Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria
Abstract
:1. Introduction
2. Secondary Metabolite Production by Cyanobacteria
2.1. Prediction of Biosynthetic Gene Clusters (BGCs) in Cyanobacterial Genomes
2.2. Terpenes
2.3. Alkaloids
2.4. Polyketides/Non-Ribosomal Peptide/Lipopeptides/Siderophores
2.5. Ribosomally Synthesized and Post-Translationally Modified Peptides
2.6. Lipids/Saccharides/Nucleosides/Others
3. Engineering Cyanobacteria for Industrial Production of Secondary Metabolites
3.1. Heterologous Expression for Cyanobacterial Secondary Metabolite Production
3.2. Heterologous Expression for Biofuel Production
3.3. Improvement of Photosynthetic Efficiency
3.4. Current Limitations in Engineering Cyanobacteria
4. Advanced Engineering Approaches through Synthetic and Systems Biology
4.1. Synthetic Biology
4.2. Next-Generation Sequencing/Omics/Genome-Scale Model
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Singh, J.S.; Kumar, A.; Rai, A.N.; Singh, D.P. Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front. Microbiol. 2016, 7, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogany, T.; Swalaha, F.M.; Kumari, S.; Bux, F. Elucidating the role of nutrients in C-phycocyanin production by the halophilic cyanobacterium Euhalothece sp. J. Appl. Phycol. 2018, 30, 2259–2271. [Google Scholar] [CrossRef]
- Liang, C.; Zhao, F.; Wei, W.; Wen, Z.; Qin, S. Carotenoid biosynthesis in cyanobacteria: Structural and evolutionary scenarios based on comparative genomics. Int. J. Biol. Sci. 2006, 2, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Lee, J.; Lee, S.-M.; Um, Y.; Kim, Y.; Sim, S.J.; Choi, J.-I.; Woo, H.M. Direct conversion of CO2 to α-farnesene using metabolically engineered Synechococcus elongatus PCC 7942. J. Agric. Food Chem. 2017, 65, 10424–10428. [Google Scholar] [CrossRef]
- Kanno, M.; Carroll, A.L.; Atsumi, S. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nat. Commun. 2017, 8, 14724. [Google Scholar] [CrossRef]
- Gao, X.; Gao, F.; Liu, D.; Zhang, H.; Nie, X.; Yang, C. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ. Sci. 2016, 9, 1400–1411. [Google Scholar] [CrossRef]
- Stephanopoulos, G. Synthetic biology and metabolic engineering. ACS Synth. Biol. 2012, 1, 514–525. [Google Scholar] [CrossRef]
- Ramey, C.J.; Barón-Sola, A.N.; Aucoin, H.R.; Boyle, N.R. Genome engineering in cyanobacteria: Where we are and where we need to go. ACS Synth. Biol. 2015, 4, 1186–1196. [Google Scholar] [CrossRef]
- Lin, W.-R.; Tan, S.-I.; Hsiang, C.-C.; Sung, P.-K.; Ng, I.-S. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery. Bioresour. Technol. 2019, 291, 121932. [Google Scholar] [CrossRef]
- Broddrick, J.T.; Rubin, B.E.; Welkie, D.G.; Du, N.; Mih, N.; Diamond, S.; Lee, J.J.; Golden, S.S.; Palsson, B.O. Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis. Proc. Natl. Acad. Sci. USA 2016, 113, E8344–E8353. [Google Scholar] [CrossRef] [Green Version]
- Kultschar, B.; Llewellyn, C. Secondary metabolites in cyanobacteria. In Secondary Metabolites—Sources and Applications; IntechOpen: London, UK, 2018; pp. 23–36. [Google Scholar]
- Romay, C.; Armesto, J.; Remirez, D.; Gonzalez, R.; Ledon, N.; Garcia, I. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm. Res. 1998, 47, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Romay, C.; Gonzalez, R.; Ledon, N.; Remirez, D.; Rimbau, V. C-phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr. Protein Pept. Sci. 2003, 4, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, S.; Benvenuti, F.; Pagliarani, S.; Francogli, S.; Scoglio, S.; Canestrari, F. Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci. 2004, 75, 2353–2362. [Google Scholar] [CrossRef] [PubMed]
- Kuddus, M.; Singh, P.; Thomas, G.; Al-Hazimi, A. Recent developments in production and biotechnological applications of C-phycocyanin. BioMed Res. Int. 2013, 2013, 742859. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Mishra, S.; Ghosh, P.K. Antioxidant potential of C-phycocyanin isolated from cyanobacterial species Lyngbya, Phormidium and Spirulina spp. Indian J. Biochem. Biophys. 2006, 43, 25–31. [Google Scholar]
- Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Asp. Med. 2003, 24, 345–351. [Google Scholar] [CrossRef]
- Wada, N.; Sakamoto, T.; Matsugo, S. Multiple roles of photosynthetic and sunscreen pigments in cyanobacteria focusing on the oxidative stress. Metabolites 2013, 3, 463–483. [Google Scholar] [CrossRef]
- Fagundes, M.B.; Falk, R.B.; Facchi, M.M.X.; Vendruscolo, R.G.; Maroneze, M.M.; Zepka, L.Q.; Jacob-Lopes, E.; Wagner, R. Insights in cyanobacteria lipidomics: A sterols characterization from Phormidium autumnale biomass in heterotrophic cultivation. Food Res. Int. 2019, 119, 777–784. [Google Scholar] [CrossRef]
- Kellmann, R.; Mihali, T.K.; Neilan, B.A. Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers. J. Mol. Evol. 2008, 67, 526–538. [Google Scholar] [CrossRef]
- Mihali, T.K.; Kellmann, R.; Neilan, B.A. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5. BMC Biochem. 2009, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Murray, S.A.; Wiese, M.; Stuken, A.; Brett, S.; Kellmann, R.; Hallegraeff, G.; Neilan, B.A. sxtA-based quantitative molecular assay to identify saxitoxin-producing harmful algal blooms in marine waters. Appl. Environ. Microbiol. 2011, 77, 7050–7057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burja, A.M.; Banaigs, B.; Abou-Mansour, E.; Burgess, J.G.; Wright, P.C.J.T. Marine cyanobacteria—A prolific source of natural products. Tetrahedron 2001, 57, 9347–9377. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Sonani, R.R.; Madamwar, D. Cyanobacterial sunscreen scytonemin: Role in photoprotection and biomedical research. Appl. Biochem. Biotechnol. 2015, 176, 1551–1563. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pichel, F.; Castenholz, R.W.J.J.O.P. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 1991, 27, 395–409. [Google Scholar] [CrossRef]
- Proteau, P.J.; Gerwick, W.H.; Garcia-Pichel, F.; Castenholz, R. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 1993, 49, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Soule, T.; Stout, V.; Swingley, W.D.; Meeks, J.C.; Garcia-Pichel, F. Molecular genetics and genomic analysis of scytonemin biosynthesis in Nostoc punctiforme ATCC 29133. J. Bacteriol. 2007, 189, 4465–4472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, D.; Daloze, D.; Braekman, J.C.; Hoffmann, L.; Demoulin, V. New hapalindoles from the cyanophyte Hapalosiphon laingii. J. Nat. Prod. 1995, 58, 1781–1785. [Google Scholar] [CrossRef]
- Moore, R.E.; Cheuk, C.; Patterson, G.M.L. Hapalindoles: New alkaloids from the blue-green alga Hapalosiphon fontinalis. J. Am. Chem. Soc. 1984, 106, 6456–6457. [Google Scholar] [CrossRef]
- Mejean, A.; Mann, S.; Maldiney, T.; Vassiliadis, G.; Lequin, O.; Ploux, O. Evidence that biosynthesis of the neurotoxic alkaloids anatoxin-a and homoanatoxin-a in the cyanobacterium Oscillatoria PCC 6506 occurs on a modular polyketide synthase initiated by L-proline. J. Am. Chem. Soc. 2009, 131, 7512–7513. [Google Scholar] [CrossRef] [PubMed]
- Rantala-Ylinen, A.; Kana, S.; Wang, H.; Rouhiainen, L.; Wahlsten, M.; Rizzi, E.; Berg, K.; Gugger, M.; Sivonen, K. Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl. Environ. Microbiol. 2011, 77, 7271–7278. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.E.; Blackman, A.J.; Cheuk, C.E.; Mynderse, J.S.; Matsumoto, G.K.; Clardy, J.; Woodard, R.W.; Craig, J.C. Absolute stereochemistries of the aplysiatoxins and oscillatoxin A. J. Org. Chem. 1984, 49, 2484–2489. [Google Scholar] [CrossRef]
- Gupta, D.K.; Kaur, P.; Leong, S.T.; Tan, L.T.; Prinsep, M.R.; Chu, J.J. Anti-Chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium Trichodesmium erythraeum. Mar. Drugs 2014, 12, 115–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, D.J.; Gerwick, W.H. Lyngbyatoxin biosynthesis: Sequence of biosynthetic gene cluster and identification of a novel aromatic prenyltransferase. J. Am. Chem. Soc. 2004, 126, 11432–11433. [Google Scholar] [CrossRef] [PubMed]
- Mihali, T.K.; Kellmann, R.; Muenchhoff, J.; Barrow, K.D.; Neilan, B.A. Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl. Environ. Microbiol. 2008, 74, 716–722. [Google Scholar] [CrossRef] [Green Version]
- Stuken, A.; Jakobsen, K.S. The cylindrospermopsin gene cluster of Aphanizomenon sp. strain 10E6: Organization and recombination. Microbiology (Reading) 2010, 156, 2438–2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazmouz, R.; Chapuis-Hugon, F.; Mann, S.; Pichon, V.; Mejean, A.; Ploux, O. Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria sp. strain PCC 6506: Identification of the cyr gene cluster and toxin analysis. Appl. Environ. Microbiol. 2010, 76, 4943–4949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, E.M.; Wolk, C.P.; Jüttner, F. Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella Muscicola. J. Phycol. 1991, 27, 686–692. [Google Scholar] [CrossRef] [Green Version]
- Cox, P.A.; Banack, S.A.; Murch, S.J.; Rasmussen, U.; Tien, G.; Bidigare, R.R.; Metcalf, J.S.; Morrison, L.F.; Codd, G.A.; Bergman, B. Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proc. Natl. Acad. Sci. USA 2005, 102, 5074–5078. [Google Scholar] [CrossRef] [Green Version]
- Rounge, T.B.; Rohrlack, T.; Nederbragt, A.J.; Kristensen, T.; Jakobsen, K.S. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain. BMC Genom. 2009, 10, 396. [Google Scholar] [CrossRef] [Green Version]
- Tooming-Klunderud, A.; Rohrlack, T.; Shalchian-Tabrizi, K.; Kristensen, T.; Jakobsen, K.S. Structural analysis of a non-ribosomal halogenated cyclic peptide and its putative operon from Microcystis: Implications for evolution of cyanopeptolins. Microbiology (Reading) 2007, 153, 1382–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillett, D.; Dittmann, E.; Erhard, M.; von Dohren, H.; Borner, T.; Neilan, B.A. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide-polyketide synthetase system. Chem. Biol. 2000, 7, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, T.; Nakajima, N.; Okamoto, S.; Suzuki, I.; Tanabe, Y.; Tamaoki, M.; Nakamura, Y.; Kasai, F.; Watanabe, A.; Kawashima, K.; et al. Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Res. 2007, 14, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Rouhiainen, L.; Vakkilainen, T.; Siemer, B.L.; Buikema, W.; Haselkorn, R.; Sivonen, K. Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl. Environ. Microbiol. 2004, 70, 686–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christiansen, G.; Fastner, J.; Erhard, M.; Borner, T.; Dittmann, E. Microcystin biosynthesis in planktothrix: Genes, evolution, and manipulation. J. Bacteriol. 2003, 185, 564–572. [Google Scholar] [CrossRef] [Green Version]
- Moffitt, M.C.; Neilan, B.A. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl. Environ. Microbiol. 2004, 70, 6353–6362. [Google Scholar] [CrossRef] [Green Version]
- Grindberg, R.V.; Ishoey, T.; Brinza, D.; Esquenazi, E.; Coates, R.C.; Liu, W.T.; Gerwick, L.; Dorrestein, P.C.; Pevzner, P.; Lasken, R.; et al. Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS ONE 2011, 6, e18565. [Google Scholar] [CrossRef] [Green Version]
- Ishida, K.; Christiansen, G.; Yoshida, W.Y.; Kurmayer, R.; Welker, M.; Valls, N.; Bonjoch, J.; Hertweck, C.; Borner, T.; Hemscheidt, T.; et al. Biosynthesis and structure of aeruginoside 126A and 126B, cyanobacterial peptide glycosides bearing a 2-carboxy-6-hydroxyoctahydroindole moiety. Chem. Biol. 2007, 14, 565–576. [Google Scholar] [CrossRef] [Green Version]
- Ishida, K.; Welker, M.; Christiansen, G.; Cadel-Six, S.; Bouchier, C.; Dittmann, E.; Hertweck, C.; Tandeau de Marsac, N. Plasticity and evolution of aeruginosin biosynthesis in cyanobacteria. Appl. Environ. Microbiol. 2009, 75, 2017–2026. [Google Scholar] [CrossRef] [Green Version]
- Magarvey, N.A.; Beck, Z.Q.; Golakoti, T.; Ding, Y.; Huber, U.; Hemscheidt, T.K.; Abelson, D.; Moore, R.E.; Sherman, D.H. Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from cyanobionts. ACS Chem. Biol. 2006, 1, 766–779. [Google Scholar] [CrossRef]
- Fewer, D.P.; Osterholm, J.; Rouhiainen, L.; Jokela, J.; Wahlsten, M.; Sivonen, K. Nostophycin biosynthesis is directed by a hybrid polyketide synthase-nonribosomal peptide synthetase in the toxic cyanobacterium Nostoc sp. strain 152. Appl. Environ. Microbiol. 2011, 77, 8034–8040. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Sitachitta, N.; Rossi, J.V.; Roberts, M.A.; Flatt, P.M.; Jia, J.; Sherman, D.H.; Gerwick, W.H. Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 2004, 67, 1356–1367. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, A.V.; Sorrels, C.M.; Gerwick, W.H. Cloning and biochemical characterization of the hectochlorin biosynthetic gene cluster from the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 2007, 70, 1977–1986. [Google Scholar] [CrossRef]
- Edwards, D.J.; Marquez, B.L.; Nogle, L.M.; McPhail, K.; Goeger, D.E.; Roberts, M.A.; Gerwick, W.H. Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem. Biol. 2004, 11, 817–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogle, L.M.; Williamson, R.T.; Gerwick, W.H. Somamides A and B, two new depsipeptide analogues of dolastatin 13 from a Fijian cyanobacterial assemblage of Lyngbya majuscula and Schizothrix species. J. Nat. Prod. 2001, 64, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Nogle, L.M.; Gerwick, W.H. Isolation of four new cyclic depsipeptides, antanapeptins A-D, and dolastatin 16 from a Madagascan collection of Lyngbya majuscula. J. Nat. Prod. 2002, 65, 21–24. [Google Scholar] [CrossRef]
- Berman, F.W.; Gerwick, W.H.; Murray, T.F. Antillatoxin and kalkitoxin, ichthyotoxins from the tropical cyanobacterium Lyngbya majuscula, induce distinct temporal patterns of NMDA receptor-mediated neurotoxicity. Toxicon 1999, 37, 1645–1648. [Google Scholar] [CrossRef]
- McPhail, K.L.; Correa, J.; Linington, R.G.; Gonzalez, J.; Ortega-Barria, E.; Capson, T.L.; Gerwick, W.H. Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 2007, 70, 984–988. [Google Scholar] [CrossRef] [Green Version]
- Hooper, G.J.; Orjala, J.; Schatzman, R.C.; Gerwick, W.H. Carmabins A and B, new lipopeptides from the Caribbean cyanobacterium Lyngbya majuscula. J. Nat. Prod. 1998, 61, 529–533. [Google Scholar] [CrossRef]
- Choi, H.; Mevers, E.; Byrum, T.; Valeriote, F.A.; Gerwick, W.H. Lyngbyabellins K-N from two palmyra atoll collections of the marine cyanobacterium Moorea bouillonii. Eur. J. Org. Chem. 2012, 2012, 5141–5150. [Google Scholar] [CrossRef]
- Han, B.; McPhail, K.L.; Gross, H.; Goeger, D.E.; Mooberry, S.L.; Gerwick, W.H.J.T. Isolation and structure of five lyngbyabellin derivatives from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. Tetrahedron 2005, 61, 11723–11729. [Google Scholar] [CrossRef]
- Schmidt, E.W.; Nelson, J.T.; Rasko, D.A.; Sudek, S.; Eisen, J.A.; Haygood, M.G.; Ravel, J. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. USA 2005, 102, 7315–7320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziemert, N.; Ishida, K.; Quillardet, P.; Bouchier, C.; Hertweck, C.; de Marsac, N.T.; Dittmann, E. Microcyclamide biosynthesis in two strains of Microcystis aeruginosa: From structure to genes and vice versa. Appl. Environ. Microbiol. 2008, 74, 1791–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philmus, B.; Christiansen, G.; Yoshida, W.Y.; Hemscheidt, T.K. Post-translational modification in microviridin biosynthesis. Chembiochem 2008, 9, 3066–3073. [Google Scholar] [CrossRef] [PubMed]
- Balskus, E.P.; Walsh, C.T. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 2010, 329, 1653–1656. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.T.; Chang, Y.Y.; Ashootosh, T. Besarhanamides A and B from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 2008, 69, 2067–2069. [Google Scholar] [CrossRef] [PubMed]
- Essack, M.; Alzubaidy, H.S.; Bajic, V.B.; Archer, J.A. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry. Toxins (Basel) 2014, 6, 3058–3076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, I.; Schluter, P.J.; Shaw, G.R. Cyanobacterial lipopolysaccharides and human health—A review. Environ. Health 2006, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Chirasuwan, N.; Chaiklahan, R.; Ruengjitchatchawalya, M.; Bunnag, B.; Tanticharoen, M.J.A.; Resources, N. Anti HSV-1 activity of Spirulina platensis polysaccharide. Kasetsart J. (Nat. Sci.) 2007, 41, 311–318. [Google Scholar]
- de Jesus Raposo, M.F.; De Morais, A.M.B.; De Morais, R.M.S.C. Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef]
- Delattre, C.; Pierre, G.; Laroche, C.; Michaud, P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol. Adv. 2016, 34, 1159–1179. [Google Scholar] [CrossRef]
- Moore, R.E. Toxins, anticancer agents, and tumor promoters from marine prokaryotes. Pure Appl. Chem. 1982, 54, 1919–1934. [Google Scholar] [CrossRef]
- Banker, R.; Carmeli, S. Tenuecyclamides A−D, cyclic hexapeptides from the cyanobacterium Nostoc spongiaeforme var. tenue. J. Nat. Prod. 1998, 61, 1248–1251. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef]
- Pattanaik, B.; Lindberg, P. Terpenoids and their biosynthesis in cyanobacteria. Life 2015, 5, 269–293. [Google Scholar] [CrossRef] [Green Version]
- Belin, B.J.; Busset, N.; Giraud, E.; Molinaro, A.; Silipo, A.; Newman, D.K. Hopanoid lipids: From membranes to plant–bacteria interactions. Nat. Rev. Microbiol. 2018, 16, 304. [Google Scholar] [CrossRef] [Green Version]
- Takaichi, S.; Mochimaru, M. Carotenoids and carotenogenesis in cyanobacteria: Unique ketocarotenoids and carotenoid glycosides. Cell. Mol. Life Sci. 2007, 64, 2607. [Google Scholar] [CrossRef]
- Prasanna, R.; Sood, A.; Jaiswal, P.; Nayak, S.; Gupta, V.; Chaudhary, V.; Joshi, M.; Natarajan, C. Rediscovering cyanobacteria as valuable sources of bioactive compounds. Appl. Biochem. Microbiol. 2010, 46, 119–134. [Google Scholar] [CrossRef]
- Na, S.I.; Kim, Y.O.; Yoon, S.H.; Ha, S.M.; Baek, I.; Chun, J. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 2018, 56, 280–285. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Mejean, A.; Mann, S.; Vassiliadis, G.; Lombard, B.; Loew, D.; Ploux, O. In vitro reconstitution of the first steps of anatoxin-a biosynthesis in Oscillatoria PCC 6506: From free L-proline to acyl carrier protein bound dehydroproline. Biochemistry 2010, 49, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Dittmann, E.; Gugger, M.; Sivonen, K.; Fewer, D.P. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol. 2015, 23, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Balskus, E.P.; Walsh, C.T. Investigating the initial steps in the biosynthesis of cyanobacterial sunscreen scytonemin. J. Am. Chem. Soc. 2008, 130, 15260–15261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, M.Z.; Yadav, G.; Gokhale, R.S.; Mohanty, D. NRPS-PKS: A knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res. 2004, 32, W405–W413. [Google Scholar] [CrossRef] [PubMed]
- Méjean, A.; Ploux, O. A genomic view of secondary metabolite production in cyanobacteria. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2013; Volume 65, pp. 189–234. [Google Scholar]
- Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J. Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 2013, 30, 108–160. [Google Scholar] [CrossRef]
- Montalbán-López, M.; Scott, T.A.; Ramesh, S.; Rahman, I.R.; van Heel, A.J.; Viel, J.H.; Bandarian, V.; Dittmann, E.; Genilloud, O.; Goto, Y. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 2020. [Google Scholar] [CrossRef]
- Han, B.; McPhail, K.L.; Ligresti, A.; Di Marzo, V.; Gerwick, W.H. Semiplenamides A–G, Fatty acid amides from a Papua New Guinea collection of the marina cyanobacterium Lyngbya semiplena. J. Nat. Prod. 2003, 66, 1364–1368. [Google Scholar] [CrossRef]
- Chi, Z.; Su, C.; Lu, W. A new exopolysaccharide produced by marine Cyanothece sp. 113. Bioresour. Technol. 2007, 98, 1329–1332. [Google Scholar] [CrossRef]
- Markou, G.; Nerantzis, E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol. Adv. 2013, 31, 1532–1542. [Google Scholar] [CrossRef]
- Delattre, C.; Vijayalakshmi, M. Monolith enzymatic microreactor at the frontier of glycomic toward a new route for the production of bioactive oligosaccharides. J. Mol. Catal. B Enzym. 2009, 60, 97–105. [Google Scholar] [CrossRef]
- Kraan, S. Algal polysaccharides, novel applications and outlook. In Carbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology; IntechOpen: London, UK, 2012. [Google Scholar]
- Mišurcová, L.; Orsavová, J.; Vávra Ambrožová, J. Algal polysaccharides and health. Polysacch. Bioactivity Biotechnol. 2015, 1, 109–144. [Google Scholar]
- Skjånes, K.; Rebours, C.; Lindblad, P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit. Rev. Biotechnol. 2013, 33, 172–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swain, S.S.; Paidesetty, S.K.; Padhy, R.N. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed. Pharmacother. 2017, 90, 760–776. [Google Scholar] [CrossRef]
- Liu, X.; Miao, R.; Lindberg, P.; Lindblad, P. Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria. Energy Environ. Sci. 2019, 12, 2765–2777. [Google Scholar] [CrossRef] [Green Version]
- Liang, F.; Englund, E.; Lindberg, P.; Lindblad, P. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Metab. Eng. 2018, 46, 51–59. [Google Scholar] [CrossRef]
- Shabestary, K.; Anfelt, J.; Ljungqvist, E.; Jahn, M.; Yao, L.; Hudson, E.P. Targeted repression of essential genes to arrest growth and increase carbon partitioning and biofuel titers in cyanobacteria. ACS Synth. Biol. 2018, 7, 1669–1675. [Google Scholar] [CrossRef]
- Xia, P.F.; Ling, H.; Foo, J.L.; Chang, M.W. Synthetic biology toolkits for metabolic engineering of cyanobacteria. Biotechnol. J. 2019, 14, e1800496. [Google Scholar] [CrossRef]
- Behler, J.; Vijay, D.; Hess, W.R.; Akhtar, M.K. CRISPR-based technologies for metabolic engineering in cyanobacteria. Trends Biotechnol. 2018, 36, 996–1010. [Google Scholar] [CrossRef]
- Fagundes, M.B.; Vendruscolo, R.G.; Maroneze, M.M.; Barin, J.S.; de Menezes, C.R.; Zepka, L.Q.; Jacob-Lopes, E.; Wagner, R. Towards a sustainable route for the production of squalene using cyanobacteria. Waste Biomass Valorization 2019, 10, 1295–1302. [Google Scholar] [CrossRef]
- Choi, S.Y.; Lee, H.J.; Choi, J.; Kim, J.; Sim, S.J.; Um, Y.; Kim, Y.; Lee, T.S.; Keasling, J.D.; Woo, H.M. Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4, 11-diene and squalene) by engineered cyanobacteria. Biotechnol. Biofuels 2016, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.Y.; Wang, J.-Y.; Kwak, H.S.; Lee, S.-M.; Um, Y.; Kim, Y.; Sim, S.J.; Choi, J.-I.; Woo, H.M. Improvement of squalene production from CO2 in Synechococcus elongatus PCC 7942 by metabolic engineering and scalable production in a photobioreactor. ACS Synth. Biol. 2017, 6, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Woo, H.M. CRISPRi-dCas12a: A dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteria. ACS Synth. Biol. 2020, 9, 2351–2361. [Google Scholar] [CrossRef] [PubMed]
- Farruggia, C.; Kim, M.-B.; Bae, M.; Lee, Y.; Pham, T.X.; Yang, Y.; Han, M.J.; Park, Y.-K.; Lee, J.-Y. Astaxanthin exerts anti-inflammatory and antioxidant effects in macrophages in NRF2-dependent and independent manners. J. Nutr. Biochem. 2018, 62, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.; Song, X.; Zhang, L.; Cui, J.; Chen, L.; Zhang, W. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin. Metab. Eng. 2020, 61, 275–287. [Google Scholar] [CrossRef]
- Lan, E.I.; Wei, C.T. Metabolic engineering of cyanobacteria for the photosynthetic production of succinate. Metab. Eng. 2016, 38, 483–493. [Google Scholar] [CrossRef]
- Song, K.; Tan, X.; Liang, Y.; Lu, X. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Appl. Microbiol. Biotechnol. 2016, 100, 7865–7875. [Google Scholar] [CrossRef]
- Chaves, J.E.; Rueda-Romero, P.; Kirst, H.; Melis, A. Engineering isoprene synthase expression and activity in cyanobacteria. ACS Synth. Biol. 2017, 6, 2281–2292. [Google Scholar] [CrossRef]
- Hirokawa, Y.; Dempo, Y.; Fukusaki, E.; Hanai, T. Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions. J. Biosci. Bioeng. 2017, 123, 39–45. [Google Scholar] [CrossRef]
- Formighieri, C.; Melis, A. Heterologous synthesis of geranyllinalool, a diterpenol plant product, in the cyanobacterium Synechocystis. Appl. Microbiol. Biotechnol. 2017, 101, 2791–2800. [Google Scholar] [CrossRef]
- Lai, M.J.; Lan, E.I. Photoautotrophic synthesis of butyrate by metabolically engineered cyanobacteria. Biotechnol. Bioeng. 2019, 116, 893–903. [Google Scholar] [CrossRef]
- Ehira, S.; Takeuchi, T.; Higo, A. Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria. Appl. Microbiol. Biotechnol. 2018, 102, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Qiao, C.; Duan, Y.; Zhang, M.; Hagemann, M.; Luo, Q.; Lu, X. Effects of reduced and enhanced glycogen pools on salt-induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942. Appl. Environ. Microbiol. 2018, 84, e02023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ku, J.T.; Lan, E.I. A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2. Metab. Eng. 2018, 46, 35–42. [Google Scholar] [CrossRef]
- Sarnaik, A.; Abernathy, M.H.; Han, X.; Ouyang, Y.; Xia, K.; Chen, Y.; Cress, B.; Zhang, F.; Lali, A.; Pandit, R. Metabolic engineering of cyanobacteria for photoautotrophic production of heparosan, a pharmaceutical precursor of heparin. Algal Res. 2019, 37, 57–63. [Google Scholar] [CrossRef]
- Chin, T.; Okuda, Y.; Ikeuchi, M. Improved sorbitol production and growth in cyanobacteria using promiscuous haloacid dehalogenase-like hydrolase. J. Biotechnol. X 2019, 1, 100002. [Google Scholar] [CrossRef]
- Betterle, N.; Melis, A. Photosynthetic generation of heterologous terpenoids in cyanobacteria. Biotechnol. Bioeng. 2019, 116, 2041–2051. [Google Scholar] [CrossRef]
- Lee, H.J.; Son, J.; Sim, S.J.; Woo, H.M. Metabolic rewiring of synthetic pyruvate dehydrogenase bypasses for acetone production in cyanobacteria. Plant. Biotechnol. J. 2020, 18, 1860–1868. [Google Scholar] [CrossRef] [PubMed]
- Fan, E.S.; Lu, K.W.; Wen, R.C.; Shen, C.R. Photosynthetic reduction of xylose to xylitol using cyanobacteria. Biotechnol. J. 2020, 15, 1900354. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Wang, W.; Lu, X. Engineering cyanobacteria as cell factories for direct trehalose production from CO2. Metab. Eng. 2020, 62, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Pattharaprachayakul, N.; Lee, H.J.; Incharoensakdi, A.; Woo, H.M. Evolutionary engineering of cyanobacteria to enhance the production of α-farnesene from CO2. J. Agric. Food Chem. 2019, 67, 13658–13664. [Google Scholar] [CrossRef]
- Nishiguchi, H.; Hiasa, N.; Uebayashi, K.; Liao, J.; Shimizu, H.; Matsuda, F. Transomics data-driven, ensemble kinetic modeling for system-level understanding and engineering of the cyanobacteria central metabolism. Metab. Eng. 2019, 52, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, W.; Xin, C.; Zheng, Y.; Cheng, Y.; Sun, S.; Li, R.; Zhu, X.-G.; Dai, S.Y.; Rentzepis, P.M. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proc. Natl. Acad. Sci. USA 2016, 113, 14225–14230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selão, T.T.; Jebarani, J.; Ismail, N.A.; Norling, B.; Nixon, P.J. Enhanced production of D-lactate in cyanobacteria by re-routing photosynthetic cyclic and pseudo-cyclic electron flow. Front. Plant. Sci. 2019, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Pade, N.; Erdmann, S.; Enke, H.; Dethloff, F.; Dühring, U.; Georg, J.; Wambutt, J.; Kopka, J.; Hess, W.R.; Zimmermann, R. Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803. Biotechnol. Biofuels 2016, 9, 89. [Google Scholar] [CrossRef] [Green Version]
- Wlodarczyk, A.; Gnanasekaran, T.; Nielsen, A.Z.; Zulu, N.N.; Mellor, S.B.; Luckner, M.; Thøfner, J.F.B.; Olsen, C.E.; Mottawie, M.S.; Burow, M. Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803. Metab. Eng. 2016, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Videau, P.; Wells, K.N.; Singh, A.J.; Gerwick, W.H.; Philmus, B. Assessment of Anabaena sp. strain PCC 7120 as a heterologous expression host for cyanobacterial natural products: Production of lyngbyatoxin A. ACS Synth. Biol. 2016, 5, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Cozad, M.A.; Holland, D.A.; Zhang, Y.; Luesch, H.; Ding, Y. Photosynthetic production of sunscreen shinorine using an engineered cyanobacterium. ACS Synth. Biol. 2018, 7, 664–671. [Google Scholar] [CrossRef]
- Knoot, C.J.; Khatri, Y.; Hohlman, R.M.; Sherman, D.H.; Pakrasi, H.B. Engineered production of hapalindole alkaloids in the cyanobacterium Synechococcus sp. UTEX 2973. ACS Synth. Biol. 2019, 8, 1941–1951. [Google Scholar] [CrossRef]
- Nozzi, N.E.; Case, A.E.; Carroll, A.L.; Atsumi, S. Systematic approaches to efficiently produce 2, 3-butanediol in a marine cyanobacterium. ACS Synth. Biol. 2017, 6, 2136–2144. [Google Scholar] [CrossRef]
- Miao, R.; Liu, X.; Englund, E.; Lindberg, P.; Lindblad, P. Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases. Metab. Eng. Commun. 2017, 5, 45–53. [Google Scholar] [CrossRef]
- Lin, P.-C.; Saha, R.; Zhang, F.; Pakrasi, H.B. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shen, C.R.; Huang, C.-H.; Sung, L.-Y.; Wu, M.-Y.; Hu, Y.-C. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab. Eng. 2016, 38, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarzyk, D.; Cengic, I.; Yao, L.; Hudson, E.P. Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metab. Eng. 2018, 45, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Luan, G.; Zhang, S.; Lu, X. Engineering cyanobacteria chassis cells toward more efficient photosynthesis. Curr. Opin. Biotechnol. 2020, 62, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Park, S.Y.; Park, Y.S.; Eun, H.; Lee, S.Y. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends Biotechnol. 2020, 38, 745–765. [Google Scholar] [CrossRef] [PubMed]
- Santos-Merino, M.; Singh, A.K.; Ducat, D.C. New applications of synthetic biology tools for cyanobacterial metabolic engineering. Front. Bioeng. Biotechnol. 2019, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Singh, S. Cyanoomics: An advancement in the fields cyanobacterial omics biology with special reference to proteomics and transcriptomics. In Advances in Cyanobacterial Biology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 163–171. [Google Scholar]
- Ferreira, E.A.; Pacheco, C.C.; Pinto, F.; Pereira, J.; Lamosa, P.; Oliveira, P.; Kirov, B.; Jaramillo, A.; Tamagnini, P. Expanding the toolbox for Synechocystis sp. PCC 6803: Validation of replicative vectors and characterization of a novel set of promoters. Synth. Biol. 2018, 3, ysy014. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Eckert, C.; Maness, P.-C.; Yu, J. A genetic toolbox for modulating the expression of heterologous genes in the cyanobacterium Synechocystis sp. PCC 6803. ACS Synth. Biol. 2018, 7, 276–286. [Google Scholar] [CrossRef]
- Sengupta, A.; Madhu, S.; Wangikar, P.P. A Library of tunable, portable, and inducer-free promoters derived from cyanobacteria. ACS Synth. Biol. 2020, 9, 1790–1801. [Google Scholar] [CrossRef]
- Thiel, K.; Mulaku, E.; Dandapani, H.; Nagy, C.; Aro, E.-M.; Kallio, P. Translation efficiency of heterologous proteins is significantly affected by the genetic context of RBS sequences in engineered cyanobacterium Synechocystis sp. PCC 6803. Microb. Cell Fact. 2018, 17, 34. [Google Scholar] [CrossRef] [Green Version]
- Heidorn, T.; Camsund, D.; Huang, H.-H.; Lindberg, P.; Oliveira, P.; Stensjö, K.; Lindblad, P. Synthetic biology in cyanobacteria: Engineering and analyzing novel functions. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 497, pp. 539–579. [Google Scholar]
- Liu, D.; Pakrasi, H.B. Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803. Microb. Cell Fact. 2018, 17, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakahira, Y.; Ogawa, A.; Asano, H.; Oyama, T.; Tozawa, Y. Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942. Plant. Cell Physiol. 2013, 54, 1724–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, X.; Zhang, S.; Sun, H.; Duan, Y.; Qiao, C.; Luan, G.; Lu, X. Adopting a theophylline-responsive riboswitch for flexible regulation and understanding of glycogen metabolism in Synechococcus elongatus PCC7942. Front. Microbiol. 2019, 10, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, A.T.; Schmidt, C.M.; Golden, J.W. Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl. Environ. Microbiol. 2014, 80, 6704–6713. [Google Scholar] [CrossRef] [Green Version]
- Higo, A.; Ehira, S. Anaerobic butanol production driven by oxygen-evolving photosynthesis using the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. Appl. Microbiol. Biotechnol. 2019, 103, 2441–2447. [Google Scholar] [CrossRef]
- Kaneko, T.; Tabata, S. Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol. 1997, 38, 1171–1176. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.W.; Song, J.Y.; Cho, S.M.; Kwon, H.C.; Pan, C.-H.; Park, Y.-I. Genomic survey of salt acclimation-related genes in the halophilic cyanobacterium Euhalothece sp. Z-M001. Sci. Rep. 2020, 10, 676. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Hou, S.; Song, K.; Georg, J.; Klähn, S.; Lu, X.; Hess, W.R. The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Biotechnol. Biofuels 2018, 11, 218. [Google Scholar] [CrossRef]
- Koch, R.; Kupczok, A.; Stucken, K.; Ilhan, J.; Hammerschmidt, K.; Dagan, T. Plasticity first: Molecular signatures of a complex morphological trait in filamentous cyanobacteria. BMC Evol. Biol. 2017, 17, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Karlsen, J.; Asplund-Samuelsson, J.; Thomas, Q.; Jahn, M.; Hudson, E.P. Ribosome profiling of Synechocystis reveals altered ribosome allocation at carbon starvation. mSystems 2018, 3, e00126. [Google Scholar] [CrossRef] [Green Version]
- Jahn, M.; Vialas, V.; Karlsen, J.; Maddalo, G.; Edfors, F.; Forsström, B.; Uhlén, M.; Käll, L.; Hudson, E.P. Growth of cyanobacteria is constrained by the abundance of light and carbon assimilation proteins. Cell Rep. 2018, 25, 478–486.e478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Hua, Q.; Shimizu, K. Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab. Eng. 2002, 4, 202–216. [Google Scholar] [CrossRef] [PubMed]
- Shastri, A.A.; Morgan, J.A. Flux balance analysis of photoautotrophic metabolism. Biotechnol. Prog. 2005, 21, 1617–1626. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, K.; Kojima, Y.; Nakajima, T.; Furusawa, C.; Hirasawa, T.; Shimizu, H. Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803. Appl. Microbiol. Biotechnol. 2011, 92, 347. [Google Scholar] [CrossRef]
- Toyoshima, M.; Toya, Y.; Shimizu, H. Flux balance analysis of cyanobacteria reveals selective use of photosynthetic electron transport components under different spectral light conditions. Photosynth. Res. 2020, 143, 31–43. [Google Scholar] [CrossRef]
- Qian, X.; Kim, M.K.; Kumaraswamy, G.K.; Agarwal, A.; Lun, D.S.; Dismukes, G.C. Flux balance analysis of photoautotrophic metabolism: Uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. Biochim. Biophys. Acta Bioenerg. 2017, 1858, 276–287. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Penning, R.; Raaijmakers, L.M.; Axman, I.M.; Heck, A.J.; Altelaar, A.M. Monitoring light/dark association dynamics of multi-protein complexes in cyanobacteria using size exclusion chromatography-based proteomics. J. Proteom. 2016, 142, 33–44. [Google Scholar] [CrossRef]
- Liberton, M.; Saha, R.; Jacobs, J.M.; Nguyen, A.Y.; Gritsenko, M.A.; Smith, R.D.; Koppenaal, D.W.; Pakrasi, H.B. Global proteomic analysis reveals an exclusive role of thylakoid membranes in bioenergetics of a model cyanobacterium. Mol. Cell Proteom. 2016, 15, 2021–2032. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.Y.; Park, B.; Choi, I.-G.; Sim, S.J.; Lee, S.-M.; Um, Y.; Woo, H.M. Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq. Sci. Rep. 2016, 6, 30584. [Google Scholar] [CrossRef] [Green Version]
- Kizawa, A.; Kawahara, A.; Takimura, Y.; Nishiyama, Y.; Hihara, Y. RNA-seq profiling reveals novel target genes of LexA in the cyanobacterium Synechocystis sp. PCC 6803. Front. Microbiol. 2016, 7, 193. [Google Scholar] [CrossRef]
- Lin, X.; Ding, H.; Zeng, Q. Transcriptomic response during phage infection of a marine cyanobacterium under phosphorus-limited conditions. Environ. Microbiol. 2016, 18, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Bes, M.T.; Peleato, M.L.; Fillat, M.F. Expanding the role of FurA as essential global regulator in cyanobacteria. PLoS ONE 2016, 11, e0151384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, R.D.; Higgins, S.A.; Flamholz, A.; Nichols, R.J.; Savage, D.F. The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus. Proc. Natl. Acad. Sci. USA 2016, 113, E4867–E4876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harke, M.J.; Jankowiak, J.G.; Morrell, B.K.; Gobler, C.J. Transcriptomic responses in the bloom-forming cyanobacterium Microcystis induced during exposure to zooplankton. Appl. Environ. Microbiol. 2017, 83, e02832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendry, J.I.; Prasannan, C.; Ma, F.; Möllers, K.B.; Jaiswal, D.; Digmurti, M.; Allen, D.K.; Frigaard, N.U.; Dasgupta, S.; Wangikar, P.P. Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary 13C metabolic flux analysis. Biotechnol. Bioeng. 2017, 114, 2298–2308. [Google Scholar] [CrossRef] [PubMed]
- Hirokawa, Y.; Matsuo, S.; Hamada, H.; Matsuda, F.; Hanai, T. Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1, 3-propanediol and glycerol production based on in silico simulation of metabolic flux distribution. Microb. Cell Fact. 2017, 16, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jazmin, L.J.; Xu, Y.; Cheah, Y.E.; Adebiyi, A.O.; Johnson, C.H.; Young, J.D. Isotopically nonstationary 13C flux analysis of cyanobacterial isobutyraldehyde production. Metab. Eng. 2017, 42, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.; Yoshikawa, K.; Toya, Y.; Matsuda, F.; Shimizu, H. Metabolic flux analysis of the Synechocystis sp. PCC 6803 ΔnrtABCD mutant reveals a mechanism for metabolic adaptation to nitrogen-limited conditions. Plant. Cell Physiol. 2017, 58, 537–545. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Chen, L.; Zhang, W. Quantitative proteomics reveals potential crosstalk between a small RNA CoaR and a two-component regulator Slr1037 in Synechocystis sp. PCC6803. J. Proteome Res. 2017, 16, 2954–2963. [Google Scholar] [CrossRef]
- Liberton, M.; Chrisler, W.B.; Nicora, C.D.; Moore, R.J.; Smith, R.D.; Koppenaal, D.W.; Pakrasi, H.B.; Jacobs, J.M. Phycobilisome truncation causes widespread proteome changes in Synechocystis sp. PCC 6803. PLoS ONE 2017, 12, e0173251. [Google Scholar] [CrossRef] [Green Version]
- Ge, H.; Fang, L.; Huang, X.; Wang, J.; Chen, W.; Liu, Y.; Zhang, Y.; Wang, X.; Xu, W.; He, Q. Translating divergent environmental stresses into a common proteome response through the histidine kinase 33 (Hik33) in a model cyanobacterium. Mol. Cell Proteom. 2017, 16, 1258–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackey, K.R.; Post, A.F.; McIlvin, M.R.; Saito, M.A. Physiological and proteomic characterization of light adaptations in marine Synechococcus. Environ. Microbiol. 2017, 19, 2348–2365. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Marín, M.d.C.; Gómez-Baena, G.; Díez, J.; Beynon, R.J.; González-Ballester, D.; Zubkov, M.V.; García-Fernández, J.M. Glucose uptake in Prochlorococcus: Diversity of kinetics and effects on the metabolism. Front. Microbiol. 2017, 8, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez-Martín, M.A.; Gómez-Baena, G.; Díez, J.; López-Grueso, M.J.; Beynon, R.J.; García-Fernández, J.M. Quantitative proteomics shows extensive remodeling induced by nitrogen limitation in Prochlorococcus marinus SS120. MSystems 2017, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Ge, H.; Huang, X.; Liu, Y.; Lu, M.; Wang, J.; Chen, W.; Xu, W.; Wang, Y. Trophic mode-dependent proteomic analysis reveals functional significance of light-independent chlorophyll synthesis in Synechocystis sp. PCC 6803. Mol. Plant. 2017, 10, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, L.; Chen, Z.; Zhang, W. RNA-seq based transcriptomic analysis of single bacterial cells. Integr. Biol. 2015, 7, 1466–1476. [Google Scholar] [CrossRef]
- Giner-Lamia, J.; Robles-Rengel, R.; Hernández-Prieto, M.A.; Muro-Pastor, M.I.; Florencio, F.J.; Futschik, M.E. Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803. Nucleic Acids Res. 2017, 45, 11800–11820. [Google Scholar] [CrossRef] [Green Version]
- Newby, R., Jr.; Lee, L.H.; Perez, J.L.; Tao, X.; Chu, T. Characterization of zinc stress response in Cyanobacterium Synechococcus sp. IU 625. Aquat. Toxicol. 2017, 186, 159–170. [Google Scholar] [CrossRef]
- Joshi, C.J.; Peebles, C.A.; Prasad, A. Modeling and analysis of flux distribution and bioproduct formation in Synechocystis sp. PCC 6803 using a new genome-scale metabolic reconstruction. Algal Res. 2017, 27, 295–310. [Google Scholar] [CrossRef]
- Malatinszky, D.; Steuer, R.; Jones, P.R. A comprehensively curated genome-scale two-cell model for the heterocystous cyanobacterium Anabaena sp. PCC 7120. Plant. Physiol. 2017, 173, 509–523. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.J.; Ungerer, J.L.; Pakrasi, H.B.; Maranas, C.D. Identifying the metabolic differences of a fast-growth phenotype in Synechococcus UTEX 2973. Sci. Rep. 2017, 7, 41569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morimoto, D.; Kimura, S.; Sako, Y.; Yoshida, T. Transcriptome analysis of a bloom-forming cyanobacterium Microcystis aeruginosa during Ma-LMM01 phage infection. Front. Microbiol. 2018, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abernathy, M.H.; Czajka, J.J.; Allen, D.K.; Hill, N.C.; Cameron, J.C.; Tang, Y.J. Cyanobacterial carboxysome mutant analysis reveals the influence of enzyme compartmentalization on cellular metabolism and metabolic network rigidity. Metab. Eng. 2019, 54, 222–231. [Google Scholar] [CrossRef]
- Choi, J.-S.; Park, Y.H.; Oh, J.H.; Kim, S.; Kwon, J.; Choi, Y.-E. Efficient profiling of detergent-assisted membrane proteome in cyanobacteria. J. Appl. Phycol. 2019, 32, 1–8. [Google Scholar] [CrossRef]
- Fang, X.; Liu, Y.; Zhao, Y.; Chen, Y.; Liu, R.; Qin, Q.L.; Li, G.; Zhang, Y.Z.; Chan, W.; Hess, W.R.; et al. Transcriptomic responses of the marine cyanobacterium Prochlorococcus to viral lysis products. Environ. Microbiol. 2019, 21, 2015–2028. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Riley, K.W.; Harwood, T.V.; Zuniga, E.G.; Risser, D.D. A tripartite, hierarchical sigma factor cascade promotes hormogonium development in the filamentous cyanobacterium Nostoc punctiforme. mSphere 2019, 4, e00231-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirose, Y.; Chihong, S.; Watanabe, M.; Yonekawa, C.; Murata, K.; Ikeuchi, M.; Eki, T. Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria. Mol. Plant 2019, 12, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, D.; Sengupta, A.; Sengupta, S.; Madhu, S.; Pakrasi, H.B.; Wangikar, P.P. A novel cyanobacterium Synechococcus elongatus PCC 11802 has distinct genomic and metabolomic characteristics compared to its neighbor PCC 11801. Sci. Rep. 2020, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- May, D.S.; Crnkovic, C.M.; Krunic, A.; Wilson, T.A.; Fuchs, J.R.; Orjala, J.E. (15)N Stable isotope labeling and comparative metabolomics facilitates genome mining in cultured cyanobacteria. ACS Chem. Biol. 2020, 15, 758–765. [Google Scholar] [CrossRef]
- Solanki, H.; Pierdet, M.; Thomas, O.P.; Zubia, M. Insights into the metabolome of the cyanobacterium Leibleinia gracilis from the lagoon of Tahiti and first inspection of its variability. Metabolites 2020, 10, 215. [Google Scholar] [CrossRef]
- Shi, M.; Chen, L.; Zhang, W. Regulatory diversity and functional analysis of two-component systems in cyanobacterium Synechocystis sp. PCC 6803 by GC-MS based metabolomics. Front. Microbiol. 2020, 11, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Sun, T.; Li, S.; Xie, Y.; Song, X.; Wang, F.; Chen, L.; Zhang, W. Improved salt tolerance and metabolomics analysis of Synechococcus elongatus UTEX 2973 by overexpressing Mrp Antiporters. Front. Bioeng. Biotechnol. 2020, 8, 500. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Pritam, P.; Jaiswal, D.; Bandyopadhyay, A.; Pakrasi, H.B.; Wangikar, P.P. Photosynthetic co-production of succinate and ethylene in a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801. Metabolites 2020, 10, 250. [Google Scholar] [CrossRef] [PubMed]
- Georges des Aulnois, M.; Réveillon, D.; Robert, E.; Caruana, A.; Briand, E.; Guljamow, A.; Dittmann, E.; Amzil, Z.; Bormans, M.J.T. Salt shock responses of Microcystis revealed through physiological, transcript, and metabolomic analyses. Toxins 2020, 12, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Alvarenga, L.V.; Hess, W.R.; Hagemann, M. AcnSP—A novel small protein regulator of aconitase activity in the cyanobacterium Synechocystis sp. PCC 6803. Front. Microbiol. 2020, 11, 1445. [Google Scholar] [CrossRef]
- Popin, R.V.; Delbaje, E.; de Abreu, V.A.C.; Rigonato, J.; Dorr, F.A.; Pinto, E.; Sivonen, K.; Fiore, M.F. Genomic and metabolomic analyses of natural products in Nodularia spumigena isolated from a shrimp culture pond. Toxins (Basel) 2020, 12, 141. [Google Scholar] [CrossRef] [Green Version]
- Koksharova, O.A.; Butenko, I.O.; Pobeguts, O.V.; Safronova, N.A.; Govorun, V.M. The first proteomics study of Nostoc sp. PCC 7120 exposed to cyanotoxin BMAA under nitrogen starvation. Toxins (Basel) 2020, 12, 310. [Google Scholar] [CrossRef]
- Teoh, F.; Shah, B.; Ostrowski, M.; Paulsen, I. Comparative membrane proteomics reveal contrasting adaptation strategies for coastal and oceanic marine Synechococcus cyanobacteria. Environ. Microbiol. 2020, 22, 1816–1828. [Google Scholar] [CrossRef]
- Romeu, M.J.L.; Dominguez-Perez, D.; Almeida, D.; Morais, J.; Campos, A.; Vasconcelos, V.; Mergulhao, F.J.M. Characterization of planktonic and biofilm cells from two filamentous cyanobacteria using a shotgun proteomic approach. Biofouling 2020, 36, 631–645. [Google Scholar] [CrossRef]
- He, P.; Cai, X.; Chen, K.; Fu, X. Identification of small RNAs involved in nitrogen fixation in Anabaena sp. PCC 7120 based on RNA-seq under steady state conditions. Ann. Microbiol. 2020, 70, 4. [Google Scholar] [CrossRef]
- Mironov, K.S.; Kupriyanova, E.V.; Shumskaya, M.; Los, D.A. Alcohol stress on cyanobacterial membranes: New insights revealed by transcriptomics. Gene 2020, 764, 145055. [Google Scholar] [CrossRef] [PubMed]
- Arias, D.B.; Gomez Pinto, K.A.; Cooper, K.K.; Summers, M.L. Transcriptomic analysis of cyanobacterial alkane overproduction reveals stress-related genes and inhibitors of lipid droplet formation. Microb. Genom. 2020, 6, e000432. [Google Scholar] [CrossRef] [PubMed]
- Gordon, G.C.; Cameron, J.C.; Gupta, S.T.P.; Engstrom, M.D.; Reed, J.L.; Pfleger, B.F. Genome-wide analysis of RNA decay in the cyanobacterium Synechococcus sp. strain PCC 7002. mSystems 2020, 5, e00224-20. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Pathania, R.; Srivastava, S. Biochemical Characteristics and a Genome-scale metabolic model of an Indian euryhaline cyanobacterium with high polyglucan content. Metabolites 2020, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Malek Shahkouhi, A.; Motamedian, E. Reconstruction of a regulated two-cell metabolic model to study biohydrogen production in a diazotrophic cyanobacterium Anabaena variabilis ATCC 29413. PLoS ONE 2020, 15, e0227977. [Google Scholar] [CrossRef] [PubMed]
- Rubin, B.E.; Wetmore, K.M.; Price, M.N.; Diamond, S.; Shultzaberger, R.K.; Lowe, L.C.; Curtin, G.; Arkin, A.P.; Deutschbauer, A.; Golden, S.S. The essential gene set of a photosynthetic organism. Proc. Natl. Acad. Sci. USA 2015, 112, E6634–E6643. [Google Scholar] [CrossRef] [Green Version]
- Englund, E.; Liang, F.; Lindberg, P. Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Sci. Rep. 2016, 6, 36640. [Google Scholar] [CrossRef]
Class | Metabolite | Bioactivity | Producing Species | Ref. |
---|---|---|---|---|
Terpene | Phycocyanin | Antioxidant, anti-inflammatory, neuroprotective, hepatoprotective | All cyanobacteria | [12,13,14,15,16] |
Terpene | Carotenoids | Antioxidant, sunscreen | All cyanobacteria | [17,18] |
Terpene | Squalene | Antioxidant | Phormidium | [19] |
Alkaloid | Saxitoxin | Neurotoxin | Anabaena, Aphanizomenon, Cylindrospermopsis, Lyngbya, Planktothrix, | [20,21,22] |
Indole | Nostodione | Antifungal | Nostoc | [23] |
Indole alkaloid | Scytonemin | Anti-inflammatory, sunscreen | Scytonema, Nostoc | [24,25,26,27] |
Indole alkaloid | Hapalindole | Antibacterial, anti-tuberculosis, anticancer | Hapalosiphon | [28,29] |
Alkaloid/Polyketide synthase (PKS) | Anatoxin-a | Neurotoxin, anti-inflammatory | Anabaena, Aphanizomenon, Cylindrospermum, Oscillatoria, Planktothrix | [30,31] |
Alkaloid/PKS | Aplysiatoxin | Cytotoxin, antiviral | Moorea | [32,33] |
Alkaloid/Non-ribosomal peptide synthetase (NRPS) | Lyngbyatoxin | Cytotoxin, dermatotoxin | Moorea | [34] |
Alkaloid/PKS-NRPS | Cylindrospermopsin | Cytotoxin | Aphanizomenon, Cylindrospermopsis, Oscillatoria, Raphidiopsis | [35,36,37] |
PKS | Fischerellin | Antifungal, antialgal, anti-cyanobacterial | Fischerella | [38] |
NRPS | β-N-methylamino-l-alanine | Neurotoxin | Anabaena, Nostoc | [39] |
NRPS | Cyanopeptolin | Protease inhibitor | Planktothrix, Microcystis | [40,41] |
PKS-NRPS | Microcystin | Hepatotoxin | Microcystis, Nostoc, Planktothrix, Anabaena | [40,42,43,44,45] |
PKS-NRPS | Nodularin | Hepatotoxin | Nodularia | [46] |
PKS-NRPS | Apratoxin | Anticancer | Lyngbya | [47] |
PKS-NRPS | Aeruginoside | Protease inhibitor | Planktothrix | [48] |
PKS-NRPS | Aeruginosin | Protease inhibitor | Microcystis, Planktothrix | [40,49] |
PKS-NRPS | Cryptophycins | Cytotoxin | Nostoc | [50] |
PKS-NRPS | Nostophycins | Cytotoxin | Nostoc | [51] |
PKS-NRPS | Curacins | Cytotoxin | Moorea | [52] |
PKS-NRPS | Hectochlorin | Cytotoxin | Moorea | [53] |
PKS-NRPS | Jamaicamides | Neurotoxin | Moorea | [54] |
PKS-NRPS | Dolastatin | Cytotoxin, anticancer, antiprotozoal | Moorea, Lyngbya, Symploca | [55,56] |
Lipopeptide | Antillatoxin | Neurotoxin | Moorea | [57] |
Lipopeptide | Carmabin | Antimalarial, anticancer, antiproliferative | Moorea | [58,59] |
Lipopeptide | Lyngbyabellin | Cytotoxin, antifungal | Moorea, Lyngbya | [60,61] |
Lipopeptide | Kalkitoxin | Neurotoxin | Moorea | [57] |
Ribosomally synthesized and post-translationally modified peptide (RiPP) | Patellamide | Moderate cytotoxicity | Prochloron | [62] |
RiPP | Microviridin | Protease inhibitor | Microcystis, Planktothrix | [63,64] |
RiPP | Shinorin | Sunscreen | Anabaena, Nostoc | [65] |
Fatty acid amide | Besarhanamide A | Moderate toxicity to brine shrimp | Moorea | [66] |
Fatty acid amide | Semiplenamide | Toxicity to brine shrimp | Lyngbya | [67] |
Lipopolysaccharide | Lipopolysaccharides | Endotoxin | All cyanobacteria | [68] |
Polysaccharide | Polysaccharide | Antitumor, antiviral, antibacterial, anti-inflammatory, immunostimulant | All cyanobacteria | [69,70,71] |
Nucleoside | Toyocamycin | Antifungal | Tolypothrix | [72] |
Nucleoside | Tubercidin | Antifungal | Tolypothrix | [73] |
Strategy 1 | Strain | Target 2 | Gene | Ref. |
---|---|---|---|---|
HR | S. elongatus PCC 7942 | Isoprene | ispGS, idi, dxr | [6] |
HR | S. elongatus PCC 7942 | Succinate * | ppc, gltA, kgd, gabD | [108] |
HR | S. elongatus PCC 7942 | Amorpha-4,11-diene, Squalene * | dxs, idi, ispA, dxr | [103] |
HR | S. elongatus UTEX 2973 | Sucrose * | cscB | [109] |
HR | Synechocystis sp. PCC 6803 | Isoprene | ispS | [110] |
HR | S. elongatus PCC 7942 | Isopropanol * | sadh, thl, atoAD’, adc | [111] |
HR | Synechocystis sp. PCC 6803 | Geranyllinalool | NaGLS | [112] |
HR | S. elongatus PCC 7942 | Squalene * | dxs, idi, ispA, SQS | [104] |
HR | S. elongatus PCC 7942 | Butyrate | phaBJ, Ptb, buk, pte2, tesB, yciA | [113] |
HR | Anabaena sp. PCC 7120 | Ethanol | pdc, adhA, sigE, ald, invAB | [114] |
HR | S. elongatus PCC 7942 | Sucrose * | cscB, sps, glgC | [115] |
HR | S. elongatus PCC 7942 | 3-Hydroxybutyrate | phaAB, tesB, nphT7, pptesB, yciA, pte1 | [116] |
HR | S. elongatus PCC 7942 | Heparosan | galU, PmHS2 | [117] |
HR | Synechocystis sp. PCC 6803 | 1-Butanol | phaAB, nphT7, fadB, phaJ, ccr, ter, pduP, mhpF, yqhD, yjgB, pk, pta, adh, sigE | [97] |
HR | Synechocystis sp. PCC 6803 | Sorbitol | s6pdh, fbp, pnt, had1, had2 | [118] |
HR | Synechocystis sp. PCC 6803 | β-Phellandrene * | GPPS, PHLS | [119] |
HR | S. elongatus PCC 7942 | Acetone | pdc, ald6, acs, pps, ppc, mmc | [120] |
HR | S. elongatus PCC 7942 | Xylitol | xylEFGH, XDH, DI, XR | [121] |
HR | S. elongatus PCC 7942 | Trehalose * | tpsp, Tret1, mts, glgCX, cscB, mth | [122] |
HR | S. elongatus PCC 7942 | 2,3-Butanediol | alsD, alsS, adh, galP, zwf, edd, pgi, gnd, pfk, eda, cp12, rbcLXS, prk | [5] |
HR | S. elongatus PCC 7942 | α-Farnesene | AFS | [123] |
HR | Synechocystis sp. PCC 6803 | Ethanol | eno, pgk, pyk, prk | [124] |
HR | S. elongatus PCC 7942 | Limonene * | ls, GPPS, dxs | [125] |
HR | Synechococcus sp. PCC 7002 | d-Lactate | acsA | [126] |
epi | Synechocystis sp. PCC 6803 | Isoprene | ispS | [127] |
epi | Synechocystis sp. PCC 6803 | p-Hydroxyphenylacetaldoxime, dhurrin | CYP71E1, CYP79A1, UGT85B1 | [128] |
epi | Anabaena sp. PCC 7120 | Lyngbyatoxin A * | ltxA-C, ltxA-D | [129] |
epi | Synechocystis sp. PCC 6803 | Ethanol | pdc, adh, rbcSC, 70glpX, tktA, fbaA | [98] |
epi | Synechocystis sp. PCC 6803 | Shinorine * | FsABCD, APPT | [130] |
epi | S. elongatus UTEX 2973 | Hapalindole * | famH1, famH2, famH3, aph3, famE2, famD2, famC1, famC2, famC3 | [131] |
HR + epi | Synechocystis sp. PCC 6803 | Astaxanthin* | crtWZ, dxs, idi, ispA, F/SBPase, RuBisCO, rpe, tktA, psy | [107] |
HR + epi | S. elongatus PCC 7002 | 2,3-Butanediol | alsDS, adh | [132] |
HR + epi | Synechocystis sp. PCC 6803 | Isobutanol | kivd, adh | [133] |
HR + epi | Synechocystis sp. PCC 6803 | Limonene * | lims, rpi, rpe, GPPS | [134] |
CRISPR | S. elongatus PCC 7942 | Succinate * | glgC, gltA, ppc | [135] |
CRISPR + epi | Synechocystis sp. PCC 6803 | Fatty alcohol * | Maqu2220, DPW, plsX, aar, ado, sll1848, sll1752, slr2060 | [136] |
CRISPR | Synechocystis sp. PCC 6803 | N-Butanol, ethanol | adhA, pdc, pduP, phaJ, ter, phaBCE, nphT7, sth, yqhD, xfpk, PL22, SAS2203, gltA, odhB, ackA, pyrF, nrtA, ndhD | [99] |
CRISPR | S. elongatus PCC 7942 | Squalene * | acnB, cpcB2 | [105] |
Year | Omics Study | Strain | Ref. |
---|---|---|---|
2016 | Genome-scale model (GEM) + Metabolome | Synechococcus sp. PCC 7002 | [161] |
2016 | Metabolome | S. elongatus PCC 7942 | [6] |
2016 | Metabolome + Transcriptome | Synechocystis sp. PCC 6803 | [127] |
2016 | Proteome | S. elongatus PCC 7942 | [162] |
2016 | Proteome | Synechocystis sp. PCC 6803 | [163] |
2016 | Transcriptome | S. elongatus PCC 7942 | [164] |
2016 | Transcriptome | Synechocystis sp. PCC 6803 | [165] |
2016 | Transcriptome | Prochlorococcus NATL2A | [166] |
2016 | Transcriptome | Nostoc sp. PCC 7120 | [167] |
2016 | Transcriptome | S. elongatus PCC 7942 | [168] |
2016 | GEM | S. elongatus PCC 7942 | [10] |
2016 | Transcriptome | M. aeruginosa | [169] |
2017 | Metabolome | Synechococcus sp. PCC 7002 | [170] |
2017 | Metabolome | S. elongatus PCC 7942 | [171] |
2017 | Metabolome | S. elongatus PCC 7942 | [172] |
2017 | Metabolome | S. elongatus PCC 7942 | [5] |
2017 | Metabolome | Synechocystis sp. PCC 6803 | [173] |
2017 | Proteome | Synechocystis sp. PCC 6803 | [174] |
2017 | Proteome | Synechocystis sp. PCC 6803 | [175] |
2017 | Proteome | Synechocystis sp. PCC 6803 | [176] |
2017 | Proteome | Synechococcus strains | [177] |
2017 | Proteome | Prochlorococcus strains | [178] |
2017 | Proteome | P. marinus SS 120 | [179] |
2017 | Proteome | Synechocystis sp. PCC 6803 | [180] |
2017 | Transcriptome | Synechocystis sp. PCC 6803 | [181] |
2017 | Transcriptome + Interactome | Synechocystis sp. PCC 6803 | [182] |
2017 | Transcriptome + Metabolome | Synechococcus sp. IU 625 | [183] |
2017 | Transcription start site (TSS) | F. muscicola PCC 7414 and F. thermalis PCC 7521 | [154] |
2017 | GEM | Synechocystis sp. PCC 6803 | [184] |
2017 | GEM | Nostoc sp. PCC 7120 | [185] |
2017 | GEM | S. elongatus UTEX 2973 | [186] |
2017 | GEM | Synechococcus sp. PCC 7002 | [161] |
2018 | Transcriptome | M. aeruginosa | [187] |
2018 | Transcriptome + Translatome | Synechocystis sp. PCC 6803 | [155] |
2018 | TSS | S. elongatus UTEX 2973 | [153] |
2018 | GEM | Synechocystis sp. PCC 6803 | [161] |
2019 | Metabolome | Synechococcus sp. PCC 7002 | [188] |
2019 | Proteome | Synechocystis sp. PCC 6803 | [189] |
2019 | Transcriptome | Prochlorococcus MIT9313 | [190] |
2019 | Transcriptome | N. punctiforme PCC 73102 | [191] |
2019 | Transcriptome | Leptolyngbya sp. PCC 6406 | [192] |
2020 | GEM | Synechocystis sp. PCC 6803 | [160] |
2020 | Metabolome | S. elongatus PCC 11802 and PCC 11801 | [193] |
2020 | Metabolome | Nostoc sp. UIC 10630 | [194] |
2020 | Metabolome | Leibleinia gracilis | [195] |
2020 | Metabolome | Synechocystis sp. PCC 6803 | [196] |
2020 | Metabolome | S. elongatus UTEX 2973 | [197] |
2020 | Metabolome | S. elongatus PCC 11801 | [198] |
2020 | Metabolome | M. aeruginosa PCC 7820 and PCC 7806 | [199] |
2020 | Metabolome | Synechocystis sp. PCC 6803 | [200] |
2020 | Metabolome | Nodularia spumigena | [201] |
2020 | Proteome | Nostoc sp. PCC 7120 | [202] |
2020 | Proteome | Synechococcus strains | [203] |
2020 | Proteome | Nodosilinea strains | [204] |
2020 | Transcriptome | Nostoc sp. PCC 7120 | [205] |
2020 | Transcriptome | Euhalothece sp. Z-M001 | [152] |
2020 | Transcriptome | Synechocystis sp. PCC 6803 | [206] |
2020 | Transcriptome | N. punctiforme PCC 73102 | [207] |
2020 | Transcriptome | Synechococcus sp. PCC 7002 | [208] |
2020 | Transcriptome + Metabolome | Synechocystis sp. PCC 6803 | [107] |
2020 | GEM | Synechococcus sp. BDU 130192 | [209] |
2020 | GEM | A. variabilis ATCC 29413 | [210] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, Y.; Cho, S.-H.; Lee, H.; Choi, H.-K.; Kim, D.-M.; Lee, C.-G.; Cho, S.; Cho, B.-K. Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria. Microorganisms 2020, 8, 1849. https://doi.org/10.3390/microorganisms8121849
Jeong Y, Cho S-H, Lee H, Choi H-K, Kim D-M, Lee C-G, Cho S, Cho B-K. Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria. Microorganisms. 2020; 8(12):1849. https://doi.org/10.3390/microorganisms8121849
Chicago/Turabian StyleJeong, Yujin, Sang-Hyeok Cho, Hookeun Lee, Hyung-Kyoon Choi, Dong-Myung Kim, Choul-Gyun Lee, Suhyung Cho, and Byung-Kwan Cho. 2020. "Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria" Microorganisms 8, no. 12: 1849. https://doi.org/10.3390/microorganisms8121849