Probiotic Shewanella putrefaciens (SpPdp11) as a Fish Health Modulator: A Review
Abstract
:1. Introduction
2. Probiotic Administration Routes
3. SpPdp11 Characterization
4. Fish Activities Modulated by SpPdp11
4.1. Immunity
4.2. Stress
4.3. Disease Resistance
4.4. Modulation of the Microbiota
4.5. Nutrition and Growth
4.6. Other Activities
5. Conclusions
6. Future Perspectives
Funding
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2018. [Google Scholar]
- Howell, B.R. A re-appraisal of the potential of the sole, Solea solea (L.), for commercial cultivation. Aquaculture 1997, 155, 355–365. [Google Scholar] [CrossRef]
- Dinis, M.T.; Ribeiro, L.; Soares, F.; Sarasquete, C. A review on the cultivation potential of Solea senegalensis in Spain and in Portugal. Aquaculture 1999, 176, 27–38. [Google Scholar] [CrossRef]
- Zorrilla, I.; Balebona, M.C.; Moriñigo, M.A.; Sarasquete, C.; Borrego, J.J. Isolation and characterization of the causative agent of pasteurellosis, Photobacterium damselae ssp. piscicida, from sole, Solea senegalensis (Kaup). J. Fish Dis. 1999, 22, 167–172. [Google Scholar] [CrossRef]
- Romalde, J.L. Photobacterium damselae subsp. piscicida: An integrated view of a bacterial fish pathogen. Int. Microbiol. 2002, 5, 3–9. [Google Scholar] [CrossRef]
- Arijo, S.; Rico, R.; Chabrillon, M.; Diaz-Rosales, P.; Martínez-Manzanares, E.; Balebona, M.C.; Magariños, B.; Toranzo, A.E.; Moriñigo, M.A. Effectiveness of a divalent vaccine for sole, Solea senegalensis (Kaup), against Vibrio harveyi and Photobacterium damselae subsp. piscicida. J. Fish Dis. 2005, 28, 33–38. [Google Scholar] [CrossRef]
- Akinbowale, O.L.; Peng, H.; Barton, M.D. Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. J. Appl. Microbiol. 2007, 103, 2016–2025. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef]
- Encarnação, P. Functional feed additives in aquaculture feeds. Aquafeed Formul. 2016, 217–237. [Google Scholar] [CrossRef]
- Guerreiro, I.; Oliva-Teles, A.; Enes, P. Prebiotics as functional ingredients: Focus on Mediterranean fish aquaculture. Rev. Aquac. 2018, 10, 800–832. [Google Scholar] [CrossRef]
- Fuller, R. A review: Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar]
- Merrifield, D.L.; Dimitroglou, A.; Foeyb, A.; Davies, S.J.; Baker, R.T.M.; Bøgwaldc, J.; Castexd, M.; Ringø, E. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 2010, 302, 1–18. [Google Scholar] [CrossRef]
- Van Hai, N. The use of medicinal plants as immunostimulants in aquaculture: A review. Aquaculture 2015, 446, 88–96. [Google Scholar] [CrossRef]
- Wang, Y.B.; Li, J.R.; Lin, J. Probiotics in aquaculture: Challenges and outlook. Aquaculture 2008, 281, 1–4. [Google Scholar] [CrossRef]
- Jahangiri, L.; Esteban, M.Á. Administration of probiotics in the water in finfish aquaculture systems: A review. Fishes 2018, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Han, W. Reuse strategy of wastewater in prawn nursery by microbial remediation. Aquaculture 2004, 230, 281–296. [Google Scholar] [CrossRef]
- Banerjee, G.; Ray, A.K. The advancement of probiotics research and its application in fish farming industries. Res. Vet. Sci. 2017, 115, 66–77. [Google Scholar] [CrossRef]
- Hjelm, M.; Bergh, O.; Riaza, A.; Nielsen, J.; Melchiorsen, J.; Jensen, S.; Duncan, H.; Ahrens, P.; Birkbeck, H.; Gram, L. Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. Syst. Appl. Microbiol. 2004, 27, 360–371. [Google Scholar]
- Jöborn, A.; Olsson, J.C.; Westerdahl, A.; Conway, P.L.; Kjelleberg, S. Colonization in the fish intestinal tract and production of inhibitory substances in intestinal mucus and faecal extracts by Carnobacterium sp. strain K1. J. Fish Dis. 1997, 20, 383–392. [Google Scholar] [CrossRef]
- Vine, N.G.; Leukes, W.D.; Kaiser, H.; Daya, S.; Baxter, J.; Hecht, T. Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. J. Fish Dis. 2004, 27, 319–326. [Google Scholar] [CrossRef]
- Austin, B.; Zhang, X.H. Vibrio harveyi: A significant pathogen of marine vertebrates and invertebrates. Lett. Appl. Microbiol. 2006, 43, 119–124. [Google Scholar] [CrossRef]
- Chabrillón, M.; Rico, R.M.; Arijo, S.; Díaz-Rosales, P.; Balebona, M.C.; Moriñigo, M.A. Interactions of microorganisms isolated from gilthead sea bream, Sparus aurata L., on Vibrio harveyi, a pathogen of farmed Senegalese sole, Solea senegalensis (Kaup). J. Fish Dis. 2005, 28, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Chabrillón, M.; Arijo, S.; Díaz-Rosales, P.; Balebona, M.C.; Moriñigo, M.A. Interference of Listonella anguillarum with potential probiotic microorganisms isolated from farmed gilthead seabream (Sparus aurata, L.). Aquac. Res. 2006, 37, 78–86. [Google Scholar] [CrossRef]
- Seoane, P.; Tapia-Paniagua, S.T.; Bautista, R.; Alcaide, E.; Esteve, C.; Martínez-Manzanares, E.; Balebona, M.C.; Claros, M.G.; Moriñigo, M.A. TarSynFlow, a workflow for bacterial genome comparisons that revealed genes putatively involved in the probiotic character of Shewanella putrefaciens strain Pdp11. PeerJ 2019, 7, e6526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tort, L.; Balasch, J.C.; Mackenzie, S. Fish immune system. A crossroads between innate and adaptive responses. Inmunologia 2003, 22, 277–286. [Google Scholar]
- Gomez, D.; Sunyer, J.O.; Salinas, I. The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol. 2013, 35, 1729–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, R.; Tafalla, C. Overview of Fish Immunity; Elsevier Inc.: Amsterdam, The Netherlands, 2015; ISBN 9780124171930. [Google Scholar]
- Whyte, S.K. The innate immune response of finfish—A review of current knowledge. Fish Shellfish Immunol. 2007, 23, 1127–1151. [Google Scholar] [CrossRef]
- Díaz-Rosales, P.; Salinas, I.; Rodríguez, A.; Cuesta, A.; Chabrillón, M.; Balebona, M.C.; Moriñigo, M.Á.; Esteban, M.Á.; Meseguer, J. Gilthead seabream (Sparus aurata L.) innate immune response after dietary administration of heat-inactivated potential probiotics. Fish Shellfish Immunol. 2006, 20, 482–492. [Google Scholar] [CrossRef]
- Sukumaran, V.; Park, S.C.; Giri, S.S. Role of dietary ginger Zingiber officinale in improving growth performances and immune functions of Labeo rohita fingerlings. Fish Shellfish Immunol. 2016, 57, 362–370. [Google Scholar] [CrossRef]
- Begum, N.; Islam, M.S.; Haque, A.K.M.F.; Suravi, I.N. Growth and yield of monosex tilapia Oreochromis niloticus in floating cages fed commercial diet supplemented with probiotics in freshwater pond, sylhet. Bangladesh J. Zool. 2017, 45, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.H.; Wu, K.; Chu, T.W.; Wu, T.M. Dietary supplementation of probiotic, Bacillus subtilis E20, enhances the growth performance and disease resistance against Vibrio alginolyticus in parrot fish (Oplegnathus fasciatus). Aquac. Int. 2018, 26, 63–74. [Google Scholar] [CrossRef]
- Zibiene, G.; Zibas, A. Impact of commercial probiotics on growth parameters of European catfish (Silurus glanis) and water quality in recirculating aquaculture systems. Aquac. Int. 2019, 27, 1751–1766. [Google Scholar] [CrossRef]
- Ortuño, J.; Esteban, M.A.; Mulero, V.; Meseguer, J. Methods for studying the haemolytic, chemoattractant and opsonic activities of seabream (Sparus aurata L.) serum. Methodol. Fishes Dis. Res. 1998, 97–100. [Google Scholar]
- Esteban, M.A.; Mulero, V.; Muñoz, J.; Meseguer, J. Methodological aspects of assessing phagocytosis of Vibrio anguillarum by leucocytes of gilthead seabream (Sparus aurata L.) by flow cytometry and electron microscopy. Cell Tissue Res. 1998, 293, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Paniagua, S.T.; Díaz-Rosales, P.; León-Rubio, J.M.; de la Banda, I.G.; Lobo, C.; Alarcón, F.J.; Chabrillón, M.; Rosas-Ledesma, P.; Varela, J.L.; Ruiz-Jarabo, I.; et al. Use of the probiotic Shewanella putrefaciens Pdp11 on the culture of Senegalese sole (Solea senegalensis, Kaup 1858) and gilthead seabream (Sparus aurata L.). Aquac. Int. 2012, 20, 1025–1039. [Google Scholar] [CrossRef]
- Cordero, H.; Guardiola, F.A.; Tapia-Paniagua, S.T.; Cuesta, A.; Meseguer, J.; Balebona, M.C.; Moriñigo, M.Á.; Esteban, M.Á. Modulation of immunity and gut microbiota after dietary administration of alginate encapsulated Shewanella putrefaciens Pdp11 to gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2015, 45, 608–618. [Google Scholar] [CrossRef]
- Sáenz De Rodrigáñez, M.A.; Díaz-Rosales, P.; Chabrillón, M.; Smidt, H.; Arijo, S.; León-Rubio, J.M.; Alarcón, F.J.; Balebona, M.C.; Moriñigo, M.A.; Cara, J.B.; et al. Effect of dietary administration of probiotics on growth and intestine functionality of juvenile Senegalese sole (Solea senegalensis, Kaup 1858). Aquac. Nutr. 2009, 15, 177–185. [Google Scholar] [CrossRef]
- García de La Banda, I.; Lobo, C.; León-Rubio, J.M.; Tapia-Paniagua, S.; Balebona, M.C.; Moriñigo, M.A.; Moreno-Ventas, X.; Lucas, L.M.; Linares, F.; Arce, F.; et al. Influence of two closely related probiotics on juvenile Senegalese sole (Solea senegalensis, Kaup 1858) performance and protection against Photobacterium damselae subsp. piscicida. Aquaculture 2010, 306, 281–288. [Google Scholar] [CrossRef]
- Tapia-Paniagua, S.T.; Chabrillón, M.; Díaz-Rosales, P.; de la Banda, I.G.; Lobo, C.; Balebona, M.C.; Moriñigo, M.A. Intestinal microbiota diversity of the flat fish Solea senegalensis (Kaup, 1858) following probiotic administration. Microb. Ecol. 2010, 60, 310–319. [Google Scholar] [CrossRef]
- Varela, J.L.; Ruiz-Jarabo, I.; Vargas-Chacoff, L.; Arijo, S.; León-Rubio, J.M.; García-Millán, I.; Martín del Río, M.P.; Moriñigo, M.A.; Mancera, J.M. Dietary administration of probiotic Pdp11 promotes growth and improves stress tolerance to high stocking density in gilthead seabream Sparus auratua. Aquaculture 2010, 309, 265–271. [Google Scholar] [CrossRef]
- Lobo, C.; Tapia-Paniagua, S.; Moreno-Ventas, X.; Alarcón, F.J.; Rodríguez, C.; Balebona, M.C.; Moriñigo, M.A.; de La Banda, I.G. Benefits of probiotic administration on growth and performance along metamorphosis and weaning of Senegalese sole (Solea senegalensis). Aquaculture 2014, 433, 183–195. [Google Scholar] [CrossRef]
- Díaz-Rosales, P.; Arijo, S.; Chabrillón, M.; Alarcón, F.J.; Tapia-Paniagua, S.T.; Martínez-Manzanares, E.; Balebona, M.C.; Moriñigo, M.A. Effects of two closely related probiotics on respiratory burst activity of Senegalese sole (Solea senegalensis, Kaup) phagocytes, and protection against Photobacterium damselae subsp. piscicida. Aquaculture 2009, 293, 16–21. [Google Scholar] [CrossRef]
- Cordero, H.; Morcillo, P.; Cuesta, A.; Brinchmann, M.F.; Esteban, M.A. Differential proteome profile of skin mucus of gilthead seabream (Sparus aurata) after probiotic intake and/or overcrowding stress. J. Proteomics 2016, 132, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapia-Paniagua, S.T.; Vidal, S.; Lobo, C.; Prieto-Álamo, M.J.; Jurado, J.; Cordero, H.; Cerezuela, R.; García de la Banda, I.; Esteban, M.A.; Balebona, M.C.; et al. The treatment with the probiotic Shewanella putrefaciens Pdp11 of specimens of Solea senegalensis exposed to high stocking densities to enhance their resistance to disease. Fish Shellfish Immunol. 2014, 41, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Cordero, H.; Morcillo, P.; Meseguer, J.; Cuesta, A.; Esteban, M.Á. Effects of Shewanella putrefaciens on innate immunity and cytokine expression profile upon high stocking density of gilthead seabream specimens. Fish Shellfish Immunol. 2016, 51, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Lobo, C.; Moreno-Ventas, X.; Tapia-Paniagua, S.; Rodríguez, C.; Moriñigo, M.A.; de La Banda, I.G. Dietary probiotic supplementation (Shewanella putrefaciens Pdp11) modulates gut microbiota and promotes growth and condition in Senegalese sole larviculture. Fish Physiol. Biochem. 2013, 40, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Jurado, J.; Villasanta-González, A.; Tapia-Paniagua, S.T.; Balebona, M.C.; García de la Banda, I.; Moríñigo, M.Á.; Prieto-Álamo, M.J. Dietary administration of the probiotic Shewanella putrefaciens Pdp11 promotes transcriptional changes of genes involved in growth and immunity in Solea senegalensis larvae. Fish Shellfish Immunol. 2018, 77, 350–363. [Google Scholar] [CrossRef]
- García de la Banda, I.; Lobo, C.; Chabrillón, M.; León-Rubio, J.M.; Arijo, S.; Pazos, G.; María Lucas, L.; Moriñigo, M.Á. Influence of dietary administration of a probiotic strain Shewanella putrefaciens on senegalese sole (Solea senegalensis, Kaup 1858) growth, body composition and resistance to Photobacterium damselae subsp piscicida. Aquac. Res. 2012, 43, 662–669. [Google Scholar] [CrossRef]
- Vidal, S.; Tapia-Paniagua, S.T.; Moriñigo, J.M.; Lobo, C.; de la Banda, I.G.; del Carmen Balebona, M.; Moriñigo, M.Á. Effects on intestinal microbiota and immune genes of Solea senegalensis after suspension of the administration of Shewanella putrefaciens Pdp11. Fish Shellfish Immunol. 2016, 58, 274–283. [Google Scholar] [CrossRef]
- Tapia-Paniagua, S.; Lobo, C.; Moreno-Ventas, X.; de la Banda, I.G.; Moriñigo, M.A.; Balebona, M.C. Probiotic supplementation influences the diversity of the intestinal microbiota during early stages of farmed Senegalese sole (Solea senegalensis, Kaup 1858). Mar. Biotechnol. 2014, 16, 716–728. [Google Scholar] [CrossRef]
- Tapia-Paniagua, S.T.; Vidal, S.; Lobo, C.; García de la Banda, I.; Esteban, M.A.; Balebona, M.C.; Moriñigo, M.A. Dietary administration of the probiotic SpPdp11: Effects on the intestinal microbiota and immune-related gene expression of farmed Solea senegalensis treated with oxytetracycline. Fish Shellfish Immunol. 2015, 46, 449–458. [Google Scholar] [CrossRef]
- Lobo, C.; Martín, M.V.; Moreno-Ventas, X.; Tapia-Paniagua, S.T.; Rodríguez, C.; Moriñigo, M.A.; García de la Banda, I. Shewanella putrefaciens Pdp11 probiotic supplementation as enhancer of Artemia n-3 HUFA contents and growth performance in Senegalese sole larviculture. Aquac. Nutr. 2017, 24, 548–561. [Google Scholar] [CrossRef]
- Esteban, M.A.; Cordero, H.; Martínez-Tomé, M.; Jiménez-Monreal, A.M.; Bakhrouf, A.; Mahdhi, A. Effect of dietary supplementation of probiotics and palm fruits extracts on the antioxidant enzyme gene expression in the mucosae of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2014, 39, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ceballos-Francisco, D.; Guardiola, F.A.; Esteban, M.Á. Influence of skin wounds on the intestinal inflammatory response and barrier function: Protective role of dietary Shewanella putrefaciens SpPdp11 administration to gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2020, 99, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Newaj-Fyzul, A.; Al-Harbi, A.H.; Austin, B. Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture 2014, 431, 1–11. [Google Scholar] [CrossRef]
- Yan, Y.Y.; Xia, H.Q.; Yang, H.L.; Hoseinifar, S.H.; Sun, Y.Z. Effects of dietary live or heat-inactivated autochthonous Bacillus pumilus SE5 on growth performance, immune responses and immune gene expression in grouper Epinephelus coioides. Aquac. Nutr. 2016, 22, 698–707. [Google Scholar] [CrossRef]
- Salinas, I.; Díaz-Rosales, P.; Cuesta, A.; Meseguer, J.; Chabrillón, M.; Moriñigo, M.Á.; Esteban, M.Á. Effect of heat-inactivated fish and non-fish derived probiotics on the innate immune parameters of a teleost fish (Sparus aurata L.). Vet. Immunol. Immunopathol. 2006, 111, 279–286. [Google Scholar] [CrossRef]
- Subramanian, S.; MacKinnon, S.L.; Ross, N.W. A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 148, 256–263. [Google Scholar] [CrossRef]
- Alexander, J.B.; Ingram, G.A. Noncellular nonspecific defence mechanisms of fish. Annu. Rev. Fish Dis. 1992, 2, 249–279. [Google Scholar] [CrossRef]
- Saurabh, S.; Sahoo, P.K. Lysozyme: An important defence molecule of fish innate immune system. Aquac. Res. 2008, 39, 223–239. [Google Scholar] [CrossRef]
- Cerezuela, R.; Guardiola, F.A.; Cuesta, A.; Esteban, M.Á. Enrichment of gilthead seabream (Sparus aurata L.) diet with palm fruit extracts and probiotics: Effects on skin mucosal immunity. Fish Shellfish Immunol. 2016, 49, 100–109. [Google Scholar] [CrossRef]
- Barton, B.A. Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 2002, 42, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Wendelaar Bonfa, S.E. The Stress Response in Fish. Physiol. Rev. 2018, 77, 591–625. [Google Scholar] [CrossRef] [PubMed]
- Taoka, Y.; Maeda, H.; Jo, J.Y.; Jeon, M.J.; Bai, S.C.; Lee, W.J.; Yuge, K.; Koshio, S. Growth, stress tolerance and non-specic immune response of Japanese flounder Paralichthys olivaceus to probiotics in a closed recirculating system. Fish. Sci. 2006, 72, 310–321. [Google Scholar] [CrossRef]
- Hernandez, L.H.H.; Barrera, T.C.; Mejia, J.C.; Mejia, G.C.; Del Carmen, M.; Dosta, M.; de Lara Andrade, R.; Sotres, J.A.M. Effects of the commercial probiotic Lactobacillus casei on the growth, protein content of skin mucus and stress resistance of juveniles of the Porthole livebearer Poecilopsis gracilis (Poecilidae). Aquac. Nutr. 2010, 16, 407–411. [Google Scholar] [CrossRef]
- Gonçalves, A.T.; Maita, M.; Futami, K.; Endo, M.; Katagiri, T. Effects of a probiotic bacterial Lactobacillus rhamnosus dietary supplement on the crowding stress response of juvenile Nile tilapia Oreochromis niloticus. Fish. Sci. 2011, 77, 633–642. [Google Scholar] [CrossRef]
- Mancera, J.M.; Vargas-Chacoff, L.; García-López, A.; Kleszczyńska, A.; Kalamarz, H.; Martínez-Rodríguez, G.; Kulczykowska, E. High density and food deprivation affect arginine vasotocin, isotocin and melatonin in gilthead sea bream (Sparus auratus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2008, 149, 92–97. [Google Scholar] [CrossRef]
- Salas-Leiton, E.; Anguis, V.; Martín-Antonio, B.; Crespo, D.; Planas, J.V.; Infante, C.; Cañavate, J.P.; Manchado, M. Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): Potential effects on the immune response. Fish Shellfish Immunol. 2010, 28, 296–302. [Google Scholar] [CrossRef]
- Rodger, H.D. Fish disease causing economic impact in global aquaculture. In Fish Vaccines; Springer: Basel, Switzerland, 2016; pp. 1–34. [Google Scholar]
- Balcázar, J.L.; Rojas-Luna, T.; Cunningham, D.P. Effect of the addition of four potential probiotic strains on the survival of pacific white shrimp (Litopenaeus vannamei) following immersion challenge with Vibrio parahaemolyticus. J. Invertebr. Pathol. 2007, 96, 147–150. [Google Scholar] [CrossRef]
- Balcázar, J.L.; De Blas, I.; Ruiz-Zarzuela, I.; Vendrell, D.; Gironés, O.; Muzquiz, J.L. Enhancement of the immune response and protection induced by probiotic lactic acid bacteria against furunculosis in rainbow trout (Oncorhynchus mykiss). FEMS Immunol. Med. Microbiol. 2007, 51, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Burbank, D.R.; Shah, D.H.; LaPatra, S.E.; Fornshell, G.; Cain, K.D. Enhanced resistance to coldwater disease following feeding of probiotic bacterial strains to rainbow trout (Oncorhynchus mykiss). Aquaculture 2011, 321, 185–190. [Google Scholar] [CrossRef]
- Llewellyn, M.S.; Boutin, S.; Hoseinifar, S.H.; Derome, N. Teleost microbiomes: The state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front. Microbiol. 2014, 5, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawls, J.F.; Samuel, B.S.; Gordon, J.I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 2004, 101, 4596–4601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringø, E.; Myklebust, R.; Mayhew, T.M.; Olsen, R.E. Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 2007, 268, 251–264. [Google Scholar] [CrossRef]
- Dittmann, K.K.; Rasmussen, B.B.; Castex, M.; Gram, L.; Bentzon-Tilia, M. The aquaculture microbiome at the centre of business creation. Microb. Biotechnol. 2017, 10, 1279–1282. [Google Scholar] [CrossRef] [Green Version]
- Legrand, T.P.R.A.; Wynne, J.W.; Weyrich, L.S.; Oxley, A.P.A. A microbial sea of possibilities: Current knowledge and prospects for an improved understanding of the fish microbiome. Rev. Aquac. 2020, 12, 1101–1134. [Google Scholar] [CrossRef]
- Standen, B.T.; Rodiles, A.; Peggs, D.L.; Davies, S.J.; Santos, G.A.; Merrifield, D.L. Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic. Appl. Microbiol. Biotechnol. 2015, 99, 8403–8417. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Bonkowski, M.; Roy, J.; Ritz, K. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Appl. Soil Ecol. 2001, 16, 49–61. [Google Scholar] [CrossRef]
- Bell, T.; Newman, J.A.; Silverman, B.W.; Turner, S.L.; Lilley, A.K. The contribution of species richness and composition to bacterial services. Nature 2005, 436, 1157–1160. [Google Scholar] [CrossRef]
- Yachi, S.; Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 1463–1468. [Google Scholar] [CrossRef] [Green Version]
- Wittebolle, L.; Vervaeren, H.; Verstraete, W.; Boon, N. Quantifying community dynamics of nitrifiers in functionally stable reactors. Appl. Environ. Microbiol. 2008, 74, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Tapia-Paniagua, S.T.; Díaz-Rosales, P.; García de la Banda, I.; Lobo, C.; Clavijo, E.; Balebona, M.C.; Moriñigo, M.A. Modulation of certain liver fatty acids in Solea senegalensis is influenced by the dietary administration of probiotic microorganisms. Aquaculture 2014, 424, 234–238. [Google Scholar] [CrossRef]
- Marzorati, M.; Wittebolle, L.; Boon, N.; Daffonchio, D.; Verstraete, W. How to get more out of molecular fingerprints: Practical tools for microbial ecology. Environ. Microbiol. 2008, 10, 1571–1581. [Google Scholar] [CrossRef] [PubMed]
- De Schryver, P.; Sinha, A.K.; Kunwar, P.S.; Baruah, K.; Verstraete, W.; Boon, N.; De Boeck, G.; Bossier, P. Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Appl. Microbiol. Biotechnol. 2010, 86, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
- Suzer, C.; Çoban, D.; Kamaci, H.O.; Saka, Ş.; Firat, K.; Otgucuoğlu, Ö.; Küçüksari, H. Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: Effects on growth performance and digestive enzyme activities. Aquaculture 2008, 280, 140–145. [Google Scholar] [CrossRef]
- Abramov, V.; Khlebnikov, V.; Kosarev, I.; Bairamova, G.; Vasilenko, R.; Suzina, N.; Machulin, A.; Sakulin, V.; Kulikova, N.; Vasilenko, N.; et al. Probiotic properties of Lactobacillus crispatus 2029: Homeostatic interaction with cervicovaginal epithelial cells and antagonistic activity to genitourinary pathogens. Probiotics Antimicrob. Proteins 2014, 6, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Varma, P.; Dinesh, K.R.; Menon, K.K.; Biswas, R. Lactobacillus fermentum isolated from human colonic mucosal biopsy inhibits the growth and adhesion of enteric and foodborne pathogens. J. Food Sci. 2010, 75, M546–M551. [Google Scholar] [CrossRef]
- Muñoz-Atienza, E.; Araújo, C.; Magadán, S.; Hernández, P.E.; Herranz, C.; Santos, Y.; Cintas, L.M. In vitro and in vivo evaluation of lactic acid bacteria of aquatic origin as probiotics for turbot (Scophthalmus maximus L.) farming. Fish Shellfish Immunol. 2014, 41, 570–580. [Google Scholar] [CrossRef]
- Barbosa, J.M.; Brugiolo, S.S.S.; Carolsfeld, J.; Leitão, S.S. Heterogeneous growth in fingerlings of the Nile tilapia Oreochromis niloticus: Effects of density and initial size variability. Brazilian J. Biol. 2006, 66, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Cahu, C.L.; Infante, J.L.Z. Maturation of the pancreatic and intestinal digestive functions in sea bass (Dicentrarchus labrax): Effect of weaning with different protein sources. Fish Physiol. Biochem. 1995, 14, 431–437. [Google Scholar] [CrossRef]
- Engrola, S.; Conceição, L.E.C.; Dias, L.; Pereira, R.; Ribeiro, L.; Dinis, M.T. Improving weaning strategies for Senegalese sole: Effects of body weight and digestive capacity. Aquac. Res. 2007, 38, 696–707. [Google Scholar] [CrossRef]
- Sire, M.F.; Lutton, C.; Vernier, J.M. New views on intestinal absorption of lipids in teleostean fishes: An ultrastructural and biochemical study in the rainbow trout. J. Lipid Res. 1981, 22, 81–94. [Google Scholar] [PubMed]
- Izquierdo, M.S.; Montero, D.; Robaina, L.; Caballero, M.J.; Rosenlund, G.; Ginés, R. Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture 2005, 250, 431–444. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, R.; Guerreiro, I.; Coutinho, F.; Moutinho, S.; Sousa, S.; Delerue-Matos, C.; Domingues, V.F.; Olsen, R.E.; Peres, H.; Oliva-Teles, A. Effect of dietary ARA/EPA/DHA ratios on growth performance and intermediary metabolism of gilthead sea bream (Sparus aurata) juveniles. Aquaculture 2019, 516, 734644. [Google Scholar] [CrossRef]
Species | Concentration | Route of Administration | Fish Stage, Average Weight | Experiment Duration (days) | Major Outcomes | Reference |
---|---|---|---|---|---|---|
Senegalese sole | 108 cfu g−1 | lyophilized, diet supplementation (dry pellet) | Juvenile, 15–20 g | 15 | Reduced mortality after Vibrio harveyi challenge | [22] |
Gilthead seabream | 108 cfu g−1 | heat inactivated, diet supplemented (dry pellet) | Juvenile, 65 g | 28 | Improved cellular and humoral immunity | [29] |
Senegalese sole | 109 cfu g−1 | lyophilized, diet supplementation (dry pellet) | Juvenile, 10–15 g | 60 | Modulation of intestinal microbiota. No lipid droplets in enterocytes. | [38] |
Senegalese sole | 109 cfu g−1 | encapsulated in calcium alginate beads | Juvenile, 26.7 ± 4.6 g | 60 | Improved growth rate and survival after Photobacterium damselae subsp. Piscicida | [39] |
Senegalese sole | 109 cfu g−1 | fresh and lyophilized cells added to the pellet | Juvenile, 26.7 ± 4.6 g | 60 | Modulation of intestinal microbiota | [40] |
Gilthead seabream | 109 cfu g−1 | live cells, directly sprayed in pellet | Juvenile, 38.28 ± 0.81 g | 116 | Improved growth performance and stress tolerance under high stocking densities | [41] |
Senegalese sole | 2.5 × 107 cfu mL−1 | bioencapsulated in live vector (Artemia) | Larvae, 10–30 dph | 20 | Modulation of gut microbiota. Better growth performance and body composition | [42] |
Gilthead seabream | 108 cfu g−1 | encapsulated in calcium alginate beads | Juvenile, 41.6 g | 28 | Improved humoral immunity. Up-regulation in immune related genes. Modulation of intestinal microbiota | [37] |
Gilthead seabream | 108 cfu g−1 | lyophilized, diet supplementation (dry pellet) | Juvenile, 15–20 g | 15 | Reduced mortality after L. anguillarum challenge | [23] |
Senegalese sole | 109 cfu g−1 | lyophilized, diet supplementation (dry pellet) | Juvenile, 10–17 g | 60 | Improved cellular immunity. Mortality reduced after Photobacterium damselae subsp. Piscicida challenge | [43] |
Gilthead seabream | 108 cfu g−1 | fresh cells added to the diet (dry pellet) | Juvenile, - | 28 | Improved cellular and humoral immunity and gene expression profile of proinflammatory cytokines under stress | [44] |
Senegalese sole | 109 cfu g−1 | live cells, directly sprayed in pellet | Juvenile, 14.6 ± 0.7 g | 30 | Modulation of the intestinal microbiota under stress | [45] |
Gilthead seabream | 108 cfu g−1 | lyophilized, diet supplementation (dry pellet) | Juvenile, 104.2 g | 30 | Positive proteomic changes in skin mucus under stress | [46] |
Senegalese sole | 2.5 × 107 cfu mL−1 | bioencapsulated in live vector (Artemia) | Larvae, 10–86 dph | 76 | Modulation of gut microbiota and increased DHA/EPA ratios. Enhace growth in length and weight | [47] |
Senegalese sole | 2.5 × 107 cfu mL−1 | bioencapsulated in live vector (Artemia) | Larvae, 2–73 dph | 71 | Beneficial effects on larval development. Up-regulation of genes related to growth and immunity | [48] |
Senegalese sole | 109 cfu g−1 | fresh and lyophilized cells added to the pellet | Juvenile, 23.4 ± 0.3 g | 60 | Higher growth rates with fresh cells. Both fresh and lyophilized cells conferred protection against Photobacterium damselae subsp. Piscicida | [49] |
Senegalese sole | 109 cfu g−1 | live cells, directly sprayed in pellet | Juvenile, 26.7 ± 4.6 g | 21 | Higher adaptability to dietary changes in the intestinal microbiota and potential protective effect against oxidative stress | [50] |
Senegalese sole | 109 cfu g−1 | lyophilized, diet supplementation (dry pellet) | Juvenile, 26.7 ± 4.6 g | 69 | Modulation of intestinal microbiota | [51] |
Senegalese sole | 109 cfu g−1 | - | Juvenile, 14.57 ± 0.71 g | 10 | Administration of OTC and SpPdp11 increases the transcription of genes related to antiapoptotic effects and oxidative stress regulation. | [52] |
Senegalese sole | 2.5 × 107 cfu mL−1 | bioencapsulated in live vector (Artemia) | Larvae, 10–30 dph | 21 | Increased total lipids (n-3 HUFA) and higher growth performance | [53] |
Gilthead seabream | 109 cfu g−1 | live cells, directly sprayed in pellet | Juvenile, 12.5 ± 2.2 g | 28 | Improved antioxidant activity mainly in gills and skin | [54] |
Gilthead seabream | 109 cfu g−1 | fresh cells added to the diet (dry pellet) | Juvenile, 21.81 ± 0.87 g | 30 | Beneficial effects regarding the negative effects in intestinal histology, depressed expression of pro-inflammatory and increased expression of anti-inflammatory cytokines after wounding | [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cámara-Ruiz, M.; Balebona, M.C.; Moriñigo, M.Á.; Esteban, M.Á. Probiotic Shewanella putrefaciens (SpPdp11) as a Fish Health Modulator: A Review. Microorganisms 2020, 8, 1990. https://doi.org/10.3390/microorganisms8121990
Cámara-Ruiz M, Balebona MC, Moriñigo MÁ, Esteban MÁ. Probiotic Shewanella putrefaciens (SpPdp11) as a Fish Health Modulator: A Review. Microorganisms. 2020; 8(12):1990. https://doi.org/10.3390/microorganisms8121990
Chicago/Turabian StyleCámara-Ruiz, María, María Carmen Balebona, Miguel Ángel Moriñigo, and María Ángeles Esteban. 2020. "Probiotic Shewanella putrefaciens (SpPdp11) as a Fish Health Modulator: A Review" Microorganisms 8, no. 12: 1990. https://doi.org/10.3390/microorganisms8121990
APA StyleCámara-Ruiz, M., Balebona, M. C., Moriñigo, M. Á., & Esteban, M. Á. (2020). Probiotic Shewanella putrefaciens (SpPdp11) as a Fish Health Modulator: A Review. Microorganisms, 8(12), 1990. https://doi.org/10.3390/microorganisms8121990