A Large-Scale Survey of the Bacterial Communities in Lakes of Western Mongolia with Varying Salinity Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. DNA Extraction, Library Preparation, and Sequencing
2.3. Measurement and Analysis of Physical and Chemical Parameters
2.4. Data Analysis
3. Results
3.1. Bacterial Community Diversity and Richness
3.2. Bacterial Community Composition of Western Mongolian Lakes
3.3. Local, Regional, and Environmental Drivers of Bacterial Community
3.4. Functional Predictions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wurtsbaugh, W.A.; Miller, C.; Null, S.E.; DeRose, R.J.; Wilcock, P.; Hahnenberger, M.; Howe, F.; Moore, J. Decline of the world’s saline lakes. Nat. Geosci. 2017, 10, 816–821. [Google Scholar] [CrossRef]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Saline Lakes: Publications from the 7th International Conference on Salt Lakes, Held in Death Valley National Park, California, USA, September 1999; Melack, J.M.; Jellison, R.; Herbst, D.B. (Eds.) Springer: Dordrecht, The Netherlands, 2001; ISBN 978-90-481-5995-6. [Google Scholar]
- Sunagawa, S.; Coelho, L.P.; Chaffron, S.; Kultima, J.R.; Labadie, K.; Salazar, G.; Djahanschiri, B.; Zeller, G.; Mende, D.R.; Alberti, A.; et al. Structure and function of the global ocean microbiome. Science 2015, 348, 1261359. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Yang, J.; Yu, Z.; Wilkinson, D.M. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J. 2015, 9, 2068–2077. [Google Scholar] [CrossRef]
- Jones, S.E.; Newton, R.J.; McMahon, K.D. Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes. Environ. Microbiol. 2009, 11, 2463–2472. [Google Scholar] [CrossRef]
- Baatar, B.; Chiang, P.-W.; Rogozin, D.Y.; Wu, Y.-T.; Tseng, C.-H.; Yang, C.-Y.; Chiu, H.-H.; Oyuntsetseg, B.; Degermendzhy, A.G.; Tang, S.-L. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia. PLoS ONE 2016, 11, e0150847. [Google Scholar] [CrossRef]
- Iliev, I.; Yahubyan, G.; Marhova, M.; Apostolova, E.; Gozmanova, M.; Gecheva, G.; Kostadinova, S.; Ivanova, A.; Baev, V. Metagenomic profiling of the microbial freshwater communities in two Bulgarian reservoirs. J. Basic Microbiol. 2017, 57, 669–679. [Google Scholar] [CrossRef]
- Linz, A.M.; Crary, B.C.; Shade, A.; Owens, S.; Gilbert, J.A.; Knight, R.; McMahon, K.D. Bacterial Community Composition and Dynamics Spanning Five Years in Freshwater Bog Lakes. mSphere 2017, 2, e00169-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandon, K.; Yang, S.-H.; Wan, M.-T.; Yang, C.-C.; Baatar, B.; Chiu, C.-Y.; Tsai, J.-W.; Liu, W.-C.; Tang, S.-L. Bacterial Community in Water and Air of Two Sub-Alpine Lakes in Taiwan. Microbes Environ. 2018, 33, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Bowman, J.P.; McCammon, S.A.; Rea, S.M.; McMeekin, T.A. The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol. Lett. 2000, 183, 81–88. [Google Scholar] [CrossRef]
- Pagaling, E.; Wang, H.; Venables, M.; Wallace, A.; Grant, W.D.; Cowan, D.A.; Jones, B.E.; Ma, Y.; Ventosa, A.; Heaphy, S. Microbial Biogeography of Six Salt Lakes in Inner Mongolia, China, and a Salt Lake in Argentina. Appl. Environ. Microbiol. 2009, 75, 5750–5760. [Google Scholar] [CrossRef] [Green Version]
- Zaitseva, S.V.; Abidueva, E.Y.; Radnagurueva, A.A.; Bazarov, S.M.; Buryukhaev, S.P. Structure of Microbial Communities of the Sediments of Alkaline Transbaikalia Lakes with Different Salinity. Microbiology 2018, 87, 559–568. [Google Scholar] [CrossRef]
- Selivanova, E.A.; Poshvina, D.V.; Khlopko, Y.A.; Gogoleva, N.E.; Plotnikov, A.O. Diversity of Prokaryotes in Planktonic Communities of Saline Sol-Iletsk lakes (Orenburg Oblast, Russia). Microbiology 2018, 87, 569–582. [Google Scholar] [CrossRef]
- Zorz, J.K.; Sharp, C.; Kleiner, M.; Gordon, P.M.K.; Pon, R.T.; Dong, X.; Strous, M. A shared core microbiome in soda lakes separated by large distances. Nat. Commun. 2019, 10, 4230. [Google Scholar] [CrossRef] [Green Version]
- Baricz, A.; Chiriac, C.M.; Andrei, A.; Bulzu, P.; Levei, E.A.; Cadar, O.; Battes, K.P.; Cîmpean, M.; Șenilă, M.; Cristea, A.; et al. Spatio-temporal insights into microbiology of the freshwater-to-hypersaline, oxic-hypoxic-euxinic waters of Ursu Lake. Environ. Microbiol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Newton, R.J.; Jones, S.E.; Eiler, A.; McMahon, K.D.; Bertilsson, S. A Guide to the Natural History of Freshwater Lake Bacteria. Microbiol. Mol. Biol. Rev. 2011, 75, 14–49. [Google Scholar] [CrossRef] [Green Version]
- Sorokin, D.Y.; Berben, T.; Melton, E.D.; Overmars, L.; Vavourakis, C.D.; Muyzer, G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014, 18, 791–809. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.L.; Zwart, G.; Schauer, M.; Kamst-van Agterveld, M.P.; Hahn, M.W. Bacterioplankton Community Composition along a Salinity Gradient of Sixteen High-Mountain Lakes Located on the Tibetan Plateau, China. Am. Soc. Microbiol. 2006, 72, 5478–5485. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Xie, G.; Shao, K.; Sai, B.; Chen, Y.; Gao, G. Influence of Salinity on the Bacterial Community Composition in Lake Bosten, a Large Oligosaline Lake in Arid Northwestern China. Appl. Environ. Microbiol. 2012, 78, 4748–4751. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yao, T.; Jiao, N.; Zhu, L.; Hu, A.; Liu, X.; Gao, J.; Chen, Z.-Q. Salinity Impact on Bacterial Community Composition in Five High-Altitude Lakes from the Tibetan Plateau, Western China. Geomicrobiol. J. 2013, 30, 462–469. [Google Scholar] [CrossRef]
- Yang, J.; Ma, L.; Jiang, H.; Wu, G.; Dong, H. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci. Rep. 2016, 6, 25078. [Google Scholar] [CrossRef] [Green Version]
- Williams, W.D. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 1998, 381, 191–201. [Google Scholar] [CrossRef]
- He, S.-T.; Zhi, X.-Y.; Jiang, H.; Yang, L.-L.; Wu, J.-Y.; Zhang, Y.-G.; Hozzein, W.N.; Li, W.-J. Biogeography of Nocardiopsis strains from hypersaline environments of Yunnan and Xinjiang Provinces, western China. Sci. Rep. 2015, 5, 13323. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Qin, Y.-H.; Zheng, X.; Zhao, H.-W.; Chai, D.-Y.; Li, W.; Pu, M.-X.; Zuo, X.-S.; Qian, W.; Ni, P.; et al. Biogeography and Adaptive evolution of Streptomyces Strains from saline environments. Sci. Rep. 2016, 6, 32718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, W.D. Chinese and Mongolian saline lakes: A limnological overview. Hydrobiologia 1991, 210, 39–66. [Google Scholar] [CrossRef]
- Egorov, A.N. Mongolian salt lakes: Some features of their geography, thermal patterns, chemistry and biology. Hydrobiologia 1993, 267, 13–21. [Google Scholar] [CrossRef]
- Baatar, B.; Chuluun, B.; Tang, S.-L.; Bayanjargal, O.; Oyuntsetseg, B. Vertical distribution of physical-chemical features of water and bottom sediments in four saline lakes of the Khangai mountain region, Western Mongolia. Environ. Earth Sci. 2017, 76, 130. [Google Scholar] [CrossRef]
- Bayanmunkh, B.; Sen-Lin, T.; Narangarvuu, D.; Ochirkhuyag, B.; Bolormaa, O. Physico-Chemical Composition of Saline Lakes of the Gobi Desert Region, Western Mongolia. J. Earth Sci. Clim. Chang. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-P.; Tseng, C.-H.; Chen, C.A.; Tang, S.-L. The dynamics of microbial partnerships in the coral Isopora palifera. ISME J. 2011, 5, 728–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgensen, S.L.; Hannisdal, B.; Lanzen, A.; Baumberger, T.; Flesland, K.; Fonseca, R.; Ovreas, L.; Steen, I.H.; Thorseth, I.H.; Pedersen, R.B.; et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc. Natl. Acad. Sci. USA 2012, 109, E2846–E2855. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Am. Soc. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UNOISE2: Improved error-correction for illumina 16S and ITS amplicon sequencing. BioRxiv 2016, 081257. [Google Scholar]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl. Acids Res. 2014, 42, D643–D648. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. 2019. Available online: https://www.researchgate.net/publication/313502495_Vegan_Community_Ecology_Package (accessed on 10 January 2020).
- Wemheuer, F.; Taylor, J.A.; Daniel, R.; Johnston, E.; Meinicke, P.; Thomas, T.; Wemheuer, B. Tax4Fun2: Prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ. Microbiome 2020, 15, 11. [Google Scholar] [CrossRef]
- Dhariwal, A.; Chong, J.; Habib, S.; King, I.L.; Agellon, L.B.; Xia, J. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017, 45, W180–W188. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Liu, P.; Zhou, G.; Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 2020, 15, 799–821. [Google Scholar] [CrossRef]
- Casamayor, E.O.; Triadó-Margarit, X.; Castañeda, C. Microbial biodiversity in saline shallow lakes of the Monegros Desert, Spain. FEMS Microbiol. Ecol. 2013, 85, 503–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bukin, Y.S.; Galachyants, Y.P.; Morozov, I.V.; Bukin, S.V.; Zakharenko, A.S.; Zemskaya, T.I. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci. Data 2019, 6, 190007. [Google Scholar] [CrossRef] [Green Version]
- Oren, A.; Naftz, D.L.; Palacios, P.; Wurtsbaugh, W.A. Saline lakes around the world: Unique systems with unique values. In Proceedings of the 10th ISSLR Conference and 2008 FRIENDS of Great Salt Lake Forum, Salt Lake City, UT, USA, 11–16 May 2008; Volume 15, p. 267. [Google Scholar]
- Huang, S.; Liu, Y.; Hu, A.; Liu, X.; Chen, F.; Yao, T.; Jiao, N. Genetic Diversity of Picocyanobacteria in Tibetan Lakes: Assessing the Endemic and Universal Distributions. Appl. Environ. Microbiol. 2014, 80, 7640–7650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felföldi, T. Microbial communities of soda lakes and pans in the Carpathian Basin: A review. Biologia Futura 2020. [Google Scholar] [CrossRef]
- Demergasso, C.; Escudero, L.; Casamayor, E.O.; Chong, G.; Balagué, V.; Pedrós-Alió, C. Novelty and spatio–temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 2008, 12, 491–504. [Google Scholar] [CrossRef]
- Abell, G.C.J.; Bowman, J.P. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol. Ecol. 2005, 51, 265–277. [Google Scholar] [CrossRef] [Green Version]
- López-Pérez, M.; Ghai, R.; Leon, M.; Rodríguez-Olmos, Á.; Copa-Patiño, J.; Soliveri, J.; Sanchez-Porro, C.; Ventosa, A.; Rodriguez-Valera, F. Genomes of “Spiribacter”, a streamlined, successful halophilic bacterium. BMC Genom. 2013, 14, 787. [Google Scholar] [CrossRef] [Green Version]
- Riemann, L.; Leitet, C.; Pommier, T.; Simu, K.; Holmfeldt, K.; Larsson, U.; Hagström, Å. The Native Bacterioplankton Community in the Central Baltic Sea Is Influenced by Freshwater Bacterial Species. Am. Soc. Microbiol. 2008, 74, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, M.R.; Anderson, C.; Fox, N.; Scofield, G.; Allen, J.; Anderson, E.; Bueter, L.; Poudel, S.; Sutherland, K.; Munson-McGee, J.H.; et al. Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah. Geobiology 2017, 15, 131–145. [Google Scholar] [CrossRef]
- Bergen, B.; Herlemann, D.P.R.; Labrenz, M.; Jürgens, K. Distribution of the verrucomicrobial clade S partobacteria along a salinity gradient in the Baltic Sea: Quantifying Verrucomicrobia in the Baltic Sea. Environ. Microbiol. Rep. 2014, 6, 625–630. [Google Scholar] [CrossRef]
- Orsi, W.D.; Smith, J.M.; Liu, S.; Liu, Z.; Sakamoto, C.M.; Wilken, S.; Poirier, C.; Richards, T.A.; Keeling, P.J.; Worden, A.Z.; et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016, 10, 2158–2173. [Google Scholar] [CrossRef] [Green Version]
- Kirchman, D.L.; Dittel, A.I.; Malmstrom, R.R.; Cottrell, M.T. Biogeography of major bacterial groups in the Delaware Estuary. Limnol. Oceanogr. 2005, 50, 1697–1706. [Google Scholar] [CrossRef]
- Campbell, B.J.; Kirchman, D.L. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 2013, 7, 210–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, T.A.S.; Sen-Kilic, E.; Felföldi, T.; Vasas, G.; Fields, M.W.; Peyton, B.M. Microbial community changes during a toxic cyanobacterial bloom in an alkaline Hungarian lake. Antonie van Leeuwenhoek 2018, 111, 2425–2440. [Google Scholar] [CrossRef] [Green Version]
- Bullerjahn, G.S.; McKay, R.M.L.; Bernát, G.; Prášil, O.; Vörös, L.; Pálffy, K.; Tugyi, N.; Somogyi, B. Community dynamics and function of algae and bacteria during winter in central European great lakes. J. Great Lakes Res. 2020, 46, 732–740. [Google Scholar] [CrossRef]
- Martiny, J.B.H.; Eisen, J.A.; Penn, K.; Allison, S.D.; Horner-Devine, M.C. Drivers of bacterial -diversity depend on spatial scale. Proc. Natl. Acad. Sci. USA 2011, 108, 7850–7854. [Google Scholar] [CrossRef] [Green Version]
Salinity | Lake Name (Trip) | Code | Latitude N | Longitude E | Altitude (m) | Landscape |
---|---|---|---|---|---|---|
Hyperhaline | Khulma (1) | KHU | 46°11′01 | 93°32′39 | 2224 | Gobi Desert |
Tonkhil (1) | TON | 46°11′08 | 93°54′16 | 2063 | Gobi Desert | |
Ikhes (1) | IKH | 46°27′39 | 94°03′54 | 1601 | Gobi Desert | |
Duruu (1) | DUR | 47°16′45 | 95°42′35 | 1425 | Gobi Desert | |
Polyhaline | Mangas (1) | MAN | 46°29′52 | 96°47′47 | 1760 | Steppe |
Kholboo (1) | KHO | 46°24′02 | 97°18′51 | 1799 | Steppe | |
Khadaasan (1) | KHA | 46°30′25 | 96°17′16 | 2003 | Steppe | |
Oigon (1) | OIG | 49°09′03 | 96°31′36 | 1668 | Forest | |
Mesohaline | Taigam (1) | TAI | 46°22′09 | 97°24′06 | 1790 | Steppe |
Telmen (2) | TEL | 48°51′37 | 97°19′34 | 1795 | Forest | |
Tsegeen (2) | TSE | 48°44′00 | 95°51′32 | 1875 | Forest | |
Khag (2) | KHG | 48°04′29 | 96°38′28 | 2036 | Forest | |
Oligohaline | Zegst (1) | ZEG | 46°12′18 | 93°55′35 | 2066 | Gobi-Desert |
Olon (1) | OLO | 46°18′49 | 96°22′13 | 2185 | Steppe | |
Galuut (2) | GAL | 46°18′03 | 96°42′23 | 2034 | Steppe | |
Argashuun (1) | ARA | 46°28′54 | 97°08′01 | 1798 | Steppe | |
Ulaan (1) | ULA | 46°27′20 | 96°17′08 | 1996 | Steppe | |
Ulaan- Kholboo (1) | UKH | 46°27′10 | 96°17′01 | 1997 | Steppe |
KO Identifier | KEGG Orthology | KEGG Pathway/BRITE | Salinity Regime |
---|---|---|---|
K00986 | RNA-directed DNA polymerase | Unclassified * | Hyperhaline |
K16012 | ATP-binding Cassette, CydC | ABC transporters | Hyperhaline |
K06204 | DnaK suppressor protein | Biofilm formation | Hyperhaline |
K05568 | Multicomponent Na+: H+ antiporter | Transporters | Hyperhaline |
K03821 | Polyhydroxyalkanoate-synthase subunit PhaC | Butanoate metabolism | Hyperhaline |
K07497 | Putative transposase | Unclassified | Mesohaline |
K10441 | Ribose transport system ATP-binding protein | ABC transporter | Mesohaline |
K07487 | Transposase | Unclassified | Mesohaline |
K03087 | RNA polymerase nonessential primary-like sigma factor protein | Biofilm formation | Mesohaline |
K01772 | Protoporphyrin/coproporphyrin ferrochelatase | Porphyrin and chlorophyll metabolism | Mesohaline |
K01915 | Glutamine synthetase | Carbohydrate metabolism | Mesohaline |
K05845 | Osmoprotectant transport system substrate-binding protein | ABC transporters | Polyhaline |
K05846 | Osmoprotectatnt transport system substrate-binding protein | ABC transporters | Polyhaline |
K07668 | Two-component system, OmpR family, response regulator VicR | Two-component system | Polyhaline |
K00854 | Xylulokinase | Pentose and glucuronate interconversions | Polyhaline |
K09691 | Lipopolysaccharide transport system ATP-binding/permease protein | ABC transporters | Polyhaline |
K05685 | Macrolide transport system ATP-binding/permease protein | ABC transporters | Polyhaline |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tandon, K.; Baatar, B.; Chiang, P.-W.; Dashdondog, N.; Oyuntsetseg, B.; Tang, S.-L. A Large-Scale Survey of the Bacterial Communities in Lakes of Western Mongolia with Varying Salinity Regimes. Microorganisms 2020, 8, 1729. https://doi.org/10.3390/microorganisms8111729
Tandon K, Baatar B, Chiang P-W, Dashdondog N, Oyuntsetseg B, Tang S-L. A Large-Scale Survey of the Bacterial Communities in Lakes of Western Mongolia with Varying Salinity Regimes. Microorganisms. 2020; 8(11):1729. https://doi.org/10.3390/microorganisms8111729
Chicago/Turabian StyleTandon, Kshitij, Bayanmunkh Baatar, Pei-Wen Chiang, Narangarvuu Dashdondog, Bolormaa Oyuntsetseg, and Sen-Lin Tang. 2020. "A Large-Scale Survey of the Bacterial Communities in Lakes of Western Mongolia with Varying Salinity Regimes" Microorganisms 8, no. 11: 1729. https://doi.org/10.3390/microorganisms8111729
APA StyleTandon, K., Baatar, B., Chiang, P.-W., Dashdondog, N., Oyuntsetseg, B., & Tang, S.-L. (2020). A Large-Scale Survey of the Bacterial Communities in Lakes of Western Mongolia with Varying Salinity Regimes. Microorganisms, 8(11), 1729. https://doi.org/10.3390/microorganisms8111729