Modeling the Reduction of Salmonella spp. on Chicken Breasts and Wingettes during Scalding for QMRA of the Poultry Supply Chain in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Inoculum
2.2. Preparation and Inoculation of Chicken Samples
2.3. Scalding Treatments
2.4. Bacterial Enumeration
2.5. Distribution Fitting
2.6. Model Development and Evaluation
2.7. Statistical Analysis
2.8. Color Measurements
2.9. Transmission Electron Microscopy (TEM)
3. Results and Discussion
3.1. Bacterial Reduction in Scalding
3.2. Statistical Distributions for Bacterial Reduction at 50, 60 and 70 °C
3.3. Model Evaluation, Comparison and its Application in Quantitative Microbial Risk Assessment (QMRA)
3.4. Color Changes during Scalding
3.5. Morphological Changes Revealed by TEM
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Uddin, M.N.; Farooq, M.; Waqas, M.; Khan, N.U.; Khan, W.A.; Khan, I.; Rizwan, M. Antibiotic assays of Salmonella isolated from poultry chicken of various locations in districts Swat. Pure Appl. Biol. 2018, 7, 78–84. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Song, X.; Cui, S.; Xu, H.; Yang, B.; Chen, Q. Prevalence and quantification of Salmonella contamination in raw chicken carcasses at the retail in China. Food Control 2014, 44, 198–202. [Google Scholar] [CrossRef]
- Jarquin, C.; Alvarez, D.; Morales, O.; Morales, A.J.; Lopez, B.; Donado, P.; Doyle, M.P. Salmonella on raw poultry in retail markets in Guatemala: Levels, antibiotic susceptibility, and serovar distribution. J. Food Prot. 2015, 78, 1642–1650. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; Obrien, S.J. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Löfström, C.; Hintzmann, A.S.; Sørensen, G.; Baggesen, D.L. Outbreak of Salmonella Enterica serovar Typhimurium phage type DT41 in Danish poultry production. Vet. Microbiol. 2015, 178, 167–172. [Google Scholar] [CrossRef]
- FAO. Meat and Meat Products. Available online: http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Meat/Documents/Food_Outlook_June_2017__Meat_.pdf (accessed on 1 March 2019).
- Ren, X.; Li, M.; Xu, C.; Cui, K.; Feng, Z.; Fu, Y.; Liao, M. Prevalence and molecular characterization of Salmonella Entericaisolates throughout an integrated broiler supply chain in China. Epidemiol. Infect. 2016, 144, 2989–2999. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Xi, M.; Wang, X.; Cui, S.; Yue, T.; Hao, H.; Walls, I. Prevalence of Salmonella on raw poultry at retail markets in China. J. Food Prot. 2011, 74, 1724–1728. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, Y.; Xiong, Z.; Ma, Y.; Wei, Y.; Qu, X.; Liao, M. Highly prevalent multidrug-resistant Salmonella from chicken and pork meat at retail markets in Guangdong, China. Front. Microbiol. 2018, 9, 2104. [Google Scholar] [CrossRef]
- Osiriphun, S.; Tuitemwong, P.; Koetsinchai, W.; Tuitemwong, K.; Erickson, L.E. Model of inactivation of Campylobacter jejuni in poultry scalding. J. Food Eng. 2012, 110, 38–43. [Google Scholar] [CrossRef]
- Russell, S.M. Disinfection of poultry carcasses during scalding and immersion chilling. Turkey 2003, 51, 5–8. [Google Scholar]
- Buhr, R.J.; Walker, J.M.; Bourassa, D.V.; Caudill, A.B.; Kiepper, B.H.; Zhuang, H. Impact of broiler processing scalding and chilling profiles on carcass and breast meat yield. Poultry Sci. 2014, 93, 1534–1541. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.E.; Gottilla, K.A.; Bourassa, D.V.; Bartenfeld, L.N.; Kiepper, B.H.; Buhr, R.J. Impact of scalding duration and scalding water temperature on broiler processing wastewater loadings. J. Appl. Poultry Res. 2018, 27, 522–531. [Google Scholar] [CrossRef]
- McCarthy, Z.; Smith, B.; Fazil, A.; Wu, J.; Ryan, S.D.; Munther, D. pH dependent C. jejuni thermal inactivation models and application to poultry scalding. J. Food Eng. 2018, 223, 1–9. [Google Scholar] [CrossRef]
- Membré, J.M.; Boué, G. Quantitative microbiological risk assessment in food industry: Theory and practical application. Food Res. Int. 2018, 106, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Risk Assessment of Campylobacter spp. in Broiler Chickens: Technical Report; WHO Library: Geneva, Switzerland, 2009. [Google Scholar]
- Hayama, Y.; Yamamoto, T.; Kasuga, F.; Tsutsui, T. Simulation model for Campylobacter cross-contamination during poultry processing at slaughterhouses. Zoonoses Public Health 2011, 58, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zang, X.; Zhai, W.; Guan, C.; Lei, T.; Jiao, X. Campylobacter spp. in chicken-slaughtering operations: A risk assessment of human campylobacteriosis in East China. Food Control 2018, 86, 249–256. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Johnson, M.G. Survival and death of Salmonella Typhimurium and Campylobacter jejuni in processing water and on chicken skin during poultry scalding and chilling. J. Food Prot. 2001, 64, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, S.; Li, Y.; Johnson, M.G. Predictive models for the survival/death of Campylobacter jejuni and Salmonella Typhimurium in poultry scalding and chilling. J. Food Sci. 2002, 67, 1836–1843. [Google Scholar] [CrossRef]
- Murphy, R.Y.; Marks, B.P.; Johnson, E.R.; Johnson, M.G. Thermal inactivation kinetics of Salmonella and Listeria in ground chicken breast meat and liquid medium. J. Food Sci. 2000, 65, 706–710. [Google Scholar] [CrossRef]
- Vose, D.J. The application of quantitative risk assessment to microbial food safety. J. Food Prot. 1998, 6, 640–648. [Google Scholar] [CrossRef]
- Peleg, M.; Cole, M.B. Reinterpretation of microbial survival curves. Crit. Rev. Food Sci. 1998, 38, 353–380. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Pradhan, A.; Wang, W.; Li, Y. Prediction of Listeria innocua survival in fully cooked chicken breast products during postpackage thermal treatment. Poultry Sci. 2013, 92, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Lori, S.; Buckow, R.; Knorr, D.; Heinz, V.; Lehmacher, A. Predictive model for inactivation of Campylobacter spp. by heat and high hydrostatic pressure. J. Food Prot. 2007, 70, 2023–2029. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, F.P.; Campos, D.; Ryser, E.T.; Buchholz, A.L.; Posada-Izquierdo, G.D.; Marks, B.P.; Todd, E. A mathematical risk model for Escherichia coli O157: H7 cross-contamination of lettuce during processing. Food Microbiol. 2011, 28, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Hernandez, A.; Brashears, M.M.; Sanchez-Plata, M.X. Efficacy of lactic acid, lactic acid-acetic acid blends, and peracetic acid to reduce Salmonella on chicken parts under simulated commercial processing conditions. J. Food Prot. 2018, 81, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Shang, W.; Liu, C.; Zhang, Q.; Sunter, G.; Hong, J.; Zhou, X. Mutual association of broad bean wilt virus 2 VP37-derived tubules and plasmodesmata obtained from cytological observation. Sci. Rep. 2016, 6, 21552. [Google Scholar] [CrossRef]
- Álvarez-Ordóñez, A.; Fernández, A.; López, M.; Arenas, R.; Bernardo, A. Modifications in membrane fatty acid composition of Salmonella Typhimurium in response to growth conditions and their effect on heat resistance. Int. J. Food Microbiol. 2008, 123, 212–219. [Google Scholar] [CrossRef]
- Juneja, V.K.; Eblen, B.S.; Ransom, G.M. Thermal inactivation of Salmonella spp. in chicken broth, beef, pork, turkey, and chicken: Determination of d- and z-values. J. Food Sci. 2001, 66, 146–152. [Google Scholar] [CrossRef]
- Murphy, R.Y.; Marks, B.P.; Johnson, E.R.; Johnson, M.G. Inactivation of Salmonella and Listeria in ground chicken breast meat during thermal processing. J. Food Prot. 1999, 62, 980–985. [Google Scholar] [CrossRef]
- Juneja, V.K.; Melendres, M.V.; Huang, L.; Gumudavelli, V.; Subbiah, J.; Thippareddi, H. Modeling the effect of temperature on growth of Salmonella in chicken. Food Microbiol. 2007, 24, 328–335. [Google Scholar] [CrossRef]
- McCormick, K.; Han, I.Y.; Acton, J.C.; Sheldon, B.W.; Dawson, P.L. D and z-values for Listeria monocytogenes and Salmonella Typhimurium in packaged low-fat ready-to-eat turkey bologna subjected to a surface pasteurization treatment. Poultry Sci. 2003, 82, 1337–1342. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.E.; Mazzotta, A.S.; Wang, T.; Wiseman, D.W.; Scott, V.N. Heat resistance of Listeria monocytogenes. J. Food Prot. 2001, 64, 410–429. [Google Scholar] [CrossRef] [PubMed]
- Bhide, S. Effect of Surface Roughness in Model and Fresh Fruit Systems on Microbial Inactivation Efficacy of Cold Atmospheric Pressure Plasma. Master’s Thesis, Rutgers, The State University of New Jersey, Newark, NJ, USA, January 2016. [Google Scholar]
- Duffy, S.; Churey, J.; Worobo, R.W.; Schaffner, D.W. Analysis and modeling of the variability associated with UV inactivation of Escherichia coli in apple cider. J. Food Prot. 2000, 63, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Sampedro, F.; Rodrigo, D.; Martínez, A. Modelling the effect of pH and pectin concentration on the PEF inactivation of Salmonella Enterica serovar Typhimuriumby using the Monte Carlo simulation. Food Control 2011, 22, 420–425. [Google Scholar] [CrossRef]
- Gayán, E.; Torres, J.A.; Ávarez, I.; Condon, S. Selection of process conditions by risk assessment for apple juice pasteurization by UV-heat treatments at moderate temperatures. J. Food Prot. 2014, 77, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Huang, L. Thermal inactivation of Listeria monocytogenes in ground beef under isothermal and dynamic temperature conditions. J. Food Eng. 2009, 90, 380–387. [Google Scholar] [CrossRef]
- Murphy, R.Y.; Osaili, T.; Duncan, L.K.; Marcy, J.A. Thermal inactivation of Salmonella and Listeria monocytogenes in ground chicken thigh/leg meat and skin. Poultry Sci. 2004, 83, 1218–1225. [Google Scholar] [CrossRef]
- Rajan, K.; Shi, Z.; Ricke, S.C. Current aspects of Salmonella contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards. Crit. Rev. Microbiol. 2017, 43, 370–392. [Google Scholar] [CrossRef]
- Petracci, M.; Betti, M.; Bianchi, M.; Cavani, C. Color variation and characterization of broiler breast meat during processing in Italy. Poultry Sci. 2004, 83, 2086–2092. [Google Scholar] [CrossRef]
- Ukuku, D.O.; Jin, T.; Zhang, H. Membrane damage and viability loss of Escherichia coli K-12 and Salmonella Enterica in liquid egg by thermal death time disk treatment. J. Food Prot. 2008, 71, 1988–1995. [Google Scholar] [CrossRef]
- Spinks, A.T.; Dunstan, R.H.; Harrison, T.; Coombes, P.; Kuczera, G. Thermal inactivation of water-borne pathogenic and indicator bacteria at sub-boiling temperatures. Water Res. 2006, 40, 1326–1332. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, H.; Sato, M.; Kanematsu, N.; Kato, M.; Hosnino, Y.; Takagi, N.; Namikawa, I. Temperature-dependent changes in phospholipid and fatty acid composition and membrane lipid fluidity of Yersinia enterocolitica. Lett. Appl. Microbiol. 1987, 5, 15–18. [Google Scholar] [CrossRef]
Weibull Model | Exponential Model | Log-Linear Model | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N0 | β | α | pseudo-R2 | RMSE | SEP% | N0 | b | c | pseudo-R2 | RMSE | SEP% | N0 | D | pseudo-R2 | RMSE | SEP% |
6.5 | 5.52 | 0.23 | 0.90 | 2.0 | 2.81 | 4.7 | 1.4 | 20 | 0.66 | 3.4 | 4.7 | 5.5 | 88 | 0.58 | 3.8 | 6.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Wang, W.; Zhang, X.; Zhang, J.; Liao, M.; Yang, H.; Zhang, Q.; Rainwater, C.; Li, Y. Modeling the Reduction of Salmonella spp. on Chicken Breasts and Wingettes during Scalding for QMRA of the Poultry Supply Chain in China. Microorganisms 2019, 7, 165. https://doi.org/10.3390/microorganisms7060165
Xiao X, Wang W, Zhang X, Zhang J, Liao M, Yang H, Zhang Q, Rainwater C, Li Y. Modeling the Reduction of Salmonella spp. on Chicken Breasts and Wingettes during Scalding for QMRA of the Poultry Supply Chain in China. Microorganisms. 2019; 7(6):165. https://doi.org/10.3390/microorganisms7060165
Chicago/Turabian StyleXiao, Xingning, Wen Wang, Xibin Zhang, Jianmin Zhang, Ming Liao, Hua Yang, Qiaoyan Zhang, Chase Rainwater, and Yanbin Li. 2019. "Modeling the Reduction of Salmonella spp. on Chicken Breasts and Wingettes during Scalding for QMRA of the Poultry Supply Chain in China" Microorganisms 7, no. 6: 165. https://doi.org/10.3390/microorganisms7060165
APA StyleXiao, X., Wang, W., Zhang, X., Zhang, J., Liao, M., Yang, H., Zhang, Q., Rainwater, C., & Li, Y. (2019). Modeling the Reduction of Salmonella spp. on Chicken Breasts and Wingettes during Scalding for QMRA of the Poultry Supply Chain in China. Microorganisms, 7(6), 165. https://doi.org/10.3390/microorganisms7060165