.; Hikal, A.; Refai, M.; Melzer, F.; Roesler, U.; Neubauer, H. Animal brucellosis in Egypt. J. Infect. Dev. Ctries 2014, 8, 1365–1373. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, Y.M.; Molina-Flores, B.; Shafik, H.; Ridler, A.L.; Guitian, F.J. Ruminant brucellosis in upper Egypt (2005–2008). Prev. Vet. Med. 2011, 101, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Eltholth, M.M.; Hegazy, Y.M.; El-Tras, W.F.; Bruce, M.; Rushton, J. Temporal analysis and costs of ruminant brucellosis control programme in Egypt between 1999 and 2011. Transbound. Emerg. Dis. 2017, 64, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Dean, A.S.; Crump, L.; Greter, H.; Schelling, E.; Zinsstag, J. Global burden of human brucellosis: A systematic review of disease frequency. PLoS Negl. Trop. Dis. 2012, 6, e1865. [Google Scholar] [CrossRef]
- Pappas, G.; Papadimitriou, P.; Akritidis, N.; Christou, L.; Tsianos, E.V. The new global map of human brucellosis. Lancet Infect. Dis. 2006, 6, 91–99. [Google Scholar] [CrossRef]
- Godfroid, J.; Al Dahouk, S.; Pappas, G.; Roth, F.; Matope, G.; Muma, J.; Marcotty, T.; Pfeiffer, D.; Skjerve, E. A “one health” surveillance and control of brucellosis in developing countries: Moving away from improvisation. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 241–248. [Google Scholar] [CrossRef]
- Tuon, F.F.; Gondolfo, R.B.; Cerchiari, N. Human to human transmission of Brucella—A systematic review. Trop. Med. Int. Health 2017, 22, 539–546. [Google Scholar] [CrossRef]
- El-Diasty, M.; Wareth, G.; Melzer, F.; Mustafa, S.; Sprague, L.D.; Neubauer, H. Isolation of Brucella abortus and Brucella melitensis from seronegative cows is a serious impediment in brucellosis control. Vet. Sci. 2018, 5, 4. [Google Scholar] [CrossRef]
- Godfroid, J.; Nielsen, K.; Saegerman, C. Diagnosis of brucellosis in livestock and wildlife. Croat. Med. J. 2010, 51, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Mathew, C.; Stokstad, M.; Johansen, T.B.; Klevar, S.; Mdegela, R.H.; Mwamengele, G.; Michel, P.; Escobar, L.; Fretin, D.; Godfroid, J. First isolation, identification, phenotypic and genotypic characterization of Brucella abortus biovar 3 from dairy cattle in Tanzania. BMC Vet. Res. 2015, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Vicente, A.F.; Antunes, J.M.; Lara, G.H.; Mioni, M.S.; Allendorf, S.D.; Peres, M.G.; Appolinario, C.M.; Listoni, F.J.; Ribeiro, M.G.; Megid, J. Evaluation of three formulations of culture media for isolation of Brucella spp. Regarding their ability to inhibit the growth of contaminating organisms. Biomed. Res. Int. 2014, 2014, 3. [Google Scholar] [CrossRef] [PubMed]
- Alton, G.G.; Jones, L.M.; Angus, R.D.; Verger, J.M. Techniques for the Brucellosis Laboratory; Institut National De La Recherche Agronomique: Paris, France, 1988; Available online: https://www.cabi.org/isc/abstract/19892297928 (accessed on 19 November 2019).
- Angeletti, S. Matrix assisted laser desorption time of flight mass spectrometry (maldi-tof ms) in clinical microbiology. J. Microbiol. Method 2017, 138, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Patel, R. Maldi-tof ms for the diagnosis of infectious diseases. Clin. Chem. 2015, 61, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Sali, M.; De Maio, F.; Tarantino, M.; Garofolo, G.; Tittarelli, M.; Sacchini, L.; Zilli, K.; Pasquali, P.; Petrucci, P.; Marianelli, C.; et al. Rapid and safe one-step extraction method for the identification of Brucella strains at genus and species level by maldi-tof mass spectrometry. PLoS ONE 2018, 13, e0197864. [Google Scholar] [CrossRef]
- Hinic, V.; Brodard, I.; Thomann, A.; Cvetnic, Z.; Makaya, P.V.; Frey, J.; Abril, C. Novel identification and differentiation of Brucella melitensis, b. Abortus, b. Suis, b. Ovis, b. Canis, and b. Neotomae suitable for both conventional and real-time pcr systems. J. Microbiol. Methods 2008, 75, 375–378. [Google Scholar] [CrossRef]
- Bricker, B.J.; Halling, S.M. Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by pcr. J. Clin. Microbiol. 1994, 32, 2660–2666. [Google Scholar]
- Lopez-Goni, I.; Garcia-Yoldi, D.; Marin, C.M.; de Miguel, M.J.; Munoz, P.M.; Blasco, J.M.; Jacques, I.; Grayon, M.; Cloeckaert, A.; Ferreira, A.C.; et al. Evaluation of a multiplex pcr assay (bruce-ladder) for molecular typing of all Brucella species, including the vaccine strains. J. Clin. Microbiol. 2008, 46, 3484–3487. [Google Scholar] [CrossRef]
- Ali, S.; Ali, Q.; Melzer, F.; Khan, I.; Akhter, S.; Neubauer, H.; Jamal, S.M. Isolation and identification of bovine Brucella isolates from pakistan by biochemical tests and pcr. Trop. Anim Health Prod. 2014, 46, 73–78. [Google Scholar] [CrossRef]
- Bricker, B.J.; Halling, S.M. Enhancement of the Brucella amos pcr assay for differentiation of Brucella abortus vaccine strains s19 and rb51. J. Clin. Microbiol. 1995, 33, 1640–1642. [Google Scholar] [PubMed]
- Ariza, J.; Bosilkovski, M.; Cascio, A.; Colmenero, J.D.; Corbel, M.J.; Falagas, M.E.; Memish, Z.A.; Roushan, M.R.; Rubinstein, E.; Sipsas, N.V.; et al. Perspectives for the treatment of brucellosis in the 21st century: The Ioannina recommendations. PLoS Med. 2007, 4, e317. [Google Scholar] [CrossRef]
- Del Pozo, J.S.G.; Solera, J. Treatment of human brucellosis-review of evidence from clinical trials. In Updates on Brucellosis; InTech.Open: London, UK, 2015. [Google Scholar]
- Zakaa El-Din, M.; Samy, F.; Mohamed, A.; Hamdy, F.; Yasser, S.; Ehab, M. Egyptian community pharmacists’ attitudes and practices towards antibiotic dispensing and antibiotic resistance; a cross-sectional survey in greater Cairo. Curr. Med. Res. Opin. 2019, 35, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Sabry, N.A.; Farid, S.F.; Dawoud, D.M. Antibiotic dispensing in Egyptian community pharmacies: An observational study. Res. Soc. Adm. Pharm. 2014, 10, 168–184. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization, Regional Office for the Eastern Mediterranean. Report on the Consultative Meeting on Antimicrobial Resistance for Countries in the Eastern Mediterranean Region: From Policies to Action; World Health Organization, Regional Office for the Eastern Mediterranean: Sharm el Sheikh, Egypt, 2013. [Google Scholar]
- Abdulah, R. Antibiotic abuse in developing countries. Pharm. Regul. Aff. 2012, 1, 1000–1006. [Google Scholar] [CrossRef] [Green Version]
- Kasim, K.; Hassan, H. Self medication problem in Egypt: A review of current and future perspective. Int. J. Cur. Res. Rev. 2018, 10, 6. [Google Scholar]
- Gebeyehu, E.; Bantie, L.; Azage, M. Inappropriate use of antibiotics and its associated factors among urban and rural communities of bahir dar city administration, northwest ethiopia. PLoS ONE 2015, 10, e0138179. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [Green Version]
- Agunos, A.; Pierson, F.W.; Lungu, B.; Dunn, P.A.; Tablante, N. Review of nonfoodborne zoonotic and potentially zoonotic poultry diseases. Avian Dis. 2016, 60, 553–575. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, S.J.; Outterson, K.; Rottingen, J.A.; Cars, O.; Clift, C.; Rizvi, Z.; Rotberg, F.; Tomson, G.; Zorzet, A. An international legal framework to address antimicrobial resistance. Bull. World Health Organ. 2015, 93, 1. [Google Scholar] [CrossRef] [PubMed]
- Johansen, T.B.; Scheffer, L.; Jensen, V.K.; Bohlin, J.; Feruglio, S.L. Whole-genome sequencing and antimicrobial resistance in Brucella melitensis from a Norwegian perspective. Sci Rep. 2018, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.G.; Di, D.D.; Wang, M.; Liu, R.H.; Zhao, H.Y.; Piao, D.R.; Zhao, Z.Z.; Hao, Y.Q.; Du, Y.N.; Jiang, H.; et al. In vitro antimicrobial susceptibility testing of human Brucella melitensis isolates from Ulanqab of inner Mongolia, China. BMC Infect. Dis. 2018, 18, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marianelli, C.; Ciuchini, F.; Tarantino, M.; Pasquali, P.; Adone, R. Genetic bases of the rifampin resistance phenotype in Brucella spp. J. Clin. Microbiol. 2004, 42, 5439–5443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshmukh, A.; Hagen, F.; Sharabasi, O.A.; Abraham, M.; Wilson, G.; Doiphode, S.; Maslamani, M.A.; Meis, J.F. In vitro antimicrobial susceptibility testing of human Brucella melitensis isolates from Qatar between 2014–2015. BMC Microbiol. 2015, 15, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turkmani, A.; Psaroulaki, A.; Christidou, A.; Chochlakis, D.; Tabaa, D.; Tselentis, Y. In vitro-selected resistance to fluoroquinolones in two Brucella strains associated with mutational changes in Gyra. Int. J. Antimicrob. Agents 2008, 32, 227–232. [Google Scholar] [CrossRef]
- Biswas, S.; Raoult, D.; Rolain, J.M. A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. Int. J. Antimicrob. Agents 2008, 32, 207–220. [Google Scholar] [CrossRef]
- Valdezate, S.; Navarro, A.; Medina-Pascual, M.J.; Carrasco, G.; Saez-Nieto, J.A. Molecular screening for rifampicin and fluoroquinolone resistance in a clinical population of Brucella melitensis. J. Antimicrob. Chemother. 2010, 65, 51–53. [Google Scholar] [CrossRef] [Green Version]
- Ravanel, N.; Gestin, B.; Maurin, M. In vitro selection of fluoroquinolone resistance in brucella melitensis. Int. J. Antimicrob. Agents 2009, 34, 76–81. [Google Scholar] [CrossRef] [Green Version]
- OIE. Brucellosis (Brucella abortus, B. melitensis and B. suis) (infection with B. abortus, B. melitensis and B. suis). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2019, OIE; World Health Organization for Animal Health: Paris, France, 2019; pp. 355–398. [Google Scholar]
- Karger, A.; Melzer, F.; Timke, M.; Bettin, B.; Kostrzewa, M.; Nockler, K.; Hohmann, A.; Tomaso, H.; Neubauer, H.; Al Dahouk, S. Interlaboratory comparison of intact-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry results for identification and differentiation of Brucella spp. J. Clin. Microbiol. 2013, 51, 3123–3126. [Google Scholar] [CrossRef] [Green Version]
- Baily, G.G.; Krahn, J.B.; Drasar, B.S.; Stoker, N.G. Detection of Brucella melitensis and Brucella abortus by DNA amplification. J. Trop. Med. Hyg. 1992, 95, 271–275. [Google Scholar] [PubMed]
- Garcia-Yoldi, D.; Marin, C.M.; de Miguel, M.J.; Munoz, P.M.; Vizmanos, J.L.; Lopez-Goni, I. Multiplex pcr assay for the identification and differentiation of all Brucella species and the vaccine strains Brucella abortus s19 and rb51 and Brucella melitensis rev1. Clin. Chem. 2006, 52, 779–781. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Clinical and Laboratory Standard Institute: Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; CLSI: Wayne, PA, USA, 2019. [Google Scholar]
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of Mics and Zone Diameters 2019, Version 9.0. 2019. Available online: http://www.eucast.org (accessed on 19 November 2019).
- Khazaei, Z.; Najafi, A.; Piranfar, V.; Mirnejad, R. Microarray-based long oligonucleotides probe designed for Brucella spp. Detection and identification of antibiotic susceptibility pattern. Electron. Physician 2016, 8, 2297–2303. [Google Scholar] [CrossRef] [PubMed]
- Mugizi, D.R.; Muradrasoli, S.; Boqvist, S.; Erume, J.; Nasinyama, G.W.; Waiswa, C.; Mboowa, G.; Klint, M.; Magnusson, U. Isolation and molecular characterization of Brucella isolates in cattle milk in Uganda. Biomed. Res. Int. 2015. [Google Scholar] [CrossRef] [Green Version]
- Trott, D.J.; Abraham, S.; Adler, B. Antimicrobial resistance in Leptospira, Brucella, and other rarely investigated veterinary and zoonotic pathogens. Microbiol. Spectr. 2018, 6, 13. [Google Scholar] [CrossRef]
- Barbosa Pauletti, R.; Reinato Stynen, A.P.; Pinto da Silva Mol, J.; Seles Dorneles, E.M.; Alves, T.M.; de Sousa Moura Souto, M.; Minharro, S.; Heinemann, M.B.; Lage, A.P. Reduced susceptibility to rifampicin and resistance to multiple antimicrobial agents among Brucella abortus isolates from cattle in brazil. PLoS ONE 2015, 10, e0132532. [Google Scholar] [CrossRef]
- Torkaman Asadi, F.; Hashemi, S.H.; Alikhani, M.Y.; Moghimbeigi, A.; Naseri, Z. Clinical and diagnostic aspects of brucellosis and antimicrobial susceptibility of Brucella isolates in Hamedan, Iran. Jpn. J. Infect. Dis. 2017, 70, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Hashim, R.; Ahmad, N.; Mohamed Zahidi, J.; Tay, B.Y.; Mohd Noor, A.; Zainal, S.; Hamzah, H.; Hamzah, S.H.; Chow, T.S.; Wong, P.S.; et al. Identification and in vitro antimicrobial susceptibility of Brucella species isolated from human brucellosis. Int. J. Microbiol. 2014, 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Maksoud, M.; House, B.; Wasfy, M.; Abdel-Rahman, B.; Pimentel, G.; Roushdy, G.; Dueger, E. In vitro antibiotic susceptibility testing of Brucella isolates from Egypt between 1999 and 2007 and evidence of probable rifampin resistance. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Shevtsov, A.; Syzdykov, M.; Kuznetsov, A.; Shustov, A.; Shevtsova, E.; Berdimuratova, K.; Mukanov, K.; Ramankulov, Y. Antimicrobial susceptibility of Brucella melitensis in Kazakhstan. Antimicrob. Resist. Infect. Control. 2017, 6, 5. [Google Scholar] [CrossRef]
- Khan, M.Z.; Zahoor, M. An overview of brucellosis in cattle and humans, and its serological and molecular diagnosis in control strategies. Trop. Med. Infect. Dis. 2018, 3, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theuretzbacher, U. Global antimicrobial resistance in gram-negative pathogens and clinical need. Curr. Opin. Microbiol. 2017, 39, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Asai, T.; Hiki, M.; Ozawa, M.; Koike, R.; Eguchi, K.; Kawanishi, M.; Kojima, A.; Endoh, Y.S.; Hamamoto, S.; Sakai, M.; et al. Control of the development and prevalence of antimicrobial resistance in bacteria of food animal origin in japan: A new approach for risk management of antimicrobial veterinary medicinal products in Japan. Foodborne Pathog. Dis. 2014, 11, 171–176. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Animal Species | Origin of Sample | Type of Sample | Growth with CO2 | Slide Agglutination A-M-R-Serum | MALDI-TOF MS | Molecular Identification | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
cBruc | dBrusel | eBBA | A | M | R | Result | ||||||
18RB17227 | Cattle | Giza | Lymph node | + | + | + | a+ve | +ve | b−ve | B. melitensis 3 | Brucella spp. (B. abortus) | B. melitensis |
18RB17228 | Cattle | Giza | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. abortus) | B. melitensis |
18RB17229 | Cattle | Giza | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella melitensis | B. melitensis |
18RB17230 | Cattle | Giza | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. melitensis) | B. melitensis |
18RB17231 | Cattle | Giza | Lymph node | + | + | + | −ve | −ve | −ve | * NA | Achromobacter spp. | -ve |
18RB17232 | Cattle | Giza | Lymph node | + | + | + | −ve | −ve | −ve | NA | Achromobacter spp. | -ve |
18RB17233 | Cattle | Giza | Lymph node | +/− | +/− | +/− | +ve | −ve | −ve | B. abortus 1 | B. abortus | B. abortus |
18RB17234 | Cattle | Giza | Lymph node | + | + | + | −ve | −ve | −ve | NA | Achromobacter spp. | -ve |
18RB17235 | Cattle | Giza | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. microti) | B. melitensis |
18RB17236 | Cattle | Giza | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. melitensis) | B. melitensis |
18RB17237 | Cattle | Giza | Lymph node | + | + | + | −ve | −ve | −ve | NA | Achromobacter spp. | -ve |
18RB17238 | Cattle | Giza | Lymph node | + | + | + | +ve | −ve | −ve | B. abortus 1 | Brucella spp. (B. microti) | B. melitensis |
18RB17239 | Cattle | Giza | Lymph node | + | + | + | −ve | −ve | −ve | NA | Achromobacter spp. | -ve |
18RB17240 | Cattle | Beheira | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. microti) | B. melitensis |
18RB17241 | Cattle | Beheira | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. microti) | B. melitensis |
18RB17242 | Cattle | Beheira | Lymph node | +/− | +/− | +/− | +ve | −ve | −ve | B. abortus 1 | B. abortus | B. abortus |
18RB17243 | Cattle | Beheira | Lymph node | +/− | +/− | +/− | +ve | −ve | −ve | B. abortus 1 | B. abortus | B. abortus |
18RB17244 | Buffalo | Asyut | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. abortus) | B. melitensis |
18RB17245 | Buffalo | Asyut | Lymph node | +/− | +/− | +/− | +ve | −ve | −ve | B. abortus 1 | B. abortus | B. abortus |
18RB17246 | Goat | Beni-Suef | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. microti) | B. melitensis |
18RB17247 | Cattle | Asyut | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. melitensis) | B. melitensis |
18RB17248 | Cattle | Qalyubia | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. microti) | B. melitensis |
18RB17249 | Cattle | Qalyubia | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. melitensis) | B. melitensis |
18RB17250 | Sheep | Beni-Suef | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. melitensis) | B. melitensis |
18RB17251 | Cattle | Beni-Suef | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. microti) | B. melitensis |
18RB17252 | Cattle | Ismailia | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. melitensis) | B. melitensis |
18RB17253 | Cattle | Ismailia | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. abortus) | B. melitensis |
18RB17254 | Cattle | Ismailia | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. | B. melitensis |
18RB17255 | Cattle | Beheira | Fetal stomach content | +/− | +/− | +/− | +ve | −ve | −ve | B. abortus 1 | B. abortus | B. abortus |
18RB17256 | Cattle | Dakahlia | Lymph node | +/− | +/− | +/− | +ve | −ve | −ve | B. abortus 1 | B. abortus | B. abortus |
18RB17257 | Cattle | Monufia | Lymph node | +/− | +/− | +/− | +ve | −ve | −ve | B. abortus 1 | B. abortus | B. abortus |
18RB17258 | Cattle | Monufia | Milk | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. abortus) | B. melitensis |
18RB17259 | Cattle | Qalyubia | Lymph node | +/− | +/− | +/− | +ve | −ve | −ve | B. abortus 1 | B. abortus | B. abortus |
18RB17260 | Buffalo | Qalyubia | Lymph node | + | + | + | +ve | +ve | −ve | B. melitensis 3 | Brucella spp. (B. microti) | B. melitensis |
Antibiotic | Class | Breakpoints | B. melitensis | B. abortus | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Sensitive (mg/L) | Intermedium (mg/L) | Resistant (mg/L) | R (%) | MIC50 (mg/L) | MIC90 (mg/L) | R (%) | MIC50 (mg/L) | MIC90 (mg/L) | ||
Chloramphenicol | Phenicols | ≤2 | 4 | ≥8 | 0.0 | 1 | 2 | 0.0 | 0.25 | 0.5 |
Ciprofloxacin | Fluoroquinolones | ≤0.06 | − | >0.06 | 76.19 | 0.12 | 0.25 | 25.0 | 0.06 | 0.06 |
Erythromycin | Macrolides | − | − | ≥16 | 19.04 | 4 | 8 | 87.5 | 32 | 32 |
Gentamicin | Aminoglycosides | − | − | ≤4 | 0.0 | 11 | 11 | 0.0 | 0.12 | 0.5 |
Imipenem | Carbapenems | ≤2 | − | >2 | 76.19 | 8 | 8 | 25.0 | 1 | 4 |
Rifampicin | Ansamycins | ≤1 | 2 | ≥4 | 66.66 | 4 | 8 | 37.5 | 2 | 4 |
Streptomycin | Aminoglycosides | − | − | ≤16 | 4.76 | 1 | 2 | 0.0 | 0.25 | 0.5 |
Tetracycline | Tetracyclines | ≤2 | 4 | ≥8 | 0.0 | 0.06 | 0.12 | 0.0 | 0.03 | 0.12 |
ID | Brucella spp. | RIF Resistance | Mutation Sites | Mutation | Amino Acid Change | NCBI (Accession No.) |
---|---|---|---|---|---|---|
18RB17227 | B. melitensis | 4 | 676, 677 1816 1818 1820, 1822 1824, 1825 1826, 1828 1829, 1831 1835, 1837 1838 1842, 1843 | TAC to CTC GAT to GAA GTC to GCC GTT to ATA TAC to TTT CTG to GTT TCG to GAC ATG to GGC GAA to AAA GAA to GGT | Tyrosine to leucine Aspartic acid to glutamic acid Valine to alanine Valine to isoleucine Tyrosine to phenylalanine Leucine to valine Serine to aspartic acid Methionine to glycine Glutamic acid to lysine Glutamic acid to glycine | MN544028, MN544042, MN544056, MN544070, MN544084 |
18RB17228 | B. melitensis | 4 | 676, 677 3901, 3902 | TAC to CTC TAC to ACC | Tyrosine to leucine Tyrosine to threonine | MN544029, MN544043, MN544057, MN544071, MN544085 |
18RB17229 | B. melitensis | 4 | 676, 677 1011 1456, 1458 1787 2491 | TAC to CTC AAC to AGC GAA to AAG AAG to ACG ACC to CCC | Tyrosine to leucine Asparagine to serine Glutamic acid to lysine Lysine to threonine Threonine to proline | MN544030, MN544044, MN544058, MN544072, MN544086 |
18RB17230 | B. melitensis | 8 | 676, 677 1435 1798, 1799 1801, 1802 1804, 1806 1807 2209, 2210 | TAC to CTC AAG to CAG GGC to AAC AAG to GGG GTG to CTT ACG to TCG ATC to TCC | Tyrosine to leucine Lysine to glutamine Glycine to asparagine Lysine to glycine Valine to leucine Threonine to serine Isoleucine to serine | MN544031, MN544045, MN544059, MN544073, MN544087 |
18RB17235 | B. melitensis | >8 | 676, 677 1469 | TAC to CTC GTC to GGC | Tyrosine to leucine Valine to glycine | MN544032, MN544046, MN544060, MN544074, MN544087 |
18RB17236 | B. melitensis | 8 | 676, 677 | TAC to CTC | Tyrosine to leucine | MN544033, MN544047, MN544061, MN544075, MN544089 |
18RB17238 | B. melitensis | 16 | 677 1780 1786, 1788 2869, 2871 | TAC to TTC TAT to GAT AAG to CAA CGT to GGG | Tyrosine to phenylalanine Tyrosine to aspartic acid Lysine to glutamine Arginine to glycine | MN544034, MN544048, MN544062, MN544076, MN544090 |
18RB17240 | B. melitensis | 16 | 2494, 2496 | TCG to CTC | Serine to leucine | MN544035, MN544049, MN544063, MN544077, MN544091 |
18RB17241 | B. melitensis | 6(8) | 1435 2870, 2871 | AAG to CAG CGT to CCG | Lysine to glutamine Arginine to proline | MN544036, MN544050, MN544064, MN544078, MN544092 |
18RB17246 | B. melitensis | 4 | 676, 678 1436, 1437 2870 3898 3901 | TAC to CTT AAG to ACA CGT to CCT TAC to AAC ACG to CCG | Tyrosine to leucine Lysine to threonine Arginine to proline Tyrosine to asparagine Threonine to proline | MN544037, MN544051, MN544065, MN544079, MN544093 |
18RB17249 | B. melitensis | 4 | 1435, 1437 2170 2203, 2205 2869 3152, 3153 3154, 3156 3157 | AAG to GTA GGC to CGC ATC to TTT CGT to GGT GTG to GGT CAG to GCA CGC to AGC | Lysine to valine Glycine to arginine Isoleucine to phenylalanine Arginine to glycine Valine to glycine Glutamine to alanine Arginine to serine | MN544038, MN544052, MN544066, MN544080, MN544094 |
18RB17253 | B. melitensis | 4 | 1435 1745 | AAG to CAG GCC to GGC | Lysine to glutamine Alanine to glycine | MN544039, MN544053, MN544067, MN544081, MN544095 |
18RB17258 | B. melitensis | 6 | 676, 677 2501, 2502 | TAC to CTC CAC to CCA | Tyrosine to leucine Histidine to proline | MN544040, MN544054, MN544068, MN544082, MN544096 |
18RB17260 | B. melitensis | 4 | 1435 3670, 3672 | AAG to CAG CAG to TAT | Lysine to glutamine Glutamine to tyrosine | MN544041, MN544055, MN544069, MN544083, MN544097 |
18RB17233 | B. abortus | 4 | 703, 704 709, 710 1457, 1458 1460 2512 2515, 2517 2890, 2892 3123 3124, 3125 | ACT to CTT ACC to CAC AAG to ACA GAA to GGA ACC to CCC TCG to CTC CGT to GGG GAC to GAG GAC to ATC | Threonine to leucine Threonine to histidine Lysine to threonine Glutamic acid to glycine Threonine to proline Serine to leucine Arginine to glycine Aspartic acid to glutamic acid Aspartic acid to isoleucine | MN544013, MN544016, MN544019, MN544022, MN544025 |
18RB17242 | B. abortus | >4 | 698, 699 1457, 1458 1460 1789 1801 2887 2890 | TAC to TTT AAG to ACA GAA to GGA ATC to GTC TAT to GAT GAG to AAG CGT to GGT | Tyrosine to phenylalanine Tyrosine to threonine Glutamic acid to glycine Isoleucine to valine Tyrosine to aspartic acid Glutamic acid to lysine Arginine to glycine | MN544014, MN544017, MN544020, MN544023, MN544026 |
18RB17245 | B. abortus | 4 | 709 2890 | ACC to CCC CGT to GGT | Threonine to proline Arginine to glycine | MN544015, MN544018, MN544021, MN544024, MN544027 |
ID | Brucella spp. | CIPResistance | Gene | Mutation Sites | Mutation | Amino Acid Change | NCBI (Accession No.) |
---|---|---|---|---|---|---|---|
18RB17230 | B. melitensis | 0.5 | gyrA | 167 197 202 235 | ATG to AGG CCC to CGC CGC to AGC GGT to CGT | Methionine to arginine Proline to arginine Arginine to serine Glycine to arginine | MN536677 |
18RB17235 | B. melitensis | 0.25 | 944, 945 946 | GTG to GGA GCC to TCC | Valine to glycine Alanine to serine | MN536678 | |
18RB17238 | B. melitensis | 0.25 | 941 944 | GCC to GAC GTG to GAG | Alanine to aspartic acid Valine to glutamic acid | MN536679 | |
18RB17254 | B. melitensis | 0.12 | 962 | AAC to ACC | Asparagine to threonine | MN536680 | |
18RB17230 | B. melitensis | 0.5 | gyrB | 1144 | ATC to CTC | Isoleucine to leucine | MN536681 |
18RB17244 | B. melitensis | 0.25 | 1141 | AAG to GAG | Lysine to Glutamine | MN536682 | |
18RB17252 | B. melitensis | 0.12 | 1421 | TCA to TTA | Serine to Leucine | MN536683 | |
18RB17254 | B. melitensis | 0.12 | 1421 | TCA to TTA | Serine to Leucine | MN536684 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.U.; Shell, W.S.; Melzer, F.; Sayour, A.E.; Ramadan, E.S.; Elschner, M.C.; Moawad, A.A.; Roesler, U.; Neubauer, H.; El-Adawy, H. Identification, Genotyping and Antimicrobial Susceptibility Testing of Brucella spp. Isolated from Livestock in Egypt. Microorganisms 2019, 7, 603. https://doi.org/10.3390/microorganisms7120603
Khan AU, Shell WS, Melzer F, Sayour AE, Ramadan ES, Elschner MC, Moawad AA, Roesler U, Neubauer H, El-Adawy H. Identification, Genotyping and Antimicrobial Susceptibility Testing of Brucella spp. Isolated from Livestock in Egypt. Microorganisms. 2019; 7(12):603. https://doi.org/10.3390/microorganisms7120603
Chicago/Turabian StyleKhan, Aman Ullah, Waleed S. Shell, Falk Melzer, Ashraf E. Sayour, Eman Shawkat Ramadan, Mandy C. Elschner, Amira A. Moawad, Uwe Roesler, Heinrich Neubauer, and Hosny El-Adawy. 2019. "Identification, Genotyping and Antimicrobial Susceptibility Testing of Brucella spp. Isolated from Livestock in Egypt" Microorganisms 7, no. 12: 603. https://doi.org/10.3390/microorganisms7120603
APA StyleKhan, A. U., Shell, W. S., Melzer, F., Sayour, A. E., Ramadan, E. S., Elschner, M. C., Moawad, A. A., Roesler, U., Neubauer, H., & El-Adawy, H. (2019). Identification, Genotyping and Antimicrobial Susceptibility Testing of Brucella spp. Isolated from Livestock in Egypt. Microorganisms, 7(12), 603. https://doi.org/10.3390/microorganisms7120603