PYHIN Proteins and HPV: Role in the Pathogenesis of Head and Neck Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Head and Neck Squamous Cell Carcinoma
3. The PYHIN Proteins
3.1. Myeloid Cell Nuclear Differentiation Antigen (MNDA)
3.2. Interferon-Inducible Protein 16 (IFI16)
3.3. Absent in Melanoma 2 Protein (AIM2)
3.4. Pyrin and HIN Domain Family 1 (PYHIN1)
3.5. PYRIN Domain (PYD)-only Protein 3 (POP3)
4. PYHIN Proteins in HSNCC
4.1. PYHIN Proteins and Human Papillomavirus Infection
4.2. The Role of IFI16 and AIM2 Proteins in HSNCC
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McDermott, J.D.; Bowles, D.W. Epidemiology of Head and Neck Squamous Cell Carcinomas: Impact on Staging and Prevention Strategies. Curr. Treat. Options Oncol. 2019, 20, 43. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.K.; Engels, E.A.; Pfeiffer, R.M.; Hernandez, B.Y.; Xiao, W.; Kim, E.; Jiang, B.; Goodman, M.T.; Sibug-Saber, M.; Cozen, W.; et al. Human Papillomavirus and Rising Oropharyngeal Cancer Incidence in the United States. J. Clin. Oncol. 2011, 29, 4294–4301. [Google Scholar] [CrossRef] [PubMed]
- Thariat, J.; Vignot, S.; Lapierre, A.; Falk, A.T.; Guigay, J.; Van Obberghen-Schilling, E.; Milano, G. Integrating genomics in head and neck cancer treatment: Promises and pitfalls. Crit. Rev. Oncol. Hematol. 2015, 95, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Lampri, E.S.; Chondrogiannis, G.; Ioachim, E.; Varouktsi, A.; Mitselou, A.; Galani, A.; Briassoulis, E.; Kanavaros, P.; Galani, V. Biomarkers of head and neck cancer, tools or a gordian knot? Int. J. Clin. Exp. Med. 2015, 8, 10340–10357. [Google Scholar] [PubMed]
- Landolfo, S.; Gariglio, M.; Gribaudo, G.; Lembo, D. The Ifi 200 genes: An emerging family of IFN-inducible genes. Biochimie 1998, 80, 721–728. [Google Scholar] [CrossRef]
- Dell’Oste, V.; Gatti, D.; Giorgio, A.G.; Gariglio, M.; Landolfo, S.; De Andrea, M. The interferon-inducible DNA-sensor protein IFI16: A key player in the antiviral response. New Microbiol. 2015, 38, 5–20. [Google Scholar] [PubMed]
- Connolly, D.J.; Bowie, A.G. The emerging role of human PYHIN proteins in innate immunity: Implications for health and disease. Biochem. Pharmacol. 2014, 92, 405–414. [Google Scholar] [CrossRef]
- Azzimonti, B.; Pagano, M.; Mondini, M.; De Andrea, M.; Valente, G.; Monga, G.; Tommasino, M.; Aluffi, P.; Landolfo, S.; Gariglio, M. Altered patterns of the interferon-inducible gene IFI16 expression in head and neck squamous cell carcinoma: Immunohistochemical study including correlation with retinoblastoma protein, human papillomavirus infection and proliferation index. Histopathology 2004, 45, 560–572. [Google Scholar] [CrossRef] [Green Version]
- De Andrea, M.; Gioia, D.; Mondini, M.; Azzimonti, B.; Renò, F.; Pecorari, G.; Landolfo, V.; Tommasino, M.; Accardi, R.; Herold-Mende, C.; et al. Effects of IFI16 overexpression on the growth and doxorubicin sensitivity of head and neck squamous cell carcinoma–derived cell lines. Head Neck 2007, 29, 835–844. [Google Scholar] [CrossRef]
- Mazibrada, J.; De Andrea, M.; Rittà, M.; Borgogna, C.; Dell’eva, R.; Pfeffer, U.; Chiusa, L.; Gariglio, M.; Landolfo, S. In vivo growth inhibition of head and neck squamous cell carcinoma by the Interferon-inducible gene IFI16. Cancer Lett. 2010, 287, 33–43. [Google Scholar] [CrossRef]
- Kondo, Y.; Nagai, K.; Nakahata, S.; Saito, Y.; Ichikawa, T.; Suekane, A.; Taki, T.; Iwakawa, R.; Enari, M.; Taniwaki, M.; et al. Overexpression of the DNA sensor proteins, absent in melanoma 2 and interferon-inducible 16, contributes to tumorigenesis of oral squamous cell carcinoma with p53 inactivation. Cancer Sci. 2012, 103, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, M.; Nakano, T.; Nakashima, T.; Yasumatsu, R.; Hashimoto, K.; Toh, S.; Shiratsuchi, H.; Oda, Y.; Komune, S. Interferon Inducible IFI16 Expression in p16 Positive Squamous Cell Carcinoma of the Oropharynx. ISRN Otolaryngol. 2013, 2013, 263271. [Google Scholar] [CrossRef] [PubMed]
- Mazibrada, J.; Longo, L.; Vatrano, S.; Cappia, S.; Giorcelli, J.; Pentenero, M.; Gandolfo, S.; Volante, M.; dell’Oste, V.; Lo Cigno, I.; et al. Differential expression of HER2, STAT3, SOX2, IFI16 and cell cycle markers during HPV-related head and neck carcinogenesis. New Microbiol. 2014, 37, 129–143. [Google Scholar] [PubMed]
- Riva, G.; Pecorari, G.; Biolatti, M.; Pautasso, S.; Lo Cigno, I.; Garzaro, M.; Dell’Oste, V.; Landolfo, S. PYHIN genes as potential biomarkers for prognosis of human papillomavirus-positive or -negative head and neck squamous cell carcinomas. Mol. Biol. Rep. 2019, 46, 3333–3347. [Google Scholar] [CrossRef] [PubMed]
- Castellsagué, X.; Alemany, L.; Quer, M.; Halec, G.; Quirós, B.; Tous, S.; Clavero, O.; Alòs, L.; Biegner, T.; Szafarowski, T.; et al. HPV Involvement in Head and Neck Cancers: Comprehensive Assessment of Biomarkers in 3680 Patients. J. Natl. Cancer Inst. 2016, 108, djv403. [Google Scholar] [CrossRef] [PubMed]
- Kreimer, A.R.; Clifford, G.M.; Boyle, P.; Franceschi, S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: A systematic review. Cancer Epidemiol. Biomark. Prev. 2005, 14, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Kiess, A.; Chung, C.H. Emerging biomarkers in head and neck cancer in the era of genomics. Nat. Rev. Clin. Oncol. 2015, 12, 11–26. [Google Scholar] [CrossRef]
- Braakhuis, B.J.M.; Snijders, P.J.F.; Keune, W.-J.H.; Meijer, C.J.L.M.; Ruijter-Schippers, H.J.; Leemans, C.R.; Brakenhoff, R.H. Genetic Patterns in Head and Neck Cancers That Contain or Lack Transcriptionally Active Human Papillomavirus. J. Natl. Cancer Inst. 2004, 96, 998–1006. [Google Scholar] [CrossRef] [Green Version]
- Slebos, R.J.C. Gene Expression Differences Associated with Human Papillomavirus Status in Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2006, 12, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [CrossRef] [Green Version]
- Colevas, A.D.; Yom, S.S.; Pfister, D.G.; Spencer, S.; Adelstein, D.; Adkins, D.; Brizel, D.M.; Burtness, B.; Busse, P.M.; Caudell, J.J.; et al. NCCN Guidelines Insights: Head and Neck Cancers, Version 1.2018. J. Natl. Compr. Cancer Netw. 2018, 16, 479–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, A.A.; Gilligan, T.D.; Caudell, J.J. Challenges with the 8th Edition of the AJCC Cancer Staging Manual for Breast, Testicular, and Head and Neck Cancers. J. Natl. Compr. Cancer Netw. 2019, 17, 560–564. [Google Scholar]
- D’Souza, G.; Kreimer, A.R.; Viscidi, R.; Pawlita, M.; Fakhry, C.; Koch, W.M.; Westra, W.H.; Gillison, M.L. Case–Control Study of Human Papillomavirus and Oropharyngeal Cancer. N. Engl. J. Med. 2007, 356, 1944–1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndiaye, C.; Mena, M.; Alemany, L.; Arbyn, M.; Castellsagué, X.; Laporte, L.; Bosch, F.X.; de Sanjosé, S.; Trottier, H. HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck cancers: A systematic review and meta-analysis. Lancet Oncol. 2014, 15, 1319–1331. [Google Scholar] [CrossRef]
- Timbang, M.R.; Sim, M.W.; Bewley, A.F.; Farwell, D.G.; Mantravadi, A.; Moore, M.G. HPV-related oropharyngeal cancer: A review on burden of the disease and opportunities for prevention and early detection. Hum. Vaccin. Immunother. 2019, 15, 1920–1928. [Google Scholar] [CrossRef]
- Steenbergen, R.D.M.; Snijders, P.J.F.; Heideman, D.A.M.; Meijer, C.J.L.M. Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nat. Rev. Cancer 2014, 14, 395–405. [Google Scholar] [CrossRef]
- Meshman, J.; Wang, P.-C.; Chin, R.; John, M. St.; Abemayor, E.; Bhuta, S.; Chen, A.M. Prognostic significance of p16 in squamous cell carcinoma of the larynx and hypopharynx. Am. J. Otolaryngol. 2017, 38, 31–37. [Google Scholar] [CrossRef]
- Young, R.J.; Urban, D.; Angel, C.; Corry, J.; Lyons, B.; Vallance, N.; Kleid, S.; Iseli, T.A.; Solomon, B.; Rischin, D. Frequency and prognostic significance of p16INK4A protein overexpression and transcriptionally active human papillomavirus infection in laryngeal squamous cell carcinoma. Br. J. Cancer 2015, 112, 1098–1104. [Google Scholar] [CrossRef] [Green Version]
- Tabor, M.P.; Brakenhoff, R.H.; Ruijter-Schippers, H.J.; Van Der Wal, J.E.; Snow, G.B.; Leemans, C.R.; Braakhuis, B.J.M. Multiple head and neck tumors frequently originate from a single preneoplastic lesion. Am. J. Pathol. 2002, 161, 1051–1060. [Google Scholar] [CrossRef] [Green Version]
- Leemans, C.R.; Braakhuis, B.J.M.; Brakenhoff, R.H. The molecular biology of head and neck cancer. Nat. Rev. Cancer 2011, 11, 9–22. [Google Scholar] [CrossRef]
- Kumar, B.; Cordell, K.G.; Lee, J.S.; Worden, F.P.; Prince, M.E.; Tran, H.H.; Wolf, G.T.; Urba, S.G.; Chepeha, D.B.; Teknos, T.N.; et al. EGFR, p16, HPV Titer, Bcl-xL and p53, sex, and smoking as indicators of response to therapy and survival in oropharyngeal cancer. J. Clin. Oncol. 2008, 26, 3128–3137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somers, K.D.; Merrick, M.A.; Lopez, M.E.; Incognito, L.S.; Schechter, G.L.; Casey, G. Frequent p53 mutations in head and neck cancer. Cancer Res. 1992, 52, 5997–6000. [Google Scholar] [PubMed]
- Alsner, J.; Sørensen, S.B.; Overgaard, J. TP53 mutation is related to poor prognosis after radiotherapy, but not surgery, in squamous cell carcinoma of the head and neck. Radiother. Oncol. 2001, 59, 179–185. [Google Scholar] [CrossRef]
- Agrawal, N.; Frederick, M.J.; Pickering, C.R.; Bettegowda, C.; Chang, K.; Li, R.J.; Fakhry, C.; Xie, T.-X.; Zhang, J.; Wang, J.; et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011, 333, 1154–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006, 366, 2–16. [Google Scholar] [CrossRef]
- Jiang, X.; Ye, J.; Dong, Z.; Hu, S.; Xiao, M. Novel genetic alterations and their impact on target therapy response in head and neck squamous cell carcinoma. Cancer Manag. Res. 2019, 11, 1321–1336. [Google Scholar] [CrossRef] [Green Version]
- Stransky, N.; Egloff, A.M.; Tward, A.D.; Kostic, A.D.; Cibulskis, K.; Sivachenko, A.; Kryukov, G.V.; Lawrence, M.S.; Sougnez, C.; McKenna, A.; et al. The Mutational Landscape of Head and Neck Squamous Cell Carcinoma. Science 2011, 333, 1157–1160. [Google Scholar] [CrossRef] [Green Version]
- Kandoth, C.; McLellan, M.D.; Vandin, F.; Ye, K.; Niu, B.; Lu, C.; Xie, M.; Zhang, Q.; McMichael, J.F.; Wyczalkowski, M.A.; et al. Mutational landscape and significance across 12 major cancer types. Nature 2013, 502, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Hayes, D.N.; Van Waes, C.; Seiwert, T.Y. Genetic Landscape of Human Papillomavirus-Associated Head and Neck Cancer and Comparison to Tobacco-Related Tumors. J. Clin. Oncol. 2015, 33, 3227–3234. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.A.; Lawrence, M.S.; Klimczak, L.J.; Grimm, S.A.; Fargo, D.; Stojanov, P.; Kiezun, A.; Kryukov, G.V.; Carter, S.L.; Saksena, G.; et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 2013, 45, 970–976. [Google Scholar] [CrossRef]
- Henderson, S.; Chakravarthy, A.; Su, X.; Boshoff, C.; Fenton, T.R. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep. 2014, 7, 1833–1841. [Google Scholar] [CrossRef] [Green Version]
- Locati, L.D.; Serafini, M.S.; Iannò, M.F.; Carenzo, A.; Orlandi, E.; Resteghin, C.; Cavalieri, S.; Bossi, P.; Canevari, S.; Licitra, L.; et al. Mining of Self-Organizing Map Gene-Expression Portraits Reveals Prognostic Stratification of HPV-Positive Head and Neck Squamous Cell Carcinoma. Cancers 2019, 11, 1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unterholzner, L.; Keating, S.E.; Baran, M.; Horan, K.A.; Jensen, S.B.; Sharma, S.; Sirois, C.M.; Jin, T.; Latz, E.; Xiao, T.S.; et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 2010, 11, 997–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khare, S.; Ratsimandresy, R.A.; de Almeida, L.; Cuda, C.M.; Rellick, S.L.; Misharin, A.V.; Wallin, M.C.; Gangopadhyay, A.; Forte, E.; Gottwein, E.; et al. The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat. Immunol. 2014, 15, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Hornung, V.; Ablasser, A.; Charrel-Dennis, M.; Bauernfeind, F.; Horvath, G.; Caffrey, D.R.; Latz, E.; Fitzgerald, K.A. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009, 458, 514–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veeranki, S.; Choubey, D. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: Regulation of subcellular localization. Mol. Immunol. 2012, 49, 567–571. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Diner, B.A.; Chen, J.; Cristea, I.M. Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc. Natl. Acad. Sci. USA 2012, 109, 10558–10563. [Google Scholar] [CrossRef] [Green Version]
- Goldberger, A.; Hnilica, L.S.; Casey, S.B.; Briggs, R.C. Properties of a nuclear protein marker of human myeloid cell differentiation. J. Biol. Chem. 1986, 261, 4726–4731. [Google Scholar]
- Xie, J.; Briggs, J.A.; Briggs, R.C. Human hematopoietic cell specific nuclear protein MNDA interacts with the multifunctional transcription factor YY1 and stimulates YY1 DNA binding. J. Cell. Biochem. 1998, 70, 489–506. [Google Scholar] [CrossRef]
- Xie, J.; Briggs, J.A.; Olson, M.O.; Sipos, K.; Briggs, R.C. Human myeloid cell nuclear differentiation antigen binds specifically to nucleolin. J. Cell. Biochem. 1995, 59, 529–536. [Google Scholar] [CrossRef]
- Xie, J.; Briggs, J.A.; Briggs, R.C. MNDA dimerizes through a complex motif involving an N-terminal basic region. FEBS Lett. 1997, 408, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Fotouhi-Ardakani, N.; Kebir, D.E.; Pierre-Charles, N.; Wang, L.; Ahern, S.P.; Filep, J.G.; Milot, E. Role for Myeloid Nuclear Differentiation Antigen in the Regulation of Neutrophil Apoptosis during Sepsis. Am. J. Respir. Crit. Care Med. 2010, 182, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, R.W.; Kershaw, M.H.; Trapani, J.A. Isotypic variants of the interferon-inducible transcriptional repressor IFI 16 arise through differential mRNA splicing. Biochemistry 1998, 37, 11924–11931. [Google Scholar] [CrossRef] [PubMed]
- Goubau, D.; Rehwinkel, J.; Reis e Sousa, C. PYHIN proteins: Center stage in DNA sensing. Nat. Immunol. 2010, 11, 984–986. [Google Scholar] [CrossRef]
- Gariglio, M.; Mondini, M.; De Andrea, M.; Landolfo, S. The multifaceted interferon-inducible p200 family proteins: From cell biology to human pathology. J. Interferon Cytokine Res. 2011, 31, 159–172. [Google Scholar] [CrossRef]
- Gariglio, M.; Azzimonti, B.; Pagano, M.; Palestro, G.; De Andrea, M.; Valente, G.; Voglino, G.; Navino, L.; Landolfo, S. Immunohistochemical expression analysis of the human interferon-inducible gene IFI16, a member of the HIN200 family, not restricted to hematopoietic cells. J. Interferon Cytokine Res. 2002, 22, 815–821. [Google Scholar] [CrossRef] [Green Version]
- Gugliesi, F.; De Andrea, M.; Mondini, M.; Cappello, P.; Giovarelli, M.; Shoenfeld, Y.; Meroni, P.; Gariglio, M.; Landolfo, S. The proapoptotic activity of the Interferon-inducible gene IFI16 provides new insights into its etiopathogenetic role in autoimmunity. J. Autoimmun. 2010, 35, 114–123. [Google Scholar] [CrossRef]
- Mondini, M.; Costa, S.; Sponza, S.; Gugliesi, F.; Gariglio, M.; Landolfo, S. The interferon-inducible HIN-200 gene family in apoptosis and inflammation: Implication for autoimmunity. Autoimmunity 2010, 43, 226–231. [Google Scholar] [CrossRef]
- Johnstone, R.W.; Wei, W.; Greenway, A.; Trapani, J.A. Functional interaction between p53 and the interferon-inducible nucleoprotein IFI 16. Oncogene 2000, 19, 6033–6042. [Google Scholar] [CrossRef] [Green Version]
- Egistelli, L.; Chichiarelli, S.; Gaucci, E.; Eufemi, M.; Schininà, M.E.; Giorgi, A.; Lascu, I.; Turano, C.; Giartosio, A.; Cervoni, L. IFI16 and NM23 bind to a common DNA fragment both in the P53 and the cMYC gene promoters. J. Cell. Biochem. 2009, 106, 666–672. [Google Scholar] [CrossRef]
- Aglipay, J.A.; Lee, S.W.; Okada, S.; Fujiuchi, N.; Ohtsuka, T.; Kwak, J.C.; Wang, Y.; Johnstone, R.W.; Deng, C.; Qin, J.; et al. A member of the Pyrin family, IFI16, is a novel BRCA1-associated protein involved in the p53-mediated apoptosis pathway. Oncogene 2003, 22, 8931–8938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, H.; Curry, J.; Johnstone, R.W.; Nickoloff, B.J.; Choubey, D. Role of IFI 16, a member of the interferon-inducible p200-protein family, in prostate epithelial cellular senescence. Oncogene 2003, 22, 4831–4840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondini, M.; Vidali, M.; Airo, P.; De Andrea, M.; Riboldi, P.; Meroni, P.L.; Gariglio, M.; Landolfo, S. Role of the Interferon-Inducible Gene IFI16 in the Etiopathogenesis of Systemic Autoimmune Disorders. Ann. N. Y. Acad. Sci. 2007, 1110, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondini, M.; Vidali, M.; De Andrea, M.; Azzimonti, B.; Airò, P.; D’Ambrosio, R.; Riboldi, P.; Meroni, P.L.; Albano, E.; Shoenfeld, Y.; et al. A novel autoantigen to differentiate limited cutaneous systemic sclerosis from diffuse cutaneous systemic sclerosis: The interferon-inducible gene IFI16. Arthritis Rheum. 2006, 54, 3939–3944. [Google Scholar] [CrossRef] [Green Version]
- Caneparo, V.; Cena, T.; De Andrea, M.; Dell’oste, V.; Stratta, P.; Quaglia, M.; Tincani, A.; Andreoli, L.; Ceffa, S.; Taraborelli, M.; et al. Anti-IFI16 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Lupus 2013, 22, 607–613. [Google Scholar] [CrossRef]
- Gugliesi, F.; Bawadekar, M.; De Andrea, M.; Dell’Oste, V.; Caneparo, V.; Tincani, A.; Gariglio, M.; Landolfo, S. Nuclear DNA sensor IFI16 as circulating protein in autoimmune diseases is a signal of damage that impairs endothelial cells through high-affinity membrane binding. PLoS ONE 2013, 8, e63045. [Google Scholar] [CrossRef]
- Gariano, G.R.; Dell’Oste, V.; Bronzini, M.; Gatti, D.; Luganini, A.; De Andrea, M.; Gribaudo, G.; Gariglio, M.; Landolfo, S. The Intracellular DNA Sensor IFI16 Gene Acts as Restriction Factor for Human Cytomegalovirus Replication. PLoS Pathog. 2012, 8, e1002498. [Google Scholar] [CrossRef] [Green Version]
- Cristea, I.M.; Moorman, N.J.; Terhune, S.S.; Cuevas, C.D.; O’Keefe, E.S.; Rout, M.P.; Chait, B.T.; Shenk, T. Human cytomegalovirus pUL83 stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16 protein. J. Virol. 2010, 84, 7803–7814. [Google Scholar] [CrossRef] [Green Version]
- Biolatti, M.; Dell’Oste, V.; De Andrea, M.; Landolfo, S. The human cytomegalovirus tegument protein pp65 (pUL83): A key player in innate immune evasion. New Microbiol. 2018, 41, 87–94. [Google Scholar]
- Biolatti, M.; Dell’Oste, V.; Pautasso, S.; von Einem, J.; Marschall, M.; Plachter, B.; Gariglio, M.; De Andrea, M.; Landolfo, S. Regulatory Interaction between the Cellular Restriction Factor IFI16 and Viral pp65 (pUL83) Modulates Viral Gene Expression and IFI16 Protein Stability. J. Virol. 2016, 90, 8238–8250. [Google Scholar] [CrossRef] [Green Version]
- Diner, B.A.; Lum, K.K.; Toettcher, J.E.; Cristea, I.M. Viral DNA Sensors IFI16 and Cyclic GMP-AMP Synthase Possess Distinct Functions in Regulating Viral Gene Expression, Immune Defenses, and Apoptotic Responses during Herpesvirus Infection. mBio 2016, 7, e01553-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orzalli, M.H.; DeLuca, N.A.; Knipe, D.M. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc. Natl. Acad. Sci. USA 2012, 109, E3008-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.V.; Kerur, N.; Bottero, V.; Dutta, S.; Chakraborty, S.; Ansari, M.A.; Paudel, N.; Chikoti, L.; Chandran, B. Kaposi’s sarcoma-associated herpesvirus latency in endothelial and B cells activates gamma interferon-inducible protein 16-mediated inflammasomes. J. Virol. 2013, 87, 4417–4431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, M.A.; Singh, V.V.; Dutta, S.; Veettil, M.V.; Dutta, D.; Chikoti, L.; Lu, J.; Everly, D.; Chandran, B. Constitutive Interferon-Inducible Protein 16-Inflammasome Activation during Epstein-Barr Virus Latency I, II, and III in B and Epithelial Cells. J. Virol. 2013, 87, 8606–8623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeYoung, K.L.; Ray, M.E.; Su, Y.A.; Anzick, S.L.; Johnstone, R.W.; Trapani, J.A.; Meltzer, P.S.; Trent, J.M. Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene 1997, 15, 453–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, S.M.; Karki, R.; Kanneganti, T.-D. AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity. Eur. J. Immunol. 2016, 46, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Man, S.M.; Kanneganti, T.-D. Regulation of inflammasome activation. Immunol. Rev. 2015, 265, 6–21. [Google Scholar] [CrossRef] [Green Version]
- Hara, H.; Tsuchiya, K.; Kawamura, I.; Fang, R.; Hernandez-Cuellar, E.; Shen, Y.; Mizuguchi, J.; Schweighoffer, E.; Tybulewicz, V.; Mitsuyama, M. Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat. Immunol. 2013, 14, 1247–1255. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526, 660–665. [Google Scholar] [CrossRef]
- Shi, C.-S.; Shenderov, K.; Huang, N.-N.; Kabat, J.; Abu-Asab, M.; Fitzgerald, K.A.; Sher, A.; Kehrl, J.H. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 2012, 13, 255–263. [Google Scholar] [CrossRef]
- Lupfer, C.; Malik, A.; Kanneganti, T.-D. Inflammasome control of viral infection. Curr. Opin. Virol. 2015, 12, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, S.M.; Zhu, Q.; Zhu, L.; Liu, Z.; Karki, R.; Malik, A.; Sharma, D.; Li, L.; Malireddi, R.K.S.; Gurung, P.; et al. Critical Role for the DNA Sensor AIM2 in Stem Cell Proliferation and Cancer. Cell 2015, 162, 45–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dihlmann, S.; Tao, S.; Echterdiek, F.; Herpel, E.; Jansen, L.; Chang-Claude, J.; Brenner, H.; Hoffmeister, M.; Kloor, M. Lack of Absent in Melanoma 2 (AIM2) expression in tumor cells is closely associated with poor survival in colorectal cancer patients. Int. J. Cancer 2014, 135, 2387–2396. [Google Scholar] [CrossRef] [PubMed]
- Patsos, G.; Germann, A.; Gebert, J.; Dihlmann, S. Restoration of absent in melanoma 2 (AIM2) induces G2/M cell cycle arrest and promotes invasion of colorectal cancer cells. Int. J. Cancer 2010, 126, 1838–1849. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.E.; Petrucelli, A.S.; Chen, L.; Koblansky, A.A.; Truax, A.D.; Oyama, Y.; Rogers, A.B.; Brickey, W.J.; Wang, Y.; Schneider, M.; et al. Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat. Med. 2015, 21, 906–913. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Wang, L.; Su, L.-K.; Frey, J.A.; Shao, R.; Hunt, K.K.; Yan, D.-H. Antitumor activity of IFIX, a novel interferon-inducible HIN-200 gene, in breast cancer. Oncogene 2004, 23, 4556–4566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; Lee, J.-F.; Lu, H.; Lee, M.-H.; Yan, D.-H. Interferon-inducible protein IFIXalpha1 functions as a negative regulator of HDM2. Mol. Cell. Biol. 2006, 26, 1979–1996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo Cigno, I.; De Andrea, M.; Borgogna, C.; Albertini, S.; Landini, M.M.; Peretti, A.; Johnson, K.E.; Chandran, B.; Landolfo, S.; Gariglio, M. The Nuclear DNA Sensor IFI16 Acts as a Restriction Factor for Human Papillomavirus Replication through Epigenetic Modifications of the Viral Promoters. J. Virol. 2015, 89, 7506–7520. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Zu, X.; Liu, S.; Zhang, H. The absent in melanoma 2 (AIM2) inflammasome in microbial infection. Clin. Chim. Acta 2019, 495, 100–108. [Google Scholar] [CrossRef]
- Reinholz, M.; Kawakami, Y.; Salzer, S.; Kreuter, A.; Dombrowski, Y.; Koglin, S.; Kresse, S.; Ruzicka, T.; Schauber, J. HPV16 activates the AIM2 inflammasome in keratinocytes. Arch. Dermatol. Res. 2013, 305, 723–732. [Google Scholar] [CrossRef]
- So, D.; Shin, H.-W.; Kim, J.; Lee, M.; Myeong, J.; Chun, Y.-S.; Park, J.-W. Cervical cancer is addicted to SIRT1 disarming the AIM2 antiviral defense. Oncogene 2018, 37, 5191–5204. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-J.; Park, J.-I.; Nelkin, B.D. IFI16 is an essential mediator of growth inhibition, but not differentiation, induced by the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. J. Biol. Chem. 2005, 280, 4913–4920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccaluga, P.P.; Agostinelli, C.; Fuligni, F.; Righi, S.; Tripodo, C.; Re, M.C.; Clò, A.; Miserocchi, A.; Morini, S.; Gariglio, M.; et al. IFI16 Expression Is Related to Selected Transcription Factors during B-Cell Differentiation. J. Immunol. Res. 2015, 2015, 747645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
HPV− HNSCC | Losses of chromosomes 3p and 9p TP53 mutations Loss of the tumor suppressor gene CDKN2A PIK3CA amplification and/or mutation in 34% of cases Overexpression of EGFR and MET Smoking-associated mutational signature |
HPV+ HNSCC | Lower average number of mutations per tumor Wild-type TP53 Rare loss of the tumor suppressor gene CDKN2A PIK3CA amplification and/or mutation in 56% of cases APOBEC-mediated driver mutations |
Intracellular localization | Functions | Interaction with Other Proteins | |
---|---|---|---|
IFI16 | us aNuclend cytoplasm | - DNA damage response, apoptosis, senescence, and cell growth and differentiation - Activation of an efficient inflammasome complex - Binding double strand (ds) and single strand (ss) DNA in a sequence-independent manner - Viral restriction factor as DNA intracellular sensor | - Increase of p53-mediated transcriptional activation - Interaction with the promoter region of p53 and c-myc - Binding BRCA1 and activation of p53-mediated cell death - Inhibition of pRb–E2F1-mediated transcriptional repression - Binding the adaptor protein ASC to form an inflammasome |
AIM2 | Cytoplasm | - Activation of an efficient inflammasome complex - Viral restriction factor as DNA intracellular sensor - Suppression of the activation of DNA-PK and DNA-PK-dependent phosphorylation of AKT | - Binding the adaptor protein ASC to form an inflammasome |
Reference | Type of Study | Main Results | Strengths | Limits |
---|---|---|---|---|
Azzimonti et al., 2004 [8] | IHC 1 on 36 HNSCC specimens. | - Higher IFI16 expression in HPV+ HNSCC; - Inverse correlation between IFI16 and Ki67 expression; - Better prognosis for patients with high IFI16. | - First study correlating IFI16 expression with HPV infection in HNSCC; - Evidence of IFI16 antiproliferative activity. | - No stratification for HPV infection in survival analysis; - No tumors from oral cavity. |
De Andrea et al., 2007 [9] | In vitro (HNSCC-derived cell lines). | - IFI16 restoration inhibits both cell growth and transforming activity in vitro; - IFI16-mediated inhibition of cell growth depends on the presence of a functional p53; - IFI16 increases doxorubicin-induced cell death by G2/M phase arrest. | - In vitro demonstration of the antiproliferative activity of IFI16 in a p53-dependent fashion. | - No analysis of IFI16 activity in vivo. |
Mazibrada et al., 2010 [10] | In vivo tumorigenicity assay (nude mice xenografts). | - IFI16 exerts an anti-tumoral activity in vivo by promoting apoptosis of tumor cells, inhibiting neo-vascularization, by increasing the recruitment of macrophages through the release of chemotactic factors. | - In vivo demonstration of the functional role of IFI16in HNSCC. | - Evaluation only limited to some HNSCC-derived cell lines. |
Kondo et al., 2012 [11] | Gene expression profiling on 28 HNSCC specimens. | - Over-expression of IFI16 and AIM2 genes in oral cancer; - Knockdown of IFI16 or AIM2 in cell lines from oral cancer suppresses cell growth and apoptosis, accompanied by the downregulation of NF-κB activity; - In p53-deficient cells, the expression of IFI16 and AIM2 may have transformation potential. | - Evaluation of NF-κB signaling; - First evaluation of AIM2 in HNSCC. | - No assessment of HPV infection status; - No tumors from pharynx and larynx. |
Yamauchi et al., 2013 [12] | IHC on 22 HNSCC specimens. | - The expression of IFI16 is not associated with p16; - IFI16 positive and negative patients have similar survival rates. | - Survival analysis based on IFI16 | - p16 is not the perfect marker for HPV infection; - Small sample; - No stratification for HPV infection in survival analysis. |
Mazibrada et al., 2014 [13] | IHC on 224 head and neck precancerous and malignant lesions. | - Higher expression of HER-2/neu, pStat3, and IFI16 expression in HPV+ lesions; - Inverse correlation between IFI16 expression and Sox2/Ki67 activity; - Positive correlation between pStat3 and IFI16 expression in HPV+ lesions. | - Large sample - Evaluation of HPV infection with not only p16 IHC but also two different PCR-based assays - Observation of pStat3 and IFI16 synergistic pro-apoptotic effects in HPV+ lesions. | - No survival analysis. |
Riva et al., 2019 [14] | mRNA expression levels in 34 specimens of HNSCC | - Upregulation of IFI16, APOBEC3A, and APOBEC3B in HPV+ HNSCCs; - AIM2 gene expression levels are predominantly unchanged in HPV+ HNSCCs compared to their HPV− counterparts, in which AIM2 is predominantly upregulated; - Positive correlation between IFI16 and APOBEC3A expression in HPV+ HNSCCs; - Upregulation of IFI16 correlates with lower occurrence of nodal metastases in HPV− HNSCCs; - Worse prognosis for patients with downregulated IFI16 or AIM2. | - Demonstration of protective role of IFI16 in both HPV+ and HPV− HNSCCs. | - Small HPV+ sample group (10 patients) - Short follow-up (mean follow-up: 19 months). |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riva, G.; Biolatti, M.; Pecorari, G.; Dell’Oste, V.; Landolfo, S. PYHIN Proteins and HPV: Role in the Pathogenesis of Head and Neck Squamous Cell Carcinoma. Microorganisms 2020, 8, 14. https://doi.org/10.3390/microorganisms8010014
Riva G, Biolatti M, Pecorari G, Dell’Oste V, Landolfo S. PYHIN Proteins and HPV: Role in the Pathogenesis of Head and Neck Squamous Cell Carcinoma. Microorganisms. 2020; 8(1):14. https://doi.org/10.3390/microorganisms8010014
Chicago/Turabian StyleRiva, Giuseppe, Matteo Biolatti, Giancarlo Pecorari, Valentina Dell’Oste, and Santo Landolfo. 2020. "PYHIN Proteins and HPV: Role in the Pathogenesis of Head and Neck Squamous Cell Carcinoma" Microorganisms 8, no. 1: 14. https://doi.org/10.3390/microorganisms8010014
APA StyleRiva, G., Biolatti, M., Pecorari, G., Dell’Oste, V., & Landolfo, S. (2020). PYHIN Proteins and HPV: Role in the Pathogenesis of Head and Neck Squamous Cell Carcinoma. Microorganisms, 8(1), 14. https://doi.org/10.3390/microorganisms8010014