Production of Indole-3-Lactic Acid by Bifidobacterium Strains Isolated fromHuman Infants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Production of Tryptophan Metabolites by Bifidobacterium strains
2.2. Discussion
3. Materials and Methods
3.1. Materials
3.2. Bacterial Strains
3.3. Culture Supernatants (CSs)
3.4. Quantification of Tryptophan Metabolite Concentrations in CSs
3.5. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gao, J.; Xu, K.; Liu, H.; Liu, G.; Bai, M.; Peng, C.; Li, T.; Yin, Y. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front. Cell. Infect. Microbiol. 2018, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 9, 3294. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Ding, Y.; Saedi, N.; Choi, M.; Sridharan, G.V.; Sherr, D.H.; Yarmush, M.L.; Alaniz, R.C.; Jayaraman, A.; Lee, K. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep. 2018, 23, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Ye, L.; Liu, H.; Huang, L.; Yang, Q.; Turner, J.R.; Yu, Q. Lactobacillus accelerates ISCS regeneration to protect the integrity of intestinal mucosa through activation of stat3 signaling pathway induced by LPLs secretion of IL-22. Cell Death Differ. 2018, 25, 1657–1670. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, M.; Mukherjee, S.; Wang, H.; Li, H.; Sun, K.; Benechet, A.P.; Qiu, Z.; Maher, L.; Redinbo, M.R.; Phillips, R.S.; et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 2014, 41, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Morshedi, D.; Rezaei-Ghaleh, N.; Ebrahim-Habibi, A.; Ahmadian, S.; Nemat-Gorgani, M. Inhibition of amyloid fibrillation of lysozyme by indole derivatives--possible mechanism of action. FEBS J. 2007, 274, 6415–6425. [Google Scholar] [CrossRef] [PubMed]
- Aoki-Yoshida, A.; Ichida, K.; Aoki, R.; Kawasumi, T.; Suzuki, C.; Takayama, Y. Prevention of UVB-induced production of the inflammatory mediator in human keratinocytes by lactic acid derivatives generated from aromatic amino acids. Biosci. Biotechnol. Biochem. 2013, 77, 1766–1768. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Kosaka, M.; Shindo, K.; Kawasumi, T.; Kimoto-Nira, H.; Suzuki, C. Identification of antioxidants produced by Lactobacillus plantarum. Biosci. Biotechnol. Biochem. 2013, 77, 1299–1302. [Google Scholar] [CrossRef]
- Cervantes-Barragan, L.; Chai, J.N.; Tianero, M.D.; Di Luccia, B.; Ahern, P.P.; Merriman, J.; Cortez, V.S.; Caparon, M.G.; Donia, M.S.; Gilfillan, S.; et al. Lactobacillus reuteri induces gut intraepithelial CD4+ CD8αα+ T cells. Science 2017, 357, 806–810. [Google Scholar]
- Wilck, N.; Matus, M.G.; Kearney, S.M.; Olesen, S.W.; Forslund, K.; Bartolomaeus, H.; Haase, S.; Mahler, A.; Balogh, A.; Marko, L.; et al. Salt-responsive gut commensal modulates Th17 axis and disease. Nature 2017, 551, 585–589. [Google Scholar] [CrossRef]
- Peters, A.; Krumbholz, P.; Jager, E.; Heintz-Buschart, A.; Cakir, M.V.; Rothemund, S.; Gaudl, A.; Ceglarek, U.; Schoneberg, T.; Staubert, C. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet. 2019, 15, e1008145. [Google Scholar]
- Aragozzini, F.; Ferrari, A.; Pacini, N.; Gualandris, R. Indole-3-lactic acid as a tryptophan metabolite produced by Bifidobacterium spp. Appl. Environ. Microbiol. 1979, 38, 544–546. [Google Scholar] [PubMed]
- Smith, E.A.; Macfarlane, G.T. Enumeration of human colonic bacteria producing phenolic and indolic compounds: Effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J. Appl. Bacteriol. 1996, 81, 288–302. [Google Scholar] [CrossRef] [PubMed]
- Turroni, F.; Peano, C.; Pass, D.A.; Foroni, E.; Severgnini, M.; Claesson, M.J.; Kerr, C.; Hourihane, J.; Murray, D.; Fuligni, F.; et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS ONE 2012, 7, e36957. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, E.; Matsuki, T.; Kubota, H.; Makino, H.; Sakai, T.; Oishi, K.; Kushiro, A.; Fujimoto, J.; Watanabe, K.; Watanuki, M.; et al. Ethnic diversity of gut microbiota: Species characterization of Bacteroides fragilis group and genus Bifidobacterium in healthy Belgian adults, and comparison with data from Japanese subjects. J. Biosci. Bioeng. 2013, 116, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Odamaki, T.; Horigome, A.; Sugahara, H.; Hashikura, N.; Minami, J.; Xiao, J.Z.; Abe, F. Comparative genomics revealed genetic diversity and species/strain-level differences in carbohydrate metabolism of three probiotic bifidobacterial species. Int. J. Genom. 2015, 2015, 567809. [Google Scholar] [CrossRef]
- O’Callaghan, A.; van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef]
- Duranti, S.; Milani, C.; Lugli, G.A.; Turroni, F.; Mancabelli, L.; Sanchez, B.; Ferrario, C.; Viappiani, A.; Mangifesta, M.; Mancino, W.; et al. Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Environ. Microbiol. 2015, 17, 2515–2531. [Google Scholar] [CrossRef]
- Kato, K.; Odamaki, T.; Mitsuyama, E.; Sugahara, H.; Xiao, J.Z.; Osawa, R. Age-related changes in the composition of gut Bifidobacterium species. Curr. Microbiol. 2017, 74, 987–995. [Google Scholar] [CrossRef]
- Odamaki, T.; Bottacini, F.; Mitsuyama, E.; Yoshida, K.; Kato, K.; Xiao, J.Z.; van Sinderen, D. Impact of a bathing tradition on shared gut microbe among Japanese families. Sci. Rep. 2019, 9, 4380. [Google Scholar] [CrossRef]
- Lin, R.; Liu, W.; Piao, M.; Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 2017, 49, 2083–2090. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Alookaran, J.J.; Rhoads, J.M. Probiotics in autoimmune and inflammatory disorders. Nutrients 2018, 10, 1537. [Google Scholar] [CrossRef] [PubMed]
- Mashiguchi, K.; Tanaka, K.; Sakai, T.; Sugawara, S.; Kawaide, H.; Natsume, M.; Hanada, A.; Yaeno, T.; Shirasu, K.; Yao, H.; et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 2011, 108, 18512–18517. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, S.; Xu, J.; Acosta, K.; Poulev, A.; Lebeis, S.; Lam, E. Bacterial production of indole related compounds reveals their role in association between duckweeds and endophytes. Front. Chem. 2018, 6, 265. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.B.; Sugahara, H.; Odamaki, T.; Xiao, J.Z. Different physiological properties of human-residential and non-human-residential bifidobacteria in human health. Benef. Microbes 2018, 9, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Morita, H.; Nakano, A.; Onoda, H.; Toh, H.; Oshima, K.; Takami, H.; Murakami, M.; Fukuda, S.; Takizawa, T.; Kuwahara, T.; et al. Bifidobacterium kashiwanohense sp. Nov., isolated from healthy infant faeces. Int. J. Syst. Evol. Microbiol. 2011, 61, 2610–2615. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, T.; Aldrich, C.C.; Sherman, D.H. Molecular analysis of the rebeccamycin L-amino acid oxidase from Lechevalieria aerocolonigenes ATCC 39243. J. Bacteriol. 2005, 187, 2084–2092. [Google Scholar] [CrossRef]
- Dodd, D.; Spitzer, M.H.; Van Treuren, W.; Merrill, B.D.; Hryckowian, A.J.; Higginbottom, S.K.; Le, A.; Cowan, T.M.; Nolan, G.P.; Fischbach, M.A.; et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 2017, 551, 648–652. [Google Scholar] [CrossRef]
- Matteoli, G.; Mazzini, E.; Iliev, I.D.; Mileti, E.; Fallarino, F.; Puccetti, P.; Chieppa, M.; Rescigno, M. Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 2010, 59, 595–604. [Google Scholar] [CrossRef]
- Lanz, T.V.; Becker, S.; Mohapatra, S.R.; Opitz, C.A.; Wick, W.; Platten, M. Suppression of Th1 differentiation by tryptophan supplementation in vivo. Amino Acids 2017, 49, 1169–1175. [Google Scholar] [CrossRef]
- Thevaranjan, N.; Puchta, A.; Schulz, C.; Naidoo, A.; Szamosi, J.C.; Verschoor, C.P.; Loukov, D.; Schenck, L.P.; Jury, J.; Foley, K.P.; et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 2017, 21, 455–466.e454. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Shigeno, Y.; Zhang, H.; Banno, T.; Usuda, K.; Nochi, T.; Inoue, R.; Watanabe, G.; Jin, W.; Benno, Y.; Nagaoka, K. Gut microbiota development in mice is affected by hydrogen peroxide produced from amino acid metabolism during lactation. FASEB J. 2019, 33, 3343–3352. [Google Scholar] [CrossRef] [PubMed]
- Dieuleveux, V.; Lemarinier, S.; Gueguen, M. Antimicrobial spectrum and target site of D-3-phenyllactic acid. Int. J. Food Microbiol. 1998, 40, 177–183. [Google Scholar] [CrossRef]
Species | Isolated from | Strain | ILA (µg/mL) | OD600 |
---|---|---|---|---|
B. bifidum | Infant feces | ATCC 29521T | 4.9 ± 0.4 | 0.7 ± 0.1 |
Infant feces | NITE BP-02429 | 3.4 ± 0.5 | 0.7 ± 0.0 | |
Infant feces | NITE BP-02431 | 2.4 ± 0.1 | 0.7 ± 0.0 | |
B. breve | Intestine of infant | ATCC 15700T | 2.0 ± 0.2 | 1.0 ± 0.1 |
Infant feces | FERM BP-11175 | 2.6 ± 0.3 | 1.0 ± 0.0 | |
Infant feces | NITE BP-02622 (M-16V) | 4.4 ± 0.5 | 1.0 ± 0.1 | |
B. longum subsp. infantis | Intestine of infant | ATCC 15697T | 3.3 ± 0.5 | 1.1 ± 0.0 |
Intestine of infant | NITE BP-02623 (M-63) | 3.1 ± 0.3 | 1.3 ± 0.0 | |
B. longum subsp. longum | Intestine of adult | ATCC 15707T | 2.0 ± 0.4 | 1.1 ± 0.0 |
Infant feces | ATCC BAA-999 (BB536) | 4.1 ± 0.3 | 1.1 ± 0.1 | |
infant-type HRB | 3.2 ± 0.1 | 1.0 ± 0.0 | ||
B. adolescentis | Intestine of adult | ATCC 15703T | <0.005 | 1.2 ± 0.1 |
B. angulatum | Feces, human | ATCC 27535T | 0.9 ± 0.3 | 1.0 ± 0.2 |
B. dentium | Dental caries | DSM 20436T | 0.2 ± 0.1 | 1.0 ± 0.0 |
B. pseudocatenulatum | Feces, human | ATCC 27919T | 0.2 ± 0.1 | 1.1 ± 0.0 |
adult-type HRB | 0.4 ± 0.1 ** | 1.1 ± 0.0 | ||
B. animalis subsp. lactis | Yoghurt | DSM 10140T | 0.2 ± 0.0 | 0.9 ± 0.0 |
B. animalis subsp. animalis | Rat feces | ATCC 25527T | 0.2 ± 0.0 | 0.9 ± 0.0 |
B. pseudolongum subsp. globosum | Rumen, bovine | JCM 5820T | 0.2 ± 0.1 | 0.7 ± 0.1 |
B. pseudolongum subsp. pseudolongum | Swine feces | ATCC 25526T | 0.4 ± 0.0 | 0.8 ± 0.0 |
B. thermophilum | Swine feces | ATCC 25525T | 0.6 ± 0.1 | 1.1 ± 0.1 |
non-HRB | 0.3 ± 0.1 ## | 0.9 ± 0.0 |
Strain | Total Number of Strains | ILA (µg/mL) in Culture Supernatants | ||
---|---|---|---|---|
Mean ± S.D. (µg/mL) | Range | |||
Maximum | Minimum | |||
B. longum subsp. longum | 40 | 1.87 ± 1.05 | 4.92 | 0.05 |
B. breve | 12 | 2.04 ± 0.97 | 3.85 | 0.46 |
B. bifidum | 1 | 2.54 | 2.54 | 2.54 |
B. kashiwanohense | 4 | 0.76 ± 1.21 | 2.57 | 0.09 |
infant-type HRB | 57 | 1.84 ± 1.07 ** | 4.92 | 0.05 |
B. pseudocatenulatum | 29 | 0.17 ± 0.08 | 0.33 | 0.03 |
B. adolescentis | 13 | 0.21 ± 0.58 | 2.13 | <0.005 |
B. dentium | 1 | 0.2 | 0.2 | 0.2 |
adult-type HRB | 43 | 0.4 ± 0.1 | 2.13 | <0.005 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakurai, T.; Odamaki, T.; Xiao, J.-z. Production of Indole-3-Lactic Acid by Bifidobacterium Strains Isolated fromHuman Infants. Microorganisms 2019, 7, 340. https://doi.org/10.3390/microorganisms7090340
Sakurai T, Odamaki T, Xiao J-z. Production of Indole-3-Lactic Acid by Bifidobacterium Strains Isolated fromHuman Infants. Microorganisms. 2019; 7(9):340. https://doi.org/10.3390/microorganisms7090340
Chicago/Turabian StyleSakurai, Takuma, Toshitaka Odamaki, and Jin-zhong Xiao. 2019. "Production of Indole-3-Lactic Acid by Bifidobacterium Strains Isolated fromHuman Infants" Microorganisms 7, no. 9: 340. https://doi.org/10.3390/microorganisms7090340
APA StyleSakurai, T., Odamaki, T., & Xiao, J.-z. (2019). Production of Indole-3-Lactic Acid by Bifidobacterium Strains Isolated fromHuman Infants. Microorganisms, 7(9), 340. https://doi.org/10.3390/microorganisms7090340