Evaluation and Predictive Modeling of Removal Condition for Bioadsorption of Indigo Blue Dye by Spirulina platensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum Preparation
2.2. Experimental Design
2.3. Mathematical Models
2.4. Statistical Analysis
3. Results and Discussion
3.1. Optimum pH
3.2. Measurement of the Effect of Time and Concentration
3.3. Measurement of the Effect of the Temperature and Concentration
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
α | rate constant (h−1) |
B | concentration of biomass (g/L) |
C | equilibrium concentration (mg/L) |
Ce | amount of dye left in the solution at equilibrium (mg/L) |
Ci | initial concentration (mg/L) |
Ct | concentration over time (mg/L) |
observed average concentrations | |
D | discoloration of the indigo blue (%) |
k2 | rate constant (L/(mg·h)) |
Q | total adsorption (mg/L) |
q | adsorption capacity (mg/g) |
qe | amount of dye absorbed in the biomass at equilibrium (mg/g) |
t | time (h) |
References
- Kyzas, G.; Kostoglou, M. Green Adsorbents for Wastewaters: A Critical Review. Materials 2014, 7, 333–364. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef]
- Giannakis, S.; Rtimi, S.; Pulgarin, C. Light-assisted advanced oxidation processes for the elimination of chemical and microbiological pollution of wastewaters in developed and developing countries. Molecules 2017, 22, 1070. [Google Scholar] [CrossRef]
- Hatoum, R.; Potier, O.; Roques-carmes, T.; Lemaitre, C.; Hamieh, T.; Toufaily, J.; Horn, H.; Borowska, E. Elimination of Micropollutants in Activated Sludge Reactors with a Special Focus on the E ff ect of Biomass Concentration. Water 2019, 11, 2217. [Google Scholar] [CrossRef] [Green Version]
- Escapa, C.; Coimbra, R.N.; Neuparth, T.; Torres, T.; Santos, M.M.; Otero, M. Acetaminophen removal from water by microalgae and effluent toxicity assessment by the zebrafish embryo bioassay. Water 2019, 11, 1929. [Google Scholar] [CrossRef] [Green Version]
- Unuofin, J.O.; Okoh, A.I.; Nwodo, U.U. Aptitude of oxidative enzymes for treatment of wastewater pollutants: A laccase perspective. Molecules 2019, 24, 2064. [Google Scholar] [CrossRef] [Green Version]
- De Cazes, M.; Abejón, R.; Belleville, M.P.; Sanchez-Marcano, J. Membrane bioprocesses for pharmaceutical micropollutant removal from waters. Membranes 2014, 4, 692–729. [Google Scholar] [CrossRef] [Green Version]
- Beretta, G.; Daghio, M.; Espinoza Tofalos, A.; Franzetti, A.; Mastorgio, A.F.; Saponaro, S.; Sezenna, E. Sezenna Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium. Water 2019, 11, 2336. [Google Scholar] [CrossRef] [Green Version]
- Mu’azu, N.; Jarrah, N.; Zubair, M.; Alagha, O. Removal of Phenolic Compounds from Water Using Sewage Sludge-Based Activated Carbon Adsorption: A Review. Int. J. Environ. Res. Public Health 2017, 14, 1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amenorfenyo, D.K.; Huang, X.; Zhang, Y.; Zeng, Q.; Zhang, N.; Ren, J.; Huang, Q. Microalgae Brewery Wastewater Treatment: Potentials, Benefits and the Challenges. Int. J. Environ. Res. Public Health 2019, 16, 1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amor, C.; Marchão, L.; Lucas, M.S.; Peres, J.A. Application of Advanced Oxidation Processes for the Treatment of Recalcitrant Agro-Industrial Wastewater: A Review. Water 2019, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, R.; Saady, N.; Torrijos, M.; Thanikal, J.; Hung, Y.-T. Sustainable Agro-Food Industrial Wastewater Treatment Using High Rate Anaerobic Process. Water 2013, 5, 292–311. [Google Scholar] [CrossRef] [Green Version]
- Torres-Aravena, Á.; Duarte-Nass, C.; Azócar, L.; Mella-Herrera, R.; Rivas, M.; Jeison, D. Can Microbially Induced Calcite Precipitation (MICP) through a Ureolytic Pathway Be Successfully Applied for Removing Heavy Metals from Wastewaters? Crystals 2018, 8, 438. [Google Scholar] [CrossRef] [Green Version]
- Samiey, B.; Cheng, C.-H.; Wu, J. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review. Materials 2014, 7, 673–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebrahimi, P.; Barbieri, M. Gadolinium as an Emerging Microcontaminant in Water Resources: Threats and Opportunities. Geosciences 2019, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Banat, I.M.; Nigam, P.; Singh, D.; Marchant, R. Microbial decolorization of textile-dyecontaining effluents: A review. Bioresour. Technol. 1996, 58, 217–227. [Google Scholar] [CrossRef]
- Roessler, A.; Crettenand, D.; Dossenbach, O.; Marte, W.; Rys, P. Direct electrochemical reduction of indigo. Electrochim. Acta 2002, 47, 1989–1995. [Google Scholar] [CrossRef]
- Travieso, L.; Cañizares, R.; Benítez, R.; Domínguez, A.; Conde, J.; Duperyron, R.; Valiente, V. XII Seminario Científico CNIC. In Spetial Edition 26; Revista CNIC: La Habana, Cuba, 1995. [Google Scholar]
- Pellón, A.; Benítez, F.; Frades, J.; García, L.; Cerpa, A.; Alguacil, F.J. Empleo de microalga Scenedesmus obliquas en la eliminación de cromo presente en aguas residuales galvánicas. Rev. Metal. 2003, 39, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Sarayu, K.; Sandhya, S. Current Technologies for Biological Treatment of Textile Wastewater–A Review. Appl. Biochem. Biotechnol. 2012, 167, 645–661. [Google Scholar] [CrossRef]
- Arslan, S.; Eyvaz, M.; Gürbulak, E.; Yüksel, E. Textile Wastewater Treatment. In A Review of State-of-the-Art Technologies in Dye-Containing Wastewater Treatment—The Textile Industry Case; InTech: London, UK, 2016; ISBN 978-953-51-2543-3. [Google Scholar]
- Singh, K.; Arora, S. Removal of Synthetic Textile Dyes From Wastewaters: A Critical Review on Present Treatment Technologies. Crit. Rev. Environ. Sci. Technol. 2011, 41, 807–878. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Kumar, S.; Jaikumar, V. Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem. 2019, 75, 1–19. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Quintero, L.; Cardona, S. Technologies for the decolorization of dyes: Indigo and indigo carmine. Dyna 2010, 77, 371–386. [Google Scholar]
- Daneshvar, N.; Ayazloo, M.; Khataee, A.; Pourhassan, M. Biological Decolorization of Dye Solution Containing Malachite Green by Microalgae Cosmarium sp Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour. Technol. 2007, 98, 1176–1182. [Google Scholar] [CrossRef]
- Rosas-Castor, J.M.; Garza-González, M.T.; García-Reyes, R.B.; Soto-Regalado, E.; Cerino-Córdova, F.J.; García-González, A.; Loredo-Medrano, J.A. Methylene blue biosorption by pericarp of corn, alfalfa, and agave bagasse wastes. Environ. Technol. 2014, 35, 1077–1090. [Google Scholar] [CrossRef] [PubMed]
- Frijters, C.T.M.J.; Vos, R.H.; Scheffer, G.; Mulder, R. Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system. Water Res. 2006, 40, 1249–1257. [Google Scholar] [CrossRef]
- Kim, T.-H.; Lee, Y.; Yang, J.; Lee, B.; Park, C.; Kim, S. Decolorization of dye solutions by a membrane bioreactor (MBR) using white-rot fungi. Desalination 2004, 168, 287–293. [Google Scholar] [CrossRef]
- Tantak, N.P.; Chaudhari, S. Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment. J. Hazard. Mater. 2006, 136, 698–705. [Google Scholar] [CrossRef]
- Vijaya, P.; Sandhya, S. Decolorization and Complete Degradation of Methyl Red by a Mixed Culture. Environ. Syst. Decis. 2003, 23, 145–149. [Google Scholar]
- Srinivasan, A.; Viraraghavan, T. Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manag. 2010, 91, 1915–1929. [Google Scholar] [CrossRef]
- Coronel Valladares, V.E.; Tenesaca Sisalima, M.N. Estudio DE Factibilidad DE Un Proceso DE Biorremediación Del Colorante íNdigo Presente en Aguas Residuales DE La Industria Textil en La Ciudad DE Cuenca, A Través DE Hongos Ligninolíticos. Bachelor’s Thesis, Universidad Politécnica Salesiana Sede Cuenca, Cuenca, Equador, 2013. [Google Scholar]
- Chia, M.A.; Odoh, O.A.; Ladan, Z. The indigo blue dye decolorization potential of immobilized Scenedesmus quadricauda. Water. Air. Soil Pollut. 2014, 225, 1920. [Google Scholar] [CrossRef]
- Patel, Y.; Gupte, A. Biological Treatment of Textile Dyes by Agar-Agar Immobilized Consortium in a Packed Bed Reactor. Water Environ. Res. 2015, 87, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Roa, C.; Prasad, K.; Karthikeyan, J. Treatment of simulated Reactive Yellow 22 (Azo) dye effluents using Spirogyra species. Waste Manag. 2002, 22, 575–582. [Google Scholar] [CrossRef]
- Serrano-González, M.Y.; Chandra, R.; Castillo-Zacarias, C.; Robledo-Padilla, F.; Rostro-Alanis, M.D.J.; Parra-Saldivar, R. Biotransformation and degradation of 2,4,6-trinitrotoluene by microbial metabolism and their interaction. Def. Technol. 2018, 14, 151–164. [Google Scholar] [CrossRef]
- Riva, V.; Mapelli, F.; Syranidou, E.; Crotti, E.; Choukrallah, R.; Kalogerakis, N.; Borin, S. Root Bacteria Recruited by Phragmites australis in Constructed Wetlands Have the Potential to Enhance Azo-Dye Phytodepuration. Microorganisms 2019, 7, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acuner, E.; Dilek, F. Treatment of tectilon yellow 2G by Chlorella vulgaris. Process Biochem. 2004, 39, 623–631. [Google Scholar] [CrossRef]
- Kumar, K.; Ramamurthi, V.; Sivanesan, S. Adsorption of malachite green onto Pithophora sp., a fresh water algae: Equilibrium and kinetic modelling. Process Biochem. 2005, 40, 2865–2872. [Google Scholar] [CrossRef]
- Da Fontoura, J.T.; Rolim, G.S.; Mella, B.; Farenzena, M.; Gutterres, M. Defatted microalgal biomass as biosorbent for the removal of Acid Blue 161 dye from tannery effluent. J. Environ. Chem. Eng. 2017, 5, 5076–5084. [Google Scholar] [CrossRef]
- Kumari, K.; Abraham, T.E. Biosorption of anionic textile dyes by nonviable biomass of fungi and yeast. Bioresour. Technol. 2007, 98, 1704–1710. [Google Scholar] [CrossRef]
- Limousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthès, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- Ncibi, M.C. Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. J. Hazard. Mater. 2008, 153, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Bulut, E.; Özacar, M.; Şengil, İ.A. Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J. Hazard. Mater. 2008, 154, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitrogiannis, D.; Markou, G.; Çelekli, A.; Bozkurt, H. Biosorption of methylene blue onto Arthrospira platensis biomass: Kinetic, equilibrium and thermodynamic studies. J. Environ. Chem. Eng. 2015, 3, 670–680. [Google Scholar] [CrossRef]
- Dissa, A.O.; Desmorieux, H.; Savadogo, P.W.; Segda, B.G.; Koulidiati, J. Shrinkage, porosity and density behavior during convective drying of spirulina. J. Food Eng. 2010, 97, 410–418. [Google Scholar] [CrossRef]
- Koeppenkastrop, D.; De Carlo, E.H. Uptake of rare earth elements from solution by metal oxides. Environ. Sci. Technol. 1993, 27, 1796–1802. [Google Scholar] [CrossRef]
- Petrović, M.M.; Radović, M.D.; Kostić, M.M.; Mitrović, J.Z.; Bojić, D.V.; Zarubica, A.R.; Bojić, A.L. A Novel Biosorbent Lagenaria vulgaris Shell—ZrO2 for the Removal of Textile Dye From Water. Water Environ. Res. 2015, 87, 635–643. [Google Scholar] [CrossRef]
- Aksu, Z.; Tezer, S. Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem. 2005, 40, 1347–1361. [Google Scholar] [CrossRef]
- Kumar, K.V.; Porkodi, K.; Rocha, F. Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: Comparison of various error functions. J. Hazard. Mater. 2008, 151, 794–804. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash. J. Environ. Sci. Heal. Part A 1999, 34, 1179–1204. [Google Scholar] [CrossRef] [Green Version]
Experimental Design | pH | Indigo Blue Dye Concentration (mg/L) | Time (Hours) | Temperature (°C) |
---|---|---|---|---|
Optimum pH | 4, 5, 6, 7, 8, 9, and 10 | 50 | 24 | 25 |
Time and concentration | 4 | 25, 50, 75, and 100 | 0, 24, 48, 72, 96 | 25 |
Temperature and concentration | 4 | 6.25, 12.5, 25, 50, and 100 | 96 | 30, 40, and 50 |
Ci (mg/L) | Expected Qe (mg/L) = 0.91Co | Observed Average Qe (mg/L) (95% Ci) |
---|---|---|
25 | 22.8 | 23.1 ± 0.3 |
50 | 45.5 | 45.4 ± 2.3 |
75 | 68.3 | 67.7 ± 4.5 |
100 | 91 | 89.9 ± 7.21 |
Ci (mg/L) | First-Order Rate Constant K1 (1/h) (Estimate ± SE) | First-Order Model Residual SE RMSE | First-Order Residual MSC | Second-Order Rate Constant K2 (L/(mg·h)) (Estimate ± SE) | Second-Order Model Fit Residual SE RMSE | Second-Order Fit MSC |
---|---|---|---|---|---|---|
25 | 0.046 ± 0.0047 | 1.146 | 5.10 | 0.00265 ± 0.00050 | 1.954 | 4.15 |
50 | 0.052 ± 0.0027 | 0.993 | 6.03 | 0.00180 ± 0.00013 | 1.128 | 5.79 |
75 | 0.047 ± 0.0081 | 5.64 | 4.60 | 0.00088 ± 0.00022 | 7.648 | 4.02 |
100 | 0.067 ± 0.015 | 8.774 | 4.14 | 0.00095 ± 0.00021 | 8.722 | 4.15 |
Temperature | bo (L/g) (Estimate ± SE) | p-Value | R2 (fit) |
---|---|---|---|
30 °C | 0.260 ± 0.047 | 0.011 | 0.883 |
40 °C | 3.104 ± 0.1622 | <0.001 | 0.987 |
50 °C | 10.220 ± 0.500 | <0.001 | 0.988 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robledo-Padilla, F.; Aquines, O.; Silva-Núñez, A.; Alemán-Nava, G.S.; Castillo-Zacarías, C.; Ramirez-Mendoza, R.A.; Zavala-Yoe, R.; Iqbal, H.M.N.; Parra-Saldívar, R. Evaluation and Predictive Modeling of Removal Condition for Bioadsorption of Indigo Blue Dye by Spirulina platensis. Microorganisms 2020, 8, 82. https://doi.org/10.3390/microorganisms8010082
Robledo-Padilla F, Aquines O, Silva-Núñez A, Alemán-Nava GS, Castillo-Zacarías C, Ramirez-Mendoza RA, Zavala-Yoe R, Iqbal HMN, Parra-Saldívar R. Evaluation and Predictive Modeling of Removal Condition for Bioadsorption of Indigo Blue Dye by Spirulina platensis. Microorganisms. 2020; 8(1):82. https://doi.org/10.3390/microorganisms8010082
Chicago/Turabian StyleRobledo-Padilla, Felipe, Osvaldo Aquines, Arisbe Silva-Núñez, Gibrán S. Alemán-Nava, Carlos Castillo-Zacarías, Ricardo A. Ramirez-Mendoza, Ricardo Zavala-Yoe, Hafiz M. N. Iqbal, and Roberto Parra-Saldívar. 2020. "Evaluation and Predictive Modeling of Removal Condition for Bioadsorption of Indigo Blue Dye by Spirulina platensis" Microorganisms 8, no. 1: 82. https://doi.org/10.3390/microorganisms8010082
APA StyleRobledo-Padilla, F., Aquines, O., Silva-Núñez, A., Alemán-Nava, G. S., Castillo-Zacarías, C., Ramirez-Mendoza, R. A., Zavala-Yoe, R., Iqbal, H. M. N., & Parra-Saldívar, R. (2020). Evaluation and Predictive Modeling of Removal Condition for Bioadsorption of Indigo Blue Dye by Spirulina platensis. Microorganisms, 8(1), 82. https://doi.org/10.3390/microorganisms8010082