Probing the Role of the Chloroplasts in Heavy Metal Tolerance and Accumulation in Euglena gracilis
Abstract
:1. Introduction
2. Materials and Method
2.1. Chemicals
2.2. Algal Strains and Culture Conditions
2.3. Minimum Inhibitory Concentration (MIC) Assay
2.4. Determination of Heavy Metal Bioaccumulation
2.5. Transmission Electron Microscopy (TEM)
2.6. Extraction of Proteins and Peptides
2.7. Mass Spectrometry Analysis
2.8. Creation of a Peptide Ion Library (IDA-MS)
2.9. SWATH-MS Data Processing and Statistical Analysis
2.10. Functional Annotation
3. Results and Discussion
3.1. Fluorescence Microscopy of the E. gracilis Strains
3.2. Minimum Inhibitory Concentration (MIC)
3.3. Evaluation of the Heavy Metal Accumulation
3.4. Visualization of Heavy Metal Bioaccumulation
3.5. Proteome Profiling of Zm-Strain in Response to Heavy Metals Using SWATH-MS
3.5.1. Gene Ontology (GO) Annotation
3.5.2. Transporters
3.5.3. Chloroplast Proteins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Järup, L. Hazards of heavy metal contamination. Br. Med. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johri, N.; Jacquillet, G.; Unwin, R. Heavy metal poisoning: The effects of cadmium on the kidney. Biometals 2010, 23, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Juang, R.-S.; Lin, L.-C. Treatment of complexed copper (II) solutions with electrochemical membrane processes. Water Res. 2000, 34, 43–50. [Google Scholar] [CrossRef]
- Pulford, I.; Riddell-Black, D.; Stewart, C. Heavy metal uptake by willow clones from sewage sludge-treated soil: The potential for phytoremediation. Int. J. Phytoremediation 2002, 4, 59–72. [Google Scholar] [CrossRef]
- Yoon, J.M.; Oliver, D.J.; Shanks, J.V. Phytotoxicity and phytoremediation of 2, 6-dinitrotoluene using a model plant, Arabidopsis thaliana. Chemosphere 2007, 68, 1050–1057. [Google Scholar] [CrossRef]
- Schat, H.; Llugany, M.; Vooijs, R.; Hartley-Whitaker, J.; Bleeker, P.M. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J. Exp. Bot. 2002, 53, 2381–2392. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.K.; Cheng, Y.; Kanwar, M.K.; Chu, X.-Y.; Ahammed, G.J.; Qi, Z.-Y. Responses of Plant Proteins to Heavy Metal Stress—A Review. Front. Plant Sci. 2017, 8, 1492. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.-B.; Wu, C.; Zhang, C.; Li, H.; Lipka, U.; Polle, A. The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environ. Exp. Bot. 2014, 108, 47–62. [Google Scholar] [CrossRef]
- Mishra, S.; Dubey, R. Heavy metal uptake and detoxification mechanisms in plants. Int. J. Agric. 2006, 1, 122–141. [Google Scholar]
- Kneer, R.; Kutchan, T.M.; Hochberger, A.; Zenk, M.H. Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Arch. Microbiol. 1992, 157, 305–310. [Google Scholar] [CrossRef]
- Mühlenhoff, U.; Stadler, J.A.; Richhardt, N.; Seubert, A.; Eickhorst, T.; Schweyen, R.J.; Lill, R.; Wiesenberger, G. A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. J. Biol. Chem. 2003, 278, 40612–40620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashir, K.; Ishimaru, Y.; Shimo, H.; Nagasaka, S.; Fujimoto, M.; Takanashi, H.; Tsutsumi, N.; An, G.; Nakanishi, H.; Nishizawa, N.K. The rice mitochondrial iron transporter is essential for plant growth. Nat. Commun. 2011, 2, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nouet, C.; Motte, P.; Hanikenne, M. Chloroplastic and mitochondrial metal homeostasis. Trends Plant Sci. 2011, 16, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Blaby-Haas, C.E.; Merchant, S.S. The ins and outs of algal metal transport. BBA-Mol. Cell Res. 2012, 1823, 1531–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belyaeva, E.A.; Dymkowska, D.; Więckowski, M.R.; Wojtczak, L. Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells. Toxicol. Appl. Pharmacol. 2008, 231, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, A.; Ghasemi, H.; Rostampour, F. The role of oxidative stress in metals toxicity; mitochondrial dysfunction as a key player. Galen Med. J. 2014, 3, 2–13. [Google Scholar]
- Shcolnick, S.; Keren, N. Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol. 2006, 141, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, C. Role of calcium channels in heavy metal toxicity. ISRN Toxicol. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Nies, A.T.; Keppler, D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 2007, 453, 643–659. [Google Scholar] [CrossRef]
- Hanikenne, M. Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis and tolerance. New Phytol. 2003, 159, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Shamshad, I.; Khan, S.; Waqas, M.; Asma, M.; Nawab, J.; Gul, N.; Raiz, A.; Li, G. Heavy metal uptake capacity of fresh water algae (Oedogonium westti) from aqueous solution: A mesocosm research. Int. J. Phytoremediation 2016, 18, 393–398. [Google Scholar] [CrossRef]
- Yu, Q.; Matheickal, J.T.; Yin, P.; Kaewsarn, P. Heavy metal uptake capacities of common marine macro algal biomass. Water Res. 1999, 33, 1534–1537. [Google Scholar] [CrossRef]
- Pawlik-Skowrońska, B. Resistance, accumulation and allocation of zinc in two ecotypes of the green alga Stigeoclonium tenue Kütz. coming from habitats of different heavy metal concentrations. Aquat Bot. 2003, 75, 189–198. [Google Scholar] [CrossRef]
- Devars, S.; Hernandez, R.; Moreno-Sánchez, R. Enhanced heavy metal tolerance in two strains of photosynthetic Euglena gracilis by preexposure to mercury or cadmium. Arch. Environ. Contam. Toxicol. 1998, 34, 128–135. [Google Scholar] [CrossRef]
- Moreno-Sánchez, R.; Rodríguez-Enríquez, S.; Jasso-Chávez, R.; Saavedra, E.; García-García, J.D. Biochemistry and Physiology of Heavy Metal Resistance and Accumulation in Euglena. In Euglena: Biochemistry, Cell and Molecular Biology; Schwartzbach, S.D., Shigeoka, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 91–121. [Google Scholar]
- Mendoza-Cózatl, D.G.; Moreno-Sánchez, R. Cd2+ transport and storage in the chloroplast of Euglena gracilis. Biochim. Biophys. Acta 2005, 1706, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Einicker-Lamas, M.; Mezian, G.A.; Fernandes, T.B.; Silva, F.L.; Guerra, F.; Miranda, K.; Attias, M.; Oliveira, M.M. Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ. Pollut. 2002, 120, 779–786. [Google Scholar] [CrossRef]
- Khatiwada, B.; Hasan, M.T.; Sun, A.; Kamath, K.S.; Mirzaei, M.; Sunna, A.; Nevalainen, H. Proteomic response of Euglena gracilis to heavy metal exposure–Identification of key proteins involved in heavy metal tolerance and accumulation. Algal Res. 2020, 45, 101764. [Google Scholar] [CrossRef]
- Rodríguez-Zavala, J.; Ortiz-Cruz, M.; Mendoza-Hernández, G.; Moreno-Sánchez, R. Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J. Appl. Microbiol. 2010, 109, 2160–2172. [Google Scholar] [CrossRef]
- Ebringer, L.; Mego, J.; Jurášek, A.; Kada, R. The action of streptomycins on the chloroplast system of Euglena gracilis. Microbiology 1969, 59, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Ben-Shaul, Y.; Ophir, I. Effects of streptomycin on plastids in dividing Euglena. Planta 1970, 91, 195–203. [Google Scholar] [CrossRef]
- Shanab, S.; Essa, A.; Shalaby, E. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates). Plant. Signal. Behav. 2012, 7, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Esmaeili, A.; Saremnia, B.; Kalantari, M. Removal of mercury (II) from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata. Arab. J. Chem. 2015, 8, 506–511. [Google Scholar] [CrossRef] [Green Version]
- Lysenko, E.A.; Klaus, A.A.; Pshybytko, N.L.; Kusnetsov, V.V. Cadmium accumulation in chloroplasts and its impact on chloroplastic processes in barley and maize. Photosynth. Res. 2015, 125, 291–303. [Google Scholar] [CrossRef]
- Hakmaoui, A.; Ater, M.; Boka, K.; Baron, M. Copper and cadmium tolerance, uptake and effect on chloroplast ultrastructure. Studies on Salix purpurea and Phragmites australis. Z. Naturforsch. C 2007, 62, 417–426. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Back, K. Cadmium disrupts subcellular organelles, including chloroplasts, resulting in melatonin induction in plants. Molecules 2017, 22, 1791. [Google Scholar] [CrossRef] [Green Version]
- Weigel, H.J. Inhibition of Photosynthetic Reactions of Isolated Intact Chloroplasts by Cadmium. J. Plant. Physiol 1985, 119, 179–189. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Z.; Zhang, Y.; Wei, Y.; Jiang, Z. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS ONE 2018, 13, e0191139. [Google Scholar] [CrossRef]
- Sheoran, I.; Singh, R. Effect of heavy metals on photosynthesis in higher plants. In Photosynthesis: Photoreactions to Plant Productivity; Abrol, Y.P., Mohanty, P., Govindjee, Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 451–468. [Google Scholar]
- Heumann, H.G. Effects of heavy metals on growth and ultrastructure of Chara vulgaris. Protoplasma 1987, 136, 37–48. [Google Scholar] [CrossRef]
- Mendoza-Cózatl, D.G.; Rodríguez-Zavala, J.S.; Rodríguez-Enríquez, S.; Mendoza-Hernandez, G.; Briones-Gallardo, R.; Moreno-Sánchez, R. Phytochelatin–cadmium–sulfide high-molecular-mass complexes of Euglena gracilis. FEBS J. 2006, 273, 5703–5713. [Google Scholar] [CrossRef]
- Zakrys, B.; Cambra-Sanchez, J.; Walne, P.L. Chloroplast ultrastructure of Euglena cuneata Pringsheim, E. deses Ehrenberg and E. mutabilis (Euglenophyceae): Taxonomic significance. Acta. Protozool. 2001, 40, 161–167. [Google Scholar]
- Mortimer, D.C.; Czuba, M. Structural damage to leaf chloroplasts of Elodea densa caused by methylmercury accumulated from water. Ecotoxicol. Environ. Saf. 1982, 6, 193–195. [Google Scholar] [CrossRef]
- Narender Reddy, G.; Prasad, M.N.V. Heavy metal-binding proteins/peptides: Occurrence, structure, synthesis and functions. A review. Environ. Exp. Bot. 1990, 30, 251–264. [Google Scholar] [CrossRef]
- Morales, M.E.; Derbes, R.S.; Ade, C.M.; Ortego, J.C.; Stark, J.; Deininger, P.L.; Roy-Engel, A.M. Heavy metal exposure influences double strand break DNA repair outcomes. PLoS ONE 2016, 11, e0151367. [Google Scholar] [CrossRef]
- Williams, L.E.; Pittman, J.K.; Hall, J. Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta-Biomembranes 2000, 1465, 104–126. [Google Scholar] [CrossRef]
- Mäser, P.; Thomine, S.; Schroeder, J.I.; Ward, J.M.; Hirschi, K.; Sze, H.; Talke, I.N.; Amtmann, A.; Maathuis, F.J.; Sanders, D. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant. Physiol. 2001, 126, 1646–1667. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, D.; Kreppel, L.; Speiser, D.; Scheel, G.; McDonald, G.; Ow, D. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J. 1992, 11, 3491–3499. [Google Scholar] [CrossRef]
- Diffels, J.F.; Seret, M.L.; Goffeau, A.; Baret, P.V. Heavy metal transporters in Hemiascomycete yeasts. Biochimie 2006, 88, 1639–1649. [Google Scholar] [CrossRef]
- Arunakumara, K.K.I.U.; Zhang, X. Heavy metal bioaccumulation and toxicity with special reference to microalgae. J. Ocean. U. China 2008, 7, 60–64. [Google Scholar] [CrossRef]
- Prohaska, J.R. Role of copper transporters in copper homeostasis. Am. J. Clin. Nutr. 2008, 88, 826S–829S. [Google Scholar] [CrossRef] [Green Version]
- Homolya, L.; Varadi, A.; Sarkadi, B. Multidrug resistance-associated proteins: Export pumps for conjugates with glutathione, glucuronate or sulfate. BioFactors 2003, 17, 103–114. [Google Scholar] [CrossRef]
- Kim, D.Y.; Bovet, L.; Maeshima, M.; Martinoia, E.; Lee, Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 2007, 50, 207–218. [Google Scholar] [CrossRef]
- Kolaj-Robin, O.; Russell, D.; Hayes, K.A.; Pembroke, J.T.; Soulimane, T. Cation Diffusion Facilitator family: Structure and function. FEBS Lett. 2015, 589, 1283–1295. [Google Scholar] [CrossRef] [PubMed]
- Ricachenevsky, F.; Menguer, P.; Sperotto, R.; Williams, L.; Fett, J. Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front. Plant. Sci. 2013, 4, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, R.; Bashir, K.; Ishimaru, Y.; Nishizawa, N.K.; Nakanishi, H. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal. Behav. 2012, 7, 1605–1607. [Google Scholar] [CrossRef]
- Adle, D.J.; Lee, J. Expressional control of a cadmium-transporting P1B-type ATPase by a metal sensing degradation signal. J. Biol. Chem. 2008, 283, 31460–31468. [Google Scholar] [CrossRef] [Green Version]
- Gravot, A.; Lieutaud, A.; Verret, F.; Auroy, P.; Vavasseur, A.; Richaud, P. AtHMA3, a plant P1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett. 2004, 561, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.Y.; Choi, H.; Segami, S.; Cho, H.T.; Martinoia, E.; Maeshima, M.; Lee, Y. AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant J. 2009, 58, 737–753. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.-H.; Liu, R.; Yan, L.; Liu, Z.-Q.; Jiang, S.-C.; Shen, Y.-Y.; Wang, X.-F.; Zhang, D.-P. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J. Exp. Bot. 2011, 63, 1095–1106. [Google Scholar] [CrossRef] [Green Version]
- Ganeteg, U.; Külheim, C.; Andersson, J.; Jansson, S. Is each light-harvesting complex protein important for plant fitness? Plant Physiol. 2004, 134, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Mallick, N.; Mohn, F. Use of chlorophyll fluorescence in metal-stress research: A case study with the green microalga Scenedesmus. Ecotoxicol. Environ. Saf. 2003, 55, 64–69. [Google Scholar] [CrossRef]
Heavy Metal Exposure | Differentially Abundant Proteins * | Increased in Abundance (>1.5 FC *) | Decreased in Abundance (<1.5 FC *) |
---|---|---|---|
Hg | 141 | 63 | 78 |
Cd | 100 | 64 | 36 |
Pb | 143 | 51 | 92 |
UniProt ID | Transporter | Heavy Metal | Fold Change |
---|---|---|---|
Zm-strain | |||
F1DB26 | Multidrug resistance-associated protein_2 | Hg | 11.82 |
A0A2R5GHD4 | Copper-transporting ATPase RAN1 | Hg | 7.59 |
Q9XIE2 | ABC transporter G family member 36 | Cd | 4.52 |
D0P1Q1 | Transmembrane transporter | Cd | 2.02 |
Z-strain | |||
D7LF89 | Heavy metal transporter MTP2 | Cd | 5.61 |
Q9XIE2 | ABC transporter G family member 36 | Hg | 4.41 |
Q8H384 | Cadmium/zinc-transporting ATPase | Cd/Pb | 3.64/2.45 |
A0A1F3CY04 | Copper-translocating P-type ATPase | Cd | 3.60 |
D7FUC2 | Ion transmembrane transporter activity | Cd | 3.46 |
A0A1A0FLX3 | Potassium transporter TrkA | Cd | 3.36 |
W2ZAX1 | Cation-transporting ATPase activity | Cd | 3.25 |
K8EBM6 | Proton-transporting ATP synthase activity | Cd | 2.95 |
A0A1E4SU43 | Mitochondrial carrier family | Cd | 2.87 |
Q6BZ66 | Transmembrane transporter | Cd | 2.80 |
A0A140AY28 | Sodium/potassium-transporting ATPase | Cd | 2.73 |
K4ENZ7 | Calcium-transporting ATPase | Cd | 2.62 |
A0A261XUE4 | Cation-transporting ATPase activity | Cd | 2.50 |
Q9XIE2 | ABC transporter G family member 36 | Hg | 2.41 |
V4AGW4 | Extracellular ligand-gated ion channel | Cd | 2.34 |
E6Y2N7 | ATP: ADP antiporter activity | Cd | 2.28 |
E1B2R7 | ATP-binding cassette sub-family | Cd | 2.26 |
Q9XIE2 | ABC transporter G family member 36 | Cd | 2.20 |
Q4DK78 | V-type proton ATPase subunit a | Cd | 2.00 |
Entry | Protein Name | Fold Change |
---|---|---|
Q39725 | Light-harvesting chlorophyll a /b binding protein of PSII | 15.35 |
A4QPI2 | Chloroplast light-harvesting complex II protein | 8.17 |
A8HPC6 | Chloroplast light-harvesting complex I protein | 6.63 |
P12356 | Photosystem I reaction center subunit III | 5.99 |
A0A061RZ43 | Proton gradient regulation 5 | 4.47 |
Q8GZR2 | Cytochrome f, chloroplastic | 4.28 |
A8JH60 | Predicted protein chloroplastic | 2.92 |
Q06SJ8 | Photosystem I assembly protein Ycf3 | 2.84 |
A8IRG9 | Predicted protein chloroplastic | 1.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatiwada, B.; Hasan, M.T.; Sun, A.; Kamath, K.S.; Mirzaei, M.; Sunna, A.; Nevalainen, H. Probing the Role of the Chloroplasts in Heavy Metal Tolerance and Accumulation in Euglena gracilis. Microorganisms 2020, 8, 115. https://doi.org/10.3390/microorganisms8010115
Khatiwada B, Hasan MT, Sun A, Kamath KS, Mirzaei M, Sunna A, Nevalainen H. Probing the Role of the Chloroplasts in Heavy Metal Tolerance and Accumulation in Euglena gracilis. Microorganisms. 2020; 8(1):115. https://doi.org/10.3390/microorganisms8010115
Chicago/Turabian StyleKhatiwada, Bishal, Mafruha T. Hasan, Angela Sun, Karthik Shantharam Kamath, Mehdi Mirzaei, Anwar Sunna, and Helena Nevalainen. 2020. "Probing the Role of the Chloroplasts in Heavy Metal Tolerance and Accumulation in Euglena gracilis" Microorganisms 8, no. 1: 115. https://doi.org/10.3390/microorganisms8010115
APA StyleKhatiwada, B., Hasan, M. T., Sun, A., Kamath, K. S., Mirzaei, M., Sunna, A., & Nevalainen, H. (2020). Probing the Role of the Chloroplasts in Heavy Metal Tolerance and Accumulation in Euglena gracilis. Microorganisms, 8(1), 115. https://doi.org/10.3390/microorganisms8010115