Anaplasma phagocytophilum and Other Anaplasma spp. in Various Hosts in the Mnisi Community, Mpumalanga Province, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Study Area
2.3. Collection of Blood Samples
2.4. Collection of Ticks
2.5. DNA Extraction, Quantitative Real-Time PCR and Assay Specificity
2.6. PacBio 16S rRNA Gene Sequencing
2.7. Microbiome Sequence Data Analysis
2.8. Characterization of A. phagocytophilum by Multilocus Gene Sequencing
2.9. Sequence and Phylogenetic Analysis
2.10. Data Availability
3. Results
3.1. Specificity of the qPCR Assay
3.2. Anaplasma Phagocytophilum and/or Anaplasma sp. ZAM Dog DNA Occurred in All Hosts Tested
3.3. Sequence Analysis of Microbiome Data
3.3.1. Dogs
3.3.2. Cattle
3.3.3. Rodents
3.3.4. AFI Patients
3.4. Multilocus Sequence Analysis of the 16S rRNA, gltA, msp4 and ankA Genes
3.4.1. 16S rRNA
3.4.2. GltA
3.4.3. Msp4
3.4.4. AnkA
3.5. Phylogenetic Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stuen, S.; Granquist, E.G.; Silaghi, C. Anaplasma phagocytophilum—A widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 2013, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Rikihisa, Y. Mechanisms of Obligatory Intracellular Infection with Anaplasma phagocytophilum. Clin. Microbiol. Rev. 2011, 24, 469–489. [Google Scholar] [CrossRef] [Green Version]
- Bakken, J.S.; Dumler, S. Human granulocytic anaplasmosis. Infect. Dis. Clin. N. Am. 2008, 22, 433–448. [Google Scholar] [CrossRef] [Green Version]
- Woldehiwet, Z. The natural history of Anaplasma phagocytophilum. Vet. Parasitol. 2010, 167, 108–122. [Google Scholar] [CrossRef]
- Hulinska, D.; Langrova, K.; Pejcoch, M.; Pavlasek, I. Detection of Anaplasma phagocytophilum in animals by real-time polymerase chain reaction. APMIS 2004, 112, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Bown, K.J.; Xavier, L.; Nicholas, H.O.; Michael, B.; Gill, T.; Zerai, W.; Richard, J.B. Delineating Anaplasma phagocytophilum Ecotypes in Coexisting, Discrete Enzootic Cycles. Emerg. Infect. Dis. 2009, 15, 1948–1954. [Google Scholar] [CrossRef] [PubMed]
- Massung, R.F.; Priestley, R.A.; Miller, N.J.; Mather, T.N.; Levin, M.L. Inability of a variant strain of Anaplasma phagocytophilum to infect mice. J. Infect. Dis. 2003, 188, 1757–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- M’Ghirbi, Y.; Yaich, H.; Ghorbel, A.; Bouattour, A. Anaplasma phagocytophilum in horses and ticks in Tunisia. Parasit. Vectors 2012, 5, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- M’Ghirbi, Y.; Beji, M.; Oporto, B.; Khrouf, F.; Hurtado, A.; Bouattour, A. Anaplasma marginale and A. phagocytophilum in cattle in Tunisia. Parasit. Vectors 2016, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Nakayima, J.; Hayashida, K.; Nakao, R.; Ishii, A.; Ogawa, H.; Nakamura, I.; Moonga, L.; Hang’ombe, B.M.; Mweene, A.S.; Thomas, Y.; et al. Detection and characterization of zoonotic pathogens of free-ranging non-human primates from Zambia. Parasit. Vectors 2014, 7, 490. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.; Marabini, L.; Dutlow, K.; Zhang, J.; Loftis, A.; Wang, C. Molecular detection of tick-borne pathogens in captive wild felids, Zimbabwe. Parasit. Vectors 2014, 7, 514. [Google Scholar] [CrossRef] [PubMed]
- Azzag, N.; Petit, E.; Gandoin, C.; Bouillin, C.; Ghalmi, F.; Haddad, N.; Boulouis, H.-J. Prevalence of select vector-borne pathogens in stray and client-owned dogs from Algiers. Comp. Immunol. Microbiol. Infect. Dis. 2015, 38, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dahmani, M.; Davoust, B.; Benterki, M.S.; Fenollar, F.; Raoult, D.; Mediannikov, O. Development of a new PCR-based assay to detect Anaplasmataceae and the first report of Anaplasma phagocytophilum and Anaplasma platys in cattle from Algeria. Comp. Immunol. Microbiol. Infect. Dis. 2015, 39, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Ghafar, M.W.; Amer, S.A. Prevalence and first molecular characterization of Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, in Rhipicephalus sanguineus ticks attached to dogs from Egypt. J. Adv. Res. 2012, 3, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Hornok, S.; Abichu, G.; Takács, N.; Gyuranecz, M.; Farkas, R.; Fernández De Mera, I.G.; De La Fuente, J. Molecular screening for Anaplasmataceae in ticks and tsetse flies from Ethiopia. Acta Vet. Hung. 2016, 64, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Teshale, S.; Geysen, D.; Ameni, G.; Bogale, K.; Dorny, P.; Berkvens, D. Molecular detection of Anaplasma species in questing ticks (ixodids) in Ethiopia. Asian Pac. J. Trop. Dis. 2016, 6, 449–452. [Google Scholar] [CrossRef]
- Mwamuye, M.M.; Kariuki, E.; Omondi, D.; Kabii, J.; Odongo, D.; Masiga, D.; Villinger, J. Novel Rickettsia and emergent tick-borne pathogens: A molecular survey of ticks and tick-borne pathogens in Shimba Hills National Reserve, Kenya. Ticks Tick Borne Dis. 2017, 8, 208–218. [Google Scholar] [CrossRef]
- Mtshali, K.; Khumalo, Z.T.H.; Nakao, R.; Grab, D.J.; Sugimoto, C.; Thekisoe, O.M.M. Molecular detection of zoonotic tick-borne pathogens from ticks collected from ruminants in four South African provinces. J. Vet. Med. Sci. 2015, 77, 1573–1579. [Google Scholar] [CrossRef] [Green Version]
- Caudill, M.T. The Use and Limitations of the 16S rRNA Sequence for Species Classifcation of Anaplasma Samples. Master’s Thesis, Washington State University, Pullman, WA, USA, 2020. [Google Scholar]
- Inokuma, H.; Oyamada, M.; Kelly, P.J.; Jacobson, L.A.; Fournier, P.-E.; Itamoto, K.; Okuda, M.; Brouqui, P. Molecular detection of a new Anaplasma species closely related to Anaplasma phagocytophilum in canine blood from South Africa. J. Clin. Microbiol. 2005, 43, 2934–2937. [Google Scholar] [CrossRef] [Green Version]
- Kolo, A.O.; Sibeko-Matjila, K.P.; Maina, A.N.; Richards, A.L.; Knobel, D.L.; Matjila, P.T. Molecular Detection of Zoonotic Rickettsiae and Anaplasma spp. in Domestic Dogs and Their Ectoparasites in Bushbuckridge, South Africa. Vector Borne Zoonotic Dis. 2016, 16, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Vlahakis, P.A.; Chitanga, S.; Simuunza, M.C.; Simulundu, E.; Qiu, Y.; Changula, K.; Chambaro, H.M.; Kajihara, M.; Nakao, R.; Takada, A.; et al. Molecular detection and characterization of zoonotic Anaplasma species in domestic dogs in Lusaka, Zambia. Ticks Tick Borne Dis. 2018, 9, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Berrian, A.M.; van Rooyen, J.; Martínez-López, B.; Knobel, D.; Simpson, G.J.G.; Wilkes, M.S.; Conrad, P.A. One Health profile of a community at the wildlife-domestic animal interface, Mpumalanga, South Africa. Prev. Vet. Med. 2016, 130, 119–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuart, C.; Stuart, M. Stuart’s Field Guide to Mammals of Southern Africa; Penguin Random House South Africa: Johannesburg, South Africa, 2001. [Google Scholar]
- Conan, A.; Akerele, O.; Simpson, G.; Reininghaus, B.; van Rooyen, J.; Knobel, D. Population Dynamics of Owned, Free-Roaming Dogs: Implications for Rabies Control. PLoS Negl. Trop. Dis. 2015, 9, e0004177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, G.J.G.; Quan, V.; Frean, J.; Knobel, D.L.; Rossouw, J.; Weyer, J.; Marcotty, T.; Godfroid, J.; Blumberg, L.H. Prevalence of Selected Zoonotic Diseases and Risk Factors at a Human-Wildlife-Livestock Interface in Mpumalanga Province, South Africa. Vector Borne Zoonotic Dis. 2018, 18, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Lysyk, T. Movement of male Dermacentor andersoni (Acari: Ixodidae) among cattle. J. Med. Entomol. 2013, 50, 977–985. [Google Scholar] [CrossRef] [Green Version]
- Walker, A.R.; Bouattour, A.; Camicas, J.; Estrada-Pena, A.; Horak, I.; Latif, A.; Pegram, R.; Preston, P. Ticks of Domestic Animals in Africa: A Guide to Identification of Species; Bioscience Reports: Houten, The Netherlands, 2003. [Google Scholar]
- Courtney, J.W.; Kostelnik, L.M.; Zeidner, N.S.; Massung, R.F. Multiplex Real-Time PCR for Detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J. Clin. Microbiol. 2004, 42, 3164–3168. [Google Scholar] [CrossRef] [Green Version]
- Alberdi, P.; Ayllón, N.; Cabezas-Cruz, A.; Bell-Sakyi, L.; Zweygarth, E.; Stuen, S.; De la Fuente, J. Infection of Ixodes spp. tick cells with different Anaplasma phagocytophilum isolates induces the inhibition of apoptotic cell death. Ticks Tick Borne Dis. 2015, 6, 758–767. [Google Scholar] [CrossRef] [Green Version]
- Penzhorn, B.L.; Netherlands, E.C.; Cook, C.A.; Smit, N.J.; Vorster, I.; Harrison-White, R.F.; Oosthuizen, M.C. Occurrence of Hepatozoon canis (Adeleorina: Hepatozoidae) and Anaplasma spp. (Rickettsiales: Anaplasmataceae) in black-backed jackals (Canis mesomelas) in South Africa. Parasit. Vectors 2018, 11, 158. [Google Scholar] [CrossRef] [Green Version]
- Lane, D. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Turner, S.; Pryer, K.M.; Miao, V.P.; Palmer, J.D. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 1999, 46, 327–338. [Google Scholar] [CrossRef]
- Gall, C.A.; Reif, K.E.; Scoles, G.A.; Mason, K.L.; Mousel, M.; Noh, S.M.; Brayton, K.A. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 2016, 10, 1846–1855. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.R.; Wang, Q.; Cardenas, E.; Fish, J.; Chai, B.; Farris, R.J.; Kulam-Syed-Mohideen, A.S.; McGarrell, D.M.; Marsh, T.; Garrity, G.M.; et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009, 37, D141–D145. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.T.; Knight, R.; Martin, A.P. Bacterial communities of disease vectors sampled across time, space, and species. ISME J. 2010, 4, 223–231. [Google Scholar] [CrossRef]
- Budachetri, K.; Browning, R.E.; Adamson, S.W.; Dowd, S.E.; Chao, C.C.; Ching, W.M.; Karim, S. An insight into the microbiome of the Amblyomma maculatum (Acari: Ixodidae). J. Med. Entomol. 2014, 51, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, S.; Michelet, L.; Moutailler, S.; Cheval, J.; Hebert, C.; Vayssier-Taussat, M.; Eloit, M. Identification of Parasitic Communities within European Ticks Using Next-Generation Sequencing. PLoS Negl. Trop. Dis. 2014, 8, e2753. [Google Scholar] [CrossRef] [Green Version]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walls, J.J.; Caturegli, P.; Bakken, J.S.; Asanovich, K.M.; Dumler, J.S. Improved sensitivity of PCR for diagnosis of human granulocytic ehrlichiosis using epank1 genes of Ehrlichia phagocytophila-group ehrlichiae. J. Clin. Microbiol. 2000, 38, 354–356. [Google Scholar]
- Inokuma, H.; Brouqui, P.; Drancourt, M.; Raoult, D. Citrate synthase gene sequence: A new tool for phylogenetic analysis and identification of Ehrlichia. J. Clin. Microbiol. 2001, 39, 3031–3039. [Google Scholar] [CrossRef] [Green Version]
- Al-Khedery, B.; Barbet, A.F. Comparative Genomics Identifies a Potential Marker of Human-Virulent Anaplasma phagocytophilum. Pathogens 2014, 3, 25–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. ProtTest 3: Fast selection of best-fit models of protein evolution. Bioinformatics 2011, 27, 1164–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Lai, T.-H.; Orellana, N.G.; Yuasa, Y.; Rikihisa, Y. Cloning of the major outer membrane protein expression locus in Anaplasma platys and seroreactivity of a species-specific antigen. J. Bacteriol. 2011, 193, 2924–2930. [Google Scholar] [CrossRef] [Green Version]
- Llanes, A.; Rajeev, S. First Whole Genome Sequence of Anaplasma platys, an Obligate Intracellular Rickettsial Pathogen of Dogs. Pathogens 2020, 9, 277. [Google Scholar] [CrossRef]
- Anderson, B.E.; Greene, C.E.; Jones, D.C.; Dawson, J.E. Ehrlichia ewingii sp. nov., the etiologic agent of canine granulocytic ehrlichiosis. Int. J. Syst. Bacteriol. 1992, 42, 299–302. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.-P.; Tian, J.-H.; Lin, X.-D.; Ni, X.-B.; Chen, X.-P.; Liao, Y.; Yang, S.-Y.; Dumler, J.S.; Holmes, E.C.; Zhang, Y.-Z. Extensive genetic diversity of Rickettsiales bacteria in multiple mosquito species. Sci. Rep. 2016, 6, 38770. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.J.; Diao, X.N.; Zhao, G.Y.; Chen, M.H.; Xiong, Y.; Shi, M.; Fu, W.M.; Guo, Y.J.; Pan, B.; Chen, X.P.; et al. Extensive diversity of Rickettsiales bacteria in two species of ticks from China and the evolution of the Rickettsiales. BMC Evol. Biol. 2014, 14, 167. [Google Scholar] [CrossRef] [Green Version]
- Hailemariam, Z.; Krücken, J.; Baumann, M.; Ahmed, J.S.; Clausen, P.-H.; Nijhof, A.M. Molecular detection of tick-borne pathogens in cattle from Southwestern Ethiopia. PLoS ONE 2017, 12, e0188248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, B.; Krücken, J.; Ahmed, J.; Majumder, S.; Baumann, M.; Clausen, P.H.; Nijhof, A. Molecular identification of tick-borne pathogens infecting cattle in Mymensingh district of Bangladesh reveals emerging species of Anaplasma and Babesia. Transbound. Emerg. Dis. 2018, 65, e231–e242. [Google Scholar] [CrossRef]
- Elhamiani Khatat, S.; Sahibi, H.; Hing, M.; Alaoui Moustain, I.; El Amri, H.; Benajiba, M.; Kachani, M.; Duchateau, L.; Daminet, S. Human Exposure to Anaplasma phagocytophilum in Two Cities of Northwestern Morocco. PLoS ONE 2016, 11, e0160880. [Google Scholar] [CrossRef] [PubMed]
- Elhamiani Khatat, S.; Daminet, S.; Kachani, M.; Leutenegger, C.M.; Duchateau, L.; El Amri, H.; Hing, M.; Azrib, R.; Sahibi, H. Anaplasma spp. in dogs and owners in north-western Morocco. Parasit. Vectors 2017, 10, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleaveland, S.; Meslin, F.X.; Breiman, R. Dogs can play useful role as sentinel hosts for disease. Nature 2006, 440, 605. [Google Scholar] [CrossRef]
- Skinner, J.D.; Chimimba, C.T. The Mammals of the Southern African Sub-Region; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Bonwitt, J.; Sáez, A.M.; Lamin, J.; Ansumana, R.; Dawson, M.; Buanie, J.; Lamin, J.; Sondufu, D.; Borchert, M.; Sahr, F.; et al. At Home with Mastomys and Rattus: Human-Rodent Interactions and Potential for Primary Transmission of Lassa Virus in Domestic Spaces. Am. J. Trop. Med. Hyg. 2017, 96, 935–943. [Google Scholar] [CrossRef] [Green Version]
- Matei, I.A.; Kalmár, Z.; Magdaş, C.; Magdaş, V.; Toriay, H.; Dumitrache, M.O.; Ionică, A.M.; D’Amico, G.; Sándor, A.D.; Mărcuţan, D.I. Anaplasma phagocytophilum in questing Ixodes ricinus ticks from Romania. Ticks Tick Borne Dis. 2015, 6, 408–413. [Google Scholar] [CrossRef]
- Von Loewenich, F.D.; Baumgarten, B.U.; Schröppel, K.; Geißdörfer, W.; Röllinghoff, M.; Bogdan, C. High Diversity of ankA sequences of Anaplasma phagocytophilum among Ixodes ricinus ticks in Germany. J. Clin. Microbiol. 2003, 41, 5033–5040. [Google Scholar] [CrossRef] [Green Version]
- Scharf, W.; Schauer, S.; Freyburger, F.; Petrovec, M.; Schaarschmidt-Kiener, D.; Liebisch, G.; Runge, M.; Ganter, M.; Kehl, A.; Dumler, J.S.; et al. Distinct Host Species correlate with Anaplasma phagocytophilum ankA Gene Clusters. J. Clin. Microbiol. 2011, 49, 790–796. [Google Scholar] [CrossRef] [Green Version]
- Allsopp, M.; Visser, E.S.; du Plessis, J.L.; Vogel, S.W.; Allsopp, B.A. Different organisms associated with heartwater as shown by analysis of 16S ribosomal RNA gene sequences. Vet. Parasitol. 1997, 71, 283–300. [Google Scholar] [CrossRef]
- Bekker, C.P.; Vink, D.; Lopes Pereira, C.M.; Wapenaar, W.; Langa, A.; Jongejan, F. Heartwater (Cowdria ruminantium infection) as a cause of postrestocking mortality of goats in Mozambique. Clin. Diagn. Lab. Immunol. 2001, 8, 843–846. [Google Scholar] [CrossRef] [Green Version]
- Kamani, J.; Baneth, G.; Mumcuoglu, K.Y.; Waziri, N.E.; Eyal, O.; Guthmann, Y.; Harrus, S. Molecular detection and characterization of tick-borne pathogens in dogs and ticks from Nigeria. PLoS Negl. Trop. Dis. 2013, 7, e2108. [Google Scholar] [CrossRef] [PubMed]
- Sanogo, Y.O.; Davoust, B.; Inokuma, H.; Camicas, J.L.; Parola, P.; Brouqui, P. First evidence of Anaplasma platys in Rhipicephalus sanguineus (Acari: Ixodida) collected from dogs in Africa. Onderstepoort J. Vet. Res. 2003, 70, 205–212. [Google Scholar] [PubMed]
- Matei, I.A.; D’Amico, G.; Yao, P.K.; Ionică, A.M.; Kanyari, P.W.; Daskalaki, A.A.; Dumitrache, M.O.; Sándor, A.D.; Gherman, C.M.; Qablan, M. Molecular detection of Anaplasma platys infection in free-roaming dogs and ticks from Kenya and Ivory Coast. Parasit. Vectors 2016, 9, 157. [Google Scholar] [CrossRef] [Green Version]
- Berggoetz, M.; Schmid, M.; Ston, D.; Wyss, V.; Chevillon, C.; Pretorius, A.-M.; Gern, L. Protozoan and bacterial pathogens in tick salivary glands in wild and domestic animal environments in South Africa. Ticks Tick Borne Dis. 2014, 5, 176–185. [Google Scholar] [CrossRef] [PubMed]
Origin | AFI Patients † | Rodents | Dogs ‡ | Cattle ‡ | Ticks * |
---|---|---|---|---|---|
Protected area: | |||||
Manyeleti | 76 | ||||
Communal rangeland: | |||||
Tlhavekisa | 35 | 19 | |||
Urban/periurban: | |||||
Athol | 10 pools | ||||
Gottenburg | 22 | 103 | 20 | ||
Hlalakahle | 63 | 20 | |||
Hluvukani | 5 | 56 | 10 pools | ||
Seville A | 16 | ||||
Seville B | 7 | ||||
Utha | 20 | 18 | |||
Welverdiend | 32 | ||||
Total | 74 | 282 | 56 | 100 | 20 pools |
Gene | Primer Set | Primer Name | Primer Sequence (5′-3′) | Amplicon Length (bp/aa) * | Reference |
---|---|---|---|---|---|
16S rRNA | 1 | fD1 | AGAGTTTGATCCTGGCTCAG | 1470 | [39] |
rP2 | ACGGCTACCTTGTTACGACTT | ||||
2 | 16SAp-F † | ATGGAGGATAATTAGTGGCAGA | 700 | This study | |
16SAp-R † | AAAAATCCCCACATTCAGCA | ||||
gltA | 1 | F4B | CCGGGTTTTATGTCTACTGC | 956/318 | [41] |
1085R | ACTATACCKGAGTAAAAGTC | ||||
2 | F1B † | GATCATGARCARAATGCTTC | 422/140 | [22] | |
1085R † | ACTATACCKGAGTAAAAGTC | ||||
msp4 | AB1692F | TAATGATGCGTCTGATGTTAGCG | 690/230 | [42] | |
AB1693R | CACCACCTGCTATGTTTACACG | ||||
ankA | LA6-F | GAGAGATGCTTATGGTAAGAC | 444/148 | [40] | |
LA1-R | CGTTCAGCCATCATTGTGAC |
Sample nr * | Origin | 16S rRNA | GltA | Msp4 | AnkA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | Species | Aph † | Adog ‡ | Apla § | Cab ¶ | Asm # | Aph | Adog | Asp ** | Asp | |||
1 †† | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | M ‡‡ | A §§ | |||
C5 | Hlalakahle | Cattle | X *** | ||||||||||
C13 | Seville A | Cattle | X | ||||||||||
C42 | Seville B | Cattle | X | ||||||||||
C91 | Seville A | Cattle | X | ||||||||||
D2 | Hluvukani | Dog | X | ||||||||||
D3 | Hluvukani | Dog | X | X | X | X | |||||||
D5 | Hluvukani | Dog | X | X | |||||||||
D9 | Hluvukani | Dog | X | ||||||||||
D24 | Hluvukani | Dog | X | X | |||||||||
D25 | Hluvukani | Dog | X | X | |||||||||
D27 | Hluvukani | Dog | X | X | |||||||||
D28 | Hluvukani | Dog | X | X | |||||||||
D33 | Hluvukani | Dog | X | X | X | ||||||||
D36 | Hluvukani | Dog | X | X | X | X | |||||||
D37 | Hluvukani | Dog | X | X | |||||||||
H27 | Welverdiend | Human | X | ||||||||||
H47 | Welverdiend | Human | X | ||||||||||
H53 | Utah | Human | X | ||||||||||
H59 | Utah | Human | U ¶¶ | ||||||||||
R98 | Hlalakahle | M. natalensis | X | ||||||||||
R102 | Tlhavekisa | R. tanezumi | U | X | X | X | |||||||
R103 | Tlhavekisa | M. natalensis | U | X | X | ||||||||
R104 | Tlhavekisa | M. natalensis | X | ||||||||||
R105 | Tlhavekisa | M. natalensis | X | ||||||||||
R124 | Hlalakahle | Saccostomus sp. | X | X | |||||||||
R125 | Hlalakahle | G. leucogaster | X | ||||||||||
R138 | Hlalakahle | G. leucogaster | X | ||||||||||
RA1 | Athol | R. sanguineus | X | ||||||||||
RA3 | Athol | R. sanguineus | X | X | |||||||||
RH1 | Hluvukani | R. sanguineus | X | X | |||||||||
RH3 | Hluvukani | R. sanguineus | X | X | |||||||||
RH8 | Hluvukani | R. sanguineus | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolo, A.O.; Collins, N.E.; Brayton, K.A.; Chaisi, M.; Blumberg, L.; Frean, J.; Gall, C.A.; M. Wentzel, J.; Wills-Berriman, S.; Boni, L.D.; et al. Anaplasma phagocytophilum and Other Anaplasma spp. in Various Hosts in the Mnisi Community, Mpumalanga Province, South Africa. Microorganisms 2020, 8, 1812. https://doi.org/10.3390/microorganisms8111812
Kolo AO, Collins NE, Brayton KA, Chaisi M, Blumberg L, Frean J, Gall CA, M. Wentzel J, Wills-Berriman S, Boni LD, et al. Anaplasma phagocytophilum and Other Anaplasma spp. in Various Hosts in the Mnisi Community, Mpumalanga Province, South Africa. Microorganisms. 2020; 8(11):1812. https://doi.org/10.3390/microorganisms8111812
Chicago/Turabian StyleKolo, Agatha O., Nicola E. Collins, Kelly A. Brayton, Mamohale Chaisi, Lucille Blumberg, John Frean, Cory A. Gall, Jeanette M. Wentzel, Samantha Wills-Berriman, Liesl De Boni, and et al. 2020. "Anaplasma phagocytophilum and Other Anaplasma spp. in Various Hosts in the Mnisi Community, Mpumalanga Province, South Africa" Microorganisms 8, no. 11: 1812. https://doi.org/10.3390/microorganisms8111812
APA StyleKolo, A. O., Collins, N. E., Brayton, K. A., Chaisi, M., Blumberg, L., Frean, J., Gall, C. A., M. Wentzel, J., Wills-Berriman, S., Boni, L. D., Weyer, J., Rossouw, J., & Oosthuizen, M. C. (2020). Anaplasma phagocytophilum and Other Anaplasma spp. in Various Hosts in the Mnisi Community, Mpumalanga Province, South Africa. Microorganisms, 8(11), 1812. https://doi.org/10.3390/microorganisms8111812