A Review of Potential Impacts of Climate Change on Coffee Cultivation and Mycotoxigenic Fungi
Abstract
:1. Introduction
2. Coffee Growth Cycle
3. Optimal Climatic Conditions for Coffee
4. Mycotoxigenic Fungi
5. Climate Change Impacts on Coffee Cultivation Regions
6. Climate Change Impact on Mycotoxins and Mycotoxigenic Fungi
7. Current Observations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press, University Printing House: Cambridge, UK, 2014. [Google Scholar]
- Observatory of Economic Complexity. Trade Data of Coffee. Available online: https://oec.world/en/profile/hs92/coffee (accessed on 20 September 2020).
- Observatory of Economic Complexity. Trade Data for Burundi. Available online: https://oec.world/en/profile/country/bdi#trade-products (accessed on 20 September 2020).
- Minten, B.; Seneshaw, T.; Tadesse, K.; Yaw, N. Structure and Performance of Ethiopia’s Coffee Export Sector; Ethiopia Strategy Support Program Working Paper 66; International Food Policy Research Institute: Washington, DC, USA, 2014. [Google Scholar]
- Gonzalez-Perez, M.A.; Gutierrez-Viana, S. Cooperation in coffee markets: The case of Vietnam and Colombia. J. Agribus. Dev. Emerg. Econ. 2012, 2, 57–73. [Google Scholar] [CrossRef]
- You, L.; Bolwig, S. Alternative Growth Scenarios for Ugandan Coffee to 2020; EPTD Discussion Paper NO. 98; International Food Policy Research Institute: Washington, DC, USA, 2003. [Google Scholar]
- International Coffee Council, 121st Session. Development of Coffee Trade Flows; International Coffee Organization: London, UK. Available online: http://www.ico.org/documents/cy2017-18/icc-121-4e-trade-flows.pdf (accessed on 7 September 2020).
- Paterson, R.R.M.; Lima, N.; Taniwaki, M.H. Coffee, mycotoxins and climate change. Food Res. Int. 2014, 61, 1–15. [Google Scholar] [CrossRef]
- Wintgens, J.N. Coffee: Growing, Processing, Sustainable Production: A Guidebook for Growers, Processors, Traders, and Researchers; Wiley VCH: Weinheim, Germany, 2008. [Google Scholar]
- Hoffman, J. The World Atlas of Coffee: From Beans to Brewing—Coffees Explored, Explained and Enjoyed, 2nd ed.; Octopus Publishing Group: London, UK, 2018. [Google Scholar]
- Bunn, C.; Läderach, P.; Rivera, O.; Kirschke, D. A Bitter Cup: Climate Change Profile of Global Production of Arabica and Robusta Coffee. Clim. Chang. 2015, 129, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Fairbridge, R.W.; Oliver, J.E. Lapse Rate. In Encyclopedia of World Climatology; Oliver, J.E., Ed.; Springer: Boston, MA, USA, 2005; p. 448. [Google Scholar]
- DaMatta, F.M. Ecophysiological Constraints on the Production of Shaded and Unshaded Coffee: A Review. Field Crop. Res. 2004, 86, 99–114. [Google Scholar] [CrossRef]
- Haggar, J.; Schepp, K. Coffee and Climate Change: Impacts and Options for Adaptation in Brazil, Guatemala, Tanzania and Vietnam; National Resources Institute, University of Greenwich, Medway Campus: Kent, UK, 2012. [Google Scholar]
- De Camargo, M. The Impact of Climatic Variability and Climate Change on Arabic Coffee Crop in Brazil. Bragantia 2010, 69. [Google Scholar] [CrossRef]
- Organisation for Economic, and Co-operation and Development (OECD). Atlas on Regional Integration in West Africa. Available online: https://www.oecd.org/swac/publications/39596349.pdf. (accessed on 27 September 2020).
- Escobar-Ramírez, S.; Grass, I.; Armbrecht, I.; Tscharntke, T. Biological Control of the Coffee Berry Borer: Main Natural Enemies, Control Success, and Landscape Influence. Biol. Control 2019, 136, 103992. [Google Scholar] [CrossRef]
- Badel, J.L.; Zambolim, L. Coffee bacterial diseases: A plethora of scientific opportunities. Plant Pathol. 2018, 68, 411–425. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Bessaire, T.; Perrin, I.; Tarres, A.; Bebius, A.; Reding, F.; Theurillat, V. Mycotoxins in green coffee: Occurrence and risk assessment. Food Control 2019, 96, 59–67. [Google Scholar] [CrossRef]
- Sanchis, V.; Magan, N. Environmental conditions affecting mycotoxins. In Mycotoxins in Food; Magan, N., Olsen, M., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2004; pp. 174–189. [Google Scholar]
- Paterson, R.R.M.; Baker, P. Ochratoxin A in coffee. In Coffee Futures. A Source Book of Some Critical Issues Confronting the Coffee Industry; Baker, P.S., Ed.; CABI Commodities: Wallingford, UK, 2001; pp. 16–25. [Google Scholar]
- Khaneghah, A.M.; Fakhri, Y.; Abdi, L.; Fernanda, C.; Coppa, S.C.; Franco, L.T.; Fernandes des Oliveira, C.A. The concentration and prevalence of ochratoxin A in coffee and coffee based products: A global systematic review, meta-analysis and meta-regression. Fungal Biol. 2019, 8, 611–617. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Venancio, A.; Lima, N.; Guilloux-Benatier, M.; Rousseaux, S. Predominant mycotoxins, mycotoxigenic fungi and climate change related to wine. Food Res. Int. 2018, 103, 478–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin, S.; Homedes, V.; Sanchis, V.; Ramos, A.J.; Magan, N. Impact of Fusarium moniliforme and F. proliferatum colonisation of maize on calorific losses and fumonisin production under different environmental conditions. J. Stored Prod. Res. 1999, 35, 15–26. [Google Scholar] [CrossRef]
- Battilani, P.; Formenti, S.; Rossi, V.; Ramponi, C. Dynamic of water activity in maize hybrids is crucial for fumonisin contamination in kernels. J. Cereal Sci. 2011, 54, 467–472. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Lima, N. Further mycotoxin effects from climate change. Food Res. Int. 2011, 44, 2555–2566. [Google Scholar] [CrossRef] [Green Version]
- O’Brian, G.R.; Georgianna, D.R.; Wilkinson, J.R.; Yu, J.; Abbas, H.K.; Bhatnagar, D.; Clevland, T.E.; Nierman, W.; Payne, G.A. The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia 2007, 99, 232–239. [Google Scholar] [CrossRef]
- Rutqvist, L.; Björklund, N.E.; Hult, K.; Hökby, E.; Carlsson, B. Ochratoxin A as the cause of spontaneous nephropathy in fattening pigs. Appl. Environ. Microbiol. 1978, 36, 920–925. [Google Scholar] [CrossRef] [Green Version]
- Van Egmond, H.P. Aflatoxin M1: Occurrence, toxicity, regulation. In Mycotoxins in Dairy Products; Van Egmond, H.P., Ed.; Elsevier Applied Science: London, UK, 1989; pp. 11–55. [Google Scholar]
- Baca, M.; Läderach, P.; Haggar, J.; Schroth, G.; Ovalle, O. An Integrated Framework for Assessing Vulnerability to Climate Change and Developing Adaptation Strategies for Coffee Growing Families in Mesoamerica. PLoS ONE 2014, 9, e88463. [Google Scholar] [CrossRef] [Green Version]
- Schroth, G.; Laderach, G.; Dempewolf, J.; Philpott, S.; Haggar, J.P.; Eakin, H.; Garcia Moreno, J.; Soto Pinto, L.; Hernandez, R.; Eitzinger, A.; et al. Towards a Climate Change Adaptation Strategy for Coffee Communities and Ecosystems in the Sierra Madre de Chiapas, Mexico. Mitig. Adapt. Strateg. Glob. Chang. 2009, 14, 605–625. [Google Scholar] [CrossRef] [Green Version]
- Zullo, J.; Pinto, H.S.; Assad, E.D.; Heuminski de Ávila, A.M. Potential for Growing Arabica Coffee in the Extreme South of Brazil in a Warmer World. Clim. Chang. 2011, 109, 535–548. [Google Scholar] [CrossRef]
- Moat, J.; Williams, J.; Baena, S.; Wilkinson, T.; Gole, T.W.; Challa, Z.K.; Demissew, S.; Davis, A.P. Resilience Potential of the Ethiopian Coffee Sector under Climate Change. Nat. Plants 2017, 3, 17081. [Google Scholar] [CrossRef]
- Jassogne, L.; Läderach, P.; van Asten, P. The Impact of Climate Change on Coffee in Uganda. Lessons from a Case Study in Rwenzori Mountains. In Oxfam Research Reports; Oxfam Policy and Practice: Climate Change and Resilience; Oxfam GB, Oxfam House: Oxford, UK, 2012. [Google Scholar]
- Davis, A.P.; Gole, T.W.; Baena, S.; Moat, J. The Impact of Climate Change on Indigenous Arabica Coffee (Coffea Arabica): Predicting Future Trends and Identifying Priorities. PLoS ONE 2012, 7, e47981. [Google Scholar] [CrossRef]
- UTZ. Climate Change and Vietnamese Coffee Production. Available online: https://utz.org/wp-content/uploads/2017/03/C3-manual.pdf (accessed on 27 September 2020).
- Schroth, G.; Läderach, P.; Cuero, D.S.B.; Neilson, J.; Bunn, C. Winner or Loser of Climate Change? A Modeling Study of Current and Future Climatic Suitability of Arabica Coffee in Indonesia. Reg. Environ. Chang. 2015, 15, 1473–1482. [Google Scholar] [CrossRef] [Green Version]
- Craparo, A.C.W.; Van Asten, P.J.; Läderach, P.; Jassogne, L.T.; Grab, S.W. Coffea Arabica Yields Decline in Tanzania Due to Climate Change: Global Implications. Agric. For. Meteorol. 2015, 207, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Magrach, A.; Ghazoul, J. Climate and Pest-Driven Geographic Shifts in Global Coffee Production: Implications for Forest Cover, Biodiversity and Carbon Storage. PLoS ONE 2015, 10, e0133071. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, M.; Isaac, E.; Maslin, M.A. Future climate change impacts on Arabica and Robusta coffee cultivation. In ECRC Research Report; Environmental Change Research Centre, University College London: London, UK, 2020. [Google Scholar]
- Kath, J.; Byrareddy, V.M.; Craparo, A.; Nguyen-Huy, T.; Mushtaq, S.; Cao, L.; Bossolasco, L. Not so robust: Robusta coffee production is highly sensitive to temperature. Glob. Chang. Biol. 2020, 26, 3677–3688. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.Q.; Rodrigues, W.P.; Fortunato, A.S.; Leitão, A.E.; Rodrigues, A.P.; Pais, I.P.; Martins, L.D.; Silva, M.J.; Reboredo, F.H.; Partelli, F.L.; et al. Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp. Front. Plant. Sci. 2016, 7, 947. [Google Scholar] [CrossRef] [Green Version]
- Rahn, E.; Vaast, P.; Laderach, P.; van Asten, P.; Jassogne, L.; Ghazoul, J. Exploring adaptation strategies of coffee production to climate change using a process-based model. Ecol. Model. 2018, 371, 76–89. [Google Scholar] [CrossRef]
- Verhage, F.Y.F.; Anten, N.P.R.; Sentelhas, P.C. Carbon dioxide fertilization offsets negative impacts of climate change on Arabica coffee yield in Brazil. Clim. Chang. 2017, 144, 671–685. [Google Scholar] [CrossRef]
- DaMatta, F.M.; Rhan, E.; Läderach, P.; Ghini, R.; Ramalho, J.C. Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? Clim. Chang. 2019, 152, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Paterson, R.R.M.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Cervini, C.; Verheecke-Vaessen, C.; Ferrara, M.; García-Celac, E.; Magistà, D.; Medina, A.; Gallo, A.; Magan, N.; Perrone, G. Interacting climate change factors (CO2 and temperature cycles) effects on growth, secondary metabolite gene expression and phenotypic ochratoxin A production by Aspergillus carbonarius strains on a grape-based matrix. Fungal. Biol. 2019. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.; Moretti, A.; Leggieri, M.C.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botana, L.M.; Sainz, M.J. Climate Change and Mycotoxins; De Gruyter: Berlin, Germany, 2015. [Google Scholar]
- Paterson, R.R.M.; Lima, N. Thermophilic Fungi to Dominate Aflatoxigenic/ Mycotoxigenic Fungi on Food under Global Warming. Int. J. Environ. Res. Public Health 2017, 14, 199. [Google Scholar] [CrossRef] [Green Version]
- Paterson, R.R.M. Depletion of Indonesian oil palm plantations implied from modelling oil palm mortality and Ganoderma boninense rot under future climate. AIMS Environ. Sci. 2020, 7, 366–379. [Google Scholar] [CrossRef]
- Paterson, R.R.M. Oil palm survival under climate change in Malaysia with future basal stem rot assessments. For. Pathol. 2020, in press. [Google Scholar] [CrossRef]
- Vaughan, M.M.; Huffaker, A.; Schmelz, E.A.; Dafoe, N.J.; Christensen, S.; Sims, J. Effects of elevated CO2 on maize defence against mycotoxigenic Fusarium verticillioides. Plant Cell Environ. 2014, 37, 2691–2706. [Google Scholar] [CrossRef] [PubMed]
- Váry, Z.M.E.; McElwain, J.C.; Doohan, F.M. The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide. Glob. Chang. Biol. 2015, 21, 2661–2669. [Google Scholar] [CrossRef]
- Ghini, R.; Torre-Neto, A.; Dentzien, A.F.M.; Guerreiro-Filho, O.; Iost, R.; Patrício, F.R.A.; Prado, J.S.M.; Thomaziello, R.A.; Bettiol, W.; DaMatta, F.M. Coffee growth, pest and yield responses to free-air CO2 enrichment. Clim. Chang. 2015, 132, 307–320. [Google Scholar] [CrossRef]
- Akbar, A.; Medina, A.; Magan, N. Impact of interacting climate change factors on growth and ochratoxin A production by Aspergillus section Circumdati and Nigri species on coffee. World Mycotoxin J. 2016, 9, 863–874. [Google Scholar] [CrossRef] [Green Version]
- Akbar, A.; Medina, A.; Magan. N. Resilience of Aspergillus westerdijkiae Strains to Interacting Climate-Related Abiotic Factors: Effects on Growth and Ochratoxin A Production on Coffee-Based Medium and in Stored Coffee. Microorganisms 2020, 8, 1268. [Google Scholar] [CrossRef]
- Mangina, F.L.; Makundi, R.H.; Maerere, A.P.; Maro, G.P.; Teri, G.P. Temporal Variations in the Abundance of Three Important Insect Pests of Coffee in Kilimanjaro Region, Tanzania, Sokoine University of Agriculture. In Proceedings of the 23rd International Conference on Coffee Science, Bali, Indonesia, 3–8 October 2010. [Google Scholar]
- Jaramillo, J.; Muchugu, E.; Vega, F.E.; Davis, A.; Borgemeister, C.; Chabi-Olaye, A. Some Like It Hot: The Influence and Implications of Climate Change on Coffee Berry Borer (Hypothenemus hampei) and Coffee Production in East Africa. PLoS ONE 2011, 6, e24528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gay, C.; Estrada, F.; Conde, C.; Eakin, H.; Villers, L. Potential Impacts of Climate Change on Agriculture: A Case of Study of Coffee Production in Veracruz, Mexico. Clim. Chang. 2006, 79, 259–288. [Google Scholar] [CrossRef]
- Fournier, L.; Di Stéfano, J.F. Variaciones Climáticas Entre 1988 y 2001, y Sus Posibles Efectos Sobre La Fenología de Varias Especies Leñosas y El Manejo de Un Cafetal Con Sombra En Ciudad Colón de Mora, Costa Rica. Agron. Costarric. 2004, 28, 101–120. [Google Scholar]
Country/Territory | OTA Concentration (mg/kg) | Country/Territory | OTA Concentration (mg/kg) |
---|---|---|---|
Turkey | 79.0 | Brazil | 1.81 |
Philippines | 52.7 | Portugal | 1.71 |
France | 38.9 | Ethiopia | 1.53 |
Panama | 21.3 | Argentina | 1.39 |
South Korea | 5.62 | Switzerland | 1.30 |
Spain | 4.52 | Italy | 1.21 |
Cyprus | 3.90 | Chile | 1.10 |
Malaysia | 3.48 | Thailand | 0.89 |
Vietnam | 2.86 | Czech Republic | 0.84 |
Denmark | 2.82 | Japan | 0.48 |
Kuwait | 2.56 | Taiwan | 0.35 |
Global pooled mean | 3.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikari, M.; Isaac, E.L.; Paterson, R.R.M.; Maslin, M.A. A Review of Potential Impacts of Climate Change on Coffee Cultivation and Mycotoxigenic Fungi. Microorganisms 2020, 8, 1625. https://doi.org/10.3390/microorganisms8101625
Adhikari M, Isaac EL, Paterson RRM, Maslin MA. A Review of Potential Impacts of Climate Change on Coffee Cultivation and Mycotoxigenic Fungi. Microorganisms. 2020; 8(10):1625. https://doi.org/10.3390/microorganisms8101625
Chicago/Turabian StyleAdhikari, Mira, Elizabeth L. Isaac, R. Russell M. Paterson, and Mark A. Maslin. 2020. "A Review of Potential Impacts of Climate Change on Coffee Cultivation and Mycotoxigenic Fungi" Microorganisms 8, no. 10: 1625. https://doi.org/10.3390/microorganisms8101625
APA StyleAdhikari, M., Isaac, E. L., Paterson, R. R. M., & Maslin, M. A. (2020). A Review of Potential Impacts of Climate Change on Coffee Cultivation and Mycotoxigenic Fungi. Microorganisms, 8(10), 1625. https://doi.org/10.3390/microorganisms8101625