CD209 and Not CD28 or STAT6 Polymorphism Mediates Clinical Malaria and Parasitemia among Children from Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Genomic DNA Isolation
2.2. TaqMan SNP Genotyping Assay
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Snow, R.W.; Guerra, C.A.; Noor, A.M.; Myint, H.Y.; Hay, S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005, 434, 214–217. [Google Scholar] [CrossRef]
- Langhorne, J.; Ndungu, F.; Sponaas, A.; Marsh, K. Immunity to malaria: More questions than answers. Nat. Immunol. 2008, 9, 725–732. [Google Scholar] [CrossRef] [PubMed]
- WHO. Malaria Fact Sheet 2016. Available online: http://www.who.int/mediacentre/factsheets/fs094/en/ (accessed on 1 December 2019).
- Noone, C.; Parkinson, M.; Dowling, D.J.; Aldridge, A.; Kirwan, P.; Molloy, S.F.; Asaolu, S.O.; Holland, C.; O’Neill, S.M. Plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum. Malar. J. 2013, 12, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawal, O.A.; Adegoke, S.A.; Oseni, S.B.; Oyelami, O.A. Low serum vitamin A is prevalent in under five children with severe malaria and is associated with increased risk of death. J. Infect. Dev. Ctries. 2018, 12, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Arama, C.; Maiga, B.; Dolo, A.; Kouriba, B.; Traoré, B.; Crompton, P.D.; Pierce, S.K.; Troye-Blomberg, M.; Miller, L.H.; Doumbo, O.K. Ethnic differences in susceptibility to malaria: What have we learned from immuno-epidemiological studies in West Africa? Acta Trop. 2015, 146, 152–156. [Google Scholar] [CrossRef]
- Fortin, A.; Stevenson, M.M.; Gros, P. Susceptibility to malaria as a complex trait: Big pressure from a tiny creature. Hum. Mol. Genet. 2002, 11, 2469–2478. [Google Scholar] [CrossRef] [Green Version]
- Modiano, D.; Luoni, G.; Sirima, B.S.; Lanfrancotti, A.; Petrarca, V.; Cruciani, F.; Simpore, J.; Siminelli, B.M.; Foglietta, E.; Gristanti, P.; et al. The lower susceptibility to Plasmodium falciparum malaria of Fulani of Burkina Faso (west Africa) is associated with low frequencies of classic malaria-resistance genes. Trans. R. Soc. Trop. Med. Hyg. 2001, 95, 149–152. [Google Scholar] [CrossRef]
- Arama, C.; Quin, J.E.; Kouriba, B.; Östlund Farrants, A.K.; Troye-Blomberg, M.; Doumbo, O.K. Epigenetics and malaria susceptibility/protection: A missing piece of the puzzle. Front. Immunol. 2018, 9, 1733. [Google Scholar] [CrossRef]
- Funwei, R.I.; Thomas, B.N.; Falade, C.O.; Ojurongbe, O. Extensive diversity in the allelic frequency of Plasmodium falciparum merozoite surface proteins and glutamate-rich protein between rural and urban settings in south-western Nigeria. Malar. J. 2018, 17, 1. [Google Scholar] [CrossRef]
- Funwei, R.; Nderu, D.; Nguetse, C.N.; Thomas, B.N.; Falade, C.; Velavan, T.P.; Ojurongbe, O. Deletion of Plasmodium falciparum histidine rich proteins 2 (Pfhrp2) and 3 (Pfhrp3) gene in Nigerian isolates. Acta Trop. 2019, 196, 121–125. [Google Scholar] [CrossRef]
- Mace, K.E.; Arguin, P.M.; Tan, K.R. Malaria surveillance—United States, 2015. MMWR Surveill. Summ. 2018, 67, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Nguetse, C.N.; Ojo, J.A.; Nchotebah, C.; Ikegbunam, M.N.; Thomas, B.N.; Velavan, T.P.; Ojurongbe, O. Genetic diversity of the Plasmodium falciparum glutamate rich protein R2 before and twelve years after introduction of artemisinin combination therapies among febrile children in Nigeria. Am. J. Trop. Med. Hyg. 2018, 98, 667–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prior, K.F.; O’Donnell, A.J.; Rund, S.S.C.; Savill, N.J.; van der Veen, D.R.; Reece, S.E. Host circadian rhythms are disrupted during malaria infection in parasite genotype-secific manners. Sci. Rep. 2019, 9, 10905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Georgiadou, A.; Walther, M.; Nwakanma, D.; Stewart, L.B.; Levin, M.; Otto, T.D.; Conway, D.J.; Coin, L.J.; Cunnington, A.J. Integrated pathogen load and dual transcriptome analysis of systemic host-pathogen interactions in severe malaria. Sci. Transl. Med. 2018, 10, eaar3619. [Google Scholar] [CrossRef] [Green Version]
- Boutlis, C.S.; Yeo, T.W.; Anstey, N.M. Malaria tolerance—For whom the cell tolls? Trends Parasitol. 2006, 22, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Ojurongbe, O.; Funwei, R.I.; Snyder, T.; Aziz, N.; Li, Y.; Falade, C.; Thomas, B.N. Genetic diversity of CD14 promoter gene polymorphism (rs2569190) is associated with regulation of parasitemia but not susceptibility to Plasmodium falciparum infection. Infect. Dis. Res. Treat. 2017, 10, 1178633617726781. [Google Scholar] [CrossRef] [Green Version]
- Ojurongbe, O.; Funwei, R.I.; Snyder, T.; Farid, I.; Aziz, N.; Li, Y.; Falade, C.; Thomas, B.N. Genetic variants of tumor necrosis factor alpha -308G/A (rs1800629) but not Toll-interacting proteins or vitamin D receptor genes enhance susceptibility and severity of malaria infection. Immunogenetics 2018, 70, 135–140. [Google Scholar] [CrossRef]
- Bijker, E.M.; Bastiaens, G.J.; Teirlinck, A.C.; Van Gemert, G.J.; Graumans, W.; van de Vegte-Bolmer, M.; Siebelink-Stoter, R.; Arens, T.; Teelen, K.; Nahrendorf, W.; et al. Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity. Proc. Natl. Acad. Sci. USA 2013, 110, 7862–7867. [Google Scholar] [CrossRef] [Green Version]
- Bijker, E.M.; Schats, R.; Obiero, J.M.; Behet, M.C.; van Gemert, G.-J.; van de Vegte-Bolmer, M.; Graumans, W.; van Lieshout, L.; Bastiaens, G.J.; Teelen, K.; et al. Sporozoite immunization of human volunteers under mefloquine prophylaxis is safe, immunogenic and protective: A double-blind randomized controlled clinical trial. PLoS ONE 2014, 9, e112910. [Google Scholar] [CrossRef] [Green Version]
- Roestenberg, M.; Teirlinck, A.C.; McCall, M.B.; Teelen, K.; Makamdop, K.N.; Wiersma, J.; Arens, T.; Beckers, P.; van Gemert, G.; van de Vegte-Bolmer, M.; et al. Long-term protection against malaria after experimental sporozoite inoculation: An open-label follow-up study. Lancet 2011, 377, 1770–1776. [Google Scholar] [CrossRef]
- Roestenberg, M.; de Vlas, S.J.; Nieman, A.E.; Sauerwein, R.W.; Hermsen, C.C. Efficacy of preerythrocytic and blood-stage malaria vaccines can be assessed in small sporozoite challenge trials in human volunteers. J. Infect. Dis. 2012, 206, 319–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, T.; Chen, Y.; Hao, L.; Zhang, Y. DC-SIGN and immunoregulation. Cell. Mol. Immunol. 2006, 3, 279–283. [Google Scholar] [PubMed]
- Yu, H.R.; Chang, W.P.; Wang, L.; Lin, Y.; Liang, C.; Yang, K.D.; Kuo, C.; Huang, Y.; Chang, W.; Kuo, H. DC-SIGN (CD209) promoter-336 A/G (rs4804803) polymorphism associated with susceptibility of Kawasaki disease. Sci. World J. 2012, 2012, 634835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Ruiz, D.; Ng, W.Y.; Holz, L.E.; Ma, J.; Zaid, A.; Wong, T.C.; Lau, L.S.; Mollard, V.; Cozinjsen, A.; Collins, N.; et al. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection. Immunity 2016, 45, 889–902. [Google Scholar] [CrossRef] [Green Version]
- Sakuntabhai, A.; Turbpaiboon, C.; Casadémont, I.; Chuansumrit, A.; Lowhnoo, T.; Kajaste-Rudnitski, A.; Kalayanarooj, S.M.; Tangnararatchakit, K.; Tangthawornchaikul, N.; Vasanawathana, S.; et al. A variant in the CD209 promoter is associated with severity of dengue disease. Nat. Genet. 2005, 37, 507–513. [Google Scholar] [CrossRef]
- Noble, J.A.; Duru, K.C.; Guindo, A.; Yi, L.; Imumorin, I.G.; Diallo, D.A.; Thomas, B.N. Interethnic diversity of the CD209 (rs4804803) gene promoter polymorphism in African but not American sickle cell disease. Peer J. 2015, 3, e799. [Google Scholar] [CrossRef] [Green Version]
- Herrero, R.; Pineda, J.A.; Rivero-Juarez, A.; Echbarthi, M.; Real, L.M.; Camacho, A.; Macias, J.; Fibla, J.; Rivero, A.; Caruz, A. Common haplotypes in CD209 promoter and susceptibility to HIV-1 infection in intravenous drug users. Infect. Genet. Evol. 2016, 45, 20–25. [Google Scholar] [CrossRef]
- Zupin, L.; Polesello, V.; Alberi, G.; Moratelli, G.; Crocè, S.L.; Masutti, F.; Pozzato, G.; Crovella, S.; Segat, L. CD209 promoter polymorphisms associate with HCV infection and pegylated-interferon plus ribavirin treatment response. Mol. Immunol. 2016, 76, 49–54. [Google Scholar] [CrossRef]
- Afifi, R.A.; Kamal, D.; Sayed, R.E.; Ekladious, S.M.M.; Shaheen, G.H.; Yousry, S.M.; Hussein, R.E. CD209-336A/G promotor polymorphism and its clinical associations in sickle cell disease Egyptian Pediatric patients. Hematol. Oncol. Stem Cell Ther. 2018, 11, 75–81. [Google Scholar] [CrossRef]
- He, Y.X.; Ye, C.L.; Zhang, P.; Li, Q.; Park, C.G.; Yang, K.; Jiang, L.Y.; Lv, Y.; Ying, X.L.; Ding, H.H.; et al. Yersinia pseudotuberculosis exploits CD209 receptors for promoting host dissemination and infection. Infect. Immun. 2018, 87, e00654. [Google Scholar] [CrossRef] [Green Version]
- Pabalan, N.; Chaisri, S.; Tabunhan, S.; Phumyen, A.; Jarjanazi, H.; Steiner, T.S. Associations of DC-SIGN (CD209) promoter -336G/A polymorphism (rs4804803) with dengue infection: A systematic review and meta-analyses. Acta Trop. 2018, 177, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, A.H.; Freeman, G.J. The B7-CD28 superfamily. Nat. Rev. Immunol. 2002, 2, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Elias, R.; Sardinha, L.R.; Bastos, K.R.B.; Zago, C.A.; da Silva, A.P.F.; Alvarez, J.M.; Lima, M.R.D. Role of CD28 in polyclonal and specific T and B cell responses required for protection against blood stage malaria. J. Immunol. 2005, 174, 790–799. [Google Scholar] [CrossRef]
- Butty, V.; Roy, M.; Sabeti, P.; Besse, W.; Benoist, C.; Mathis, D. Signatures of strong population differentiation shape extended haplotypes across the human CD28, CTLA4, and ICOS costimulatory genes. Proc. Natl. Acad. Sci. USA 2007, 104, 570–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, J.; Zhang, S.; Gao, X. Quantitative assessment of the associations between CD28 T>C polymorphism (rs3116496) and cancer risk. Tumor Biol. 2014, 35, 9195–9200. [Google Scholar] [CrossRef] [PubMed]
- Elghzaly, A.A.; Metwally, S.S.; El-Chennawi, F.A.; Elgayaar, M.A.; Mosaad, Y.M.; El-Toraby, E.E.; Hegab, M.M.; Ibrahim, S.M. IRF5, PTPN22, CD28, IL2RA, KIF5A, BLK and TNFAIP3 genes polymorphisms and lupus susceptibility in a cohort from the Egypt Delta; relation to other ethnic groups. Hum. Immunol. 2015, 76, 525–531. [Google Scholar] [CrossRef]
- Niknam, A.; Karimi, M.H.; Geramizadeh, B.; Roozbeh, J.; Yaghobi, R.; Salehipour, M. Polymorphisms of the costimulatory genes CTLA-4, CD28, PD-1, and ICOS and outcome of kidney transplants in Iranian patients. Exp. Clin. Transpl. 2017, 15, 295–305. [Google Scholar]
- Cassiano, G.C.; Furini, A.A.; Capobianco, M.P.; Storti-Melo, L.M.; Cunha, M.G.; Kano, F.S.; Carvalho, L.H.; Soares, I.S.; Santos, S.E.; Póvoa, M.M.; et al. Polymorphisms in B cell co-stimulatory genes are associated with IgG antibody responses against blood-stage proteins of Plasmodium vivax. PLoS ONE 2016, 11, e0149581. [Google Scholar] [CrossRef]
- Leoratti, F.M.; Farias, L.; Alves, F.P.; Suarez-Mútis, M.C.; Coura, J.R.; Kalil, J.; Camargo, E.P.; Moraes, S.L.; Ramasawmy, R. Variants in the toll-like receptor signaling pathway and clinical outcomes of malaria. J. Infect. Dis. 2008, 198, 772–780. [Google Scholar] [CrossRef]
- Koukouikila-Koussounda, F.; Ntoumi, F.; Ndounga, M.; Tong, H.V.; Abena, A.A.; Velavan, T.P. Genetic evidence of regulatory gene variants of the STAT6, IL10R and FOXP3 locus as a susceptibility factor in uncomplicated malaria and parasitaemia in Congolese children. Malar. J. 2013, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Amoako-Sakyi, D.; Adukpo, S.; Kusi, K.A.; Dodoo, D.; Ofori, M.F.; Adjei, G.O.; Edoh, D.E.; Asmah, R.H.; Brown, C.; Adu, B.; et al. A STAT6 intronic single nucleotide polymorphism is associated with clinical malaria in Ghanaian children. Genet. Epigenet. 2016, 8, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trape, J.F. Rapid evaluation of malaria parasite density and standardization of thick smear examination for epidemiological investigations. Trans. R. Soc. Trop. Med. Hyg. 1985, 79, 181–184. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adedokun, S.A.; Seamans, B.N.; Cox, N.T.; Liou, G.; Ojurongbe, O.; Thomas, B.N. Interleukin-4 and STAT-6 polymorphisms but not interleukin 10 or 13 are essential for regulating schistosomiasis and disease burden in south-western Nigeria. Infect. Genet. Evol. 2018, 65, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Seka-Seka, J.; Brouh, Y.; Yapo-Crézoit, A.C.; Atseye, N.H. The role of serum immunoglobulin E in the pathogenesis of Plasmodium falciparum malaria in Ivorian children. Scand. J. Immunol. 2004, 59, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Park, K.T.; ElNaggar, M.M.; Abdellrazeq, G.S.; Bannantine, J.P.; Mack, V.; Fry, L.M.; Davis, W.C. Phenotype and function of CD209+ bovine blood dendritic cells, monocyte-derived-dendritic cells and monocyte-derived macrophages. PLoS ONE 2016, 11, e0165247. [Google Scholar] [CrossRef]
- Taylor, A.; Rudd, C.E. Glycogen synthase kinase 3 inactivation compensates for the lack of CD28 in the priming of CD8+ cytotoxic T-cells: Implications for anti-PD-1 immunotherapy. Front. Immunol. 2017, 8, 1653. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Larsson, M.; Schön, T.; Stendahl, O.; Blomgran, R. HIV interferes with the dendritic cell-T cell axis of macrophage activation by shifting Mycobacterium tuberculosis-specific CD4 T cells into a dysfunctional phenotype. J. Immunol. 2019, 202, 816–826. [Google Scholar] [CrossRef] [Green Version]
- Duetsch, G.; Illig, T.; Loesgen, S.; Rohde, K.; Klopp, N.; Herbon, N.; Gohlke, H.; Altmueller, J.; Wjst, M. STAT6 as an asthma candidate gene: Polymorphism-screening, association and haplotype analysis in a Caucasian subpair study. Hum. Mol. Genet. 2002, 11, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Vannberg, F.O.; Chapman, S.J.; Khor, C.C.; Tosh, K.; Floyd, S.; Jackson-Sillah, D.; Crampin, A.; Sichali, L.; Bah, B.; Gustafson, P.; et al. CD209 genetic polymorphism and tuberculosis disease. PLoS ONE 2008, 3, e1388. [Google Scholar] [CrossRef] [Green Version]
- Colmenares, M.; Puig-Kroger, A.; Pello, O.M.; Corbi, A.L.; Rivas, L. Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes. J. Biol. Chem. 2002, 277, 36766–36769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naderi, M.; Hashemi, M.; Taheri, M.; Pesarakli, H.; Eskandari-Nasab, E.; Bahari, G. CD209 promoter -n336 A/G (rs4804803) polymorphism is associated with susceptibility to pulmonary tuberculosis in Zahedan, southeast Iran. J. Microbiol. Immunol. Infect. 2014, 47, 171–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, A.C. Protection afforded by sickle cell trait against sub-tertian malarial infection. Br. Med. J. 1954, 1, 290–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, M.E.; Luiz, R.S.; Karina, R.B.B.; Cláudia, A.Z.; Ana Paula, F.S.; José, M.A.; Maria, R.D.L. Role of CD28 in polyclonal and specific T and B cell responses required for protection against blood stage malaria. J. Immunol. 2005, 174, 790–799. [Google Scholar]
- Gause, W.C.; Mitro, V.; Via, C.; Linsley, P.; Urban, J.F.; Greenwald, R.J. Do effector and memory T helper cells also need B7 ligand costimulatory signals? J. Immunol. 1997, 159, 1055–1058. [Google Scholar] [PubMed]
- Gause, W.C.; Chen, S.J.; Greenwald, R.J.; Halvorson, M.J.; Lu, P.; Zhou, X.D.; Morris, S.C.; Lee, K.P.; June, C.H.; Finkelman, F.D.; et al. CD28 dependence of T cell differentiation to IL-4 production varies with the particular type 2 immune response. J. Immunol. 1997, 158, 4082–4087. [Google Scholar] [PubMed]
- Teutsch, S.M.; Booth, D.R.; Bennetts, B.H.; Heard, R.N.; Stewart, G.J. Association of common T cell activation gene polymorphisms with multiple sclerosis in Australian patients. J. Neuroimmunol. 2004, 148, 218–230. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Q.; Shen, L.; Liu, Y.; Xu, F.; Li, D.; Fu, Z.; Yuan, W.; Pang, D.; Li, D. Investigation of CD28 gene polymorphisms in patients with sporadic breast cancer in a Chinese Han population in Northeast China. PLoS ONE 2012, 7, e48031. [Google Scholar] [CrossRef] [Green Version]
Polymorphism | Genotype | Malaria (n = 231) | Controls (n = 330) | Odds Ratio (95% CI) | p-Value |
---|---|---|---|---|---|
STAT6 (rs3024974) | G/G | 171 (74.0) | 241 (74.4) | 1 | - |
G/A | 40 (17.3) | 65 (20.1) | 1.15 (0.74–1.79) | 0.3 | |
A/A | 20 (8.7) | 18 (5.6) | 0.64 (0.33–1.24) | - | |
Dominant | |||||
G/G | 171 (74.0) | 241 (74.4) | 1 | - | |
G/A-A/A | 60 (26.0) | 83 (25.6) | 0.98 (0.67–1.44) | 0.92 | |
Recessive | |||||
G/G-G/A | 211 (91.3) | 306 (94.4) | 1 | - | |
A/A | 20 (8.7) | 18 (5.6) | 0.62 (0.32–1.20) | 0.16 | |
Overdominant | |||||
G/G-A/A | 191 (82.7) | 259 (79.9) | 1 | - | |
G/A | 40 (17.3) | 65 (20.1) | 1.20 (0.77–1.85) | 0.16 |
Polymorphism | Genotype | Malaria (n = 231) | Controls (n = 330) | Odds Ratio (95% CI) | p-Value |
---|---|---|---|---|---|
CD28 (rs35593994) | G/G | 50 (22.1) | 173 (54.9) | 1 | - |
G/A | 148 (65.5) | 89 (28.2) | 0.17 (0.12–0.26) | 0.0001 | |
A/A | 28 (12.4) | 53 (16.8) | 0.55 (0.31–0.95) | - | |
Dominant | |||||
G/G | 50 (21.1) | 173 (54.9) | 1 | - | |
G/A-A/A | 176 (77.9) | 142 (45.1) | 0.23 (0.16–0.34) | 0.0001 | |
Recessive | |||||
G/G-G/A | 198 (87.6) | 262 (83.2) | 1 | - | |
A/A | 28 (12.4) | 53 (16.8) | 1.43 (0.87–2.34) | 0.15 | |
Overdominant | |||||
G/G-A/A | 78 (34.5) | 226 (71.8) | 1 | ||
G/A | 148 (65.5) | 89 (28.2) | 0.21 (0.14–0.30) | 0.0001 |
Polymorphism | Genotype | Malaria (n = 231) | Controls (n = 330) | Odds Ratio (95% CI) | p-Value |
---|---|---|---|---|---|
CD209 (rs4804803) | A/A | 44 (20.7) | 163 (52.1) | 1 | - |
A/G | 71 (33.3) | 79 (25.2) | 0.30 (0.19–0.48) | 0.0001 | |
G/G | 98 (46) | 71 (22.7) | 0.20 (0.12–0.31) | ||
Dominant | |||||
A/A | 44 (20.7) | 163 (52.1) | 1 | - | |
A/G-G/G | 169 (79.3) | 150 (47.9) | 0.24 (0.16–0.36) | 0.0001 | |
Recessive | |||||
A/A-A/G | 115 (54) | 242 (77.3) | 1 | - | |
G/G | 98 (46) | 71 (22.7) | 0.34 (0.24–0.50) | 0.0001 | |
Overdominant | |||||
A/A-G/G | 142 (66.7) | 234 (74.8) | 1 | - | |
A/G | 71 (33.3) | 79 (25.2) | 0.68 (0.46–0.99) | 0.044 |
Haplotype | Haplotype Definition | Haplotype Frequency | ||||||
---|---|---|---|---|---|---|---|---|
STAT6 (-G > A) |
CD209 (-383A > G) |
CD28 (-372G > A) | Malaria | Controls | Malaria vs. Controls | OR (95% CI) | p-Value | |
H1 | G | A | A | 0.1431 | 0.3688 | 0.2794 | 1 | NA |
H2 | G | G | A | 0.3053 | 0.2261 | 0.2556 | 0.41 (0.27–0.61) | 0.0001 |
H3 | G | A | G | 0.1559 | 0.17 | 0.1612 | 0.43 (0.27–0.71) | 0.001 |
H4 | G | G | G | 0.2225 | 0.0791 | 0.1408 | 0.20 (0.13–0.31) | 0.0001 |
H5 | A | A | A | 0.0663 | 0.0643 | 0.0649 | 0.49 (0.25–0.96) | 0.038 |
H6 | A | A | G | 0.008 | 0.0442 | 0.0293 | 2.09 (0.27–16.22) | 0.48 |
H7 | A | G | A | 0.0341 | 0.0308 | 0.032 | 0.48 (0.21–1.11) | 0.086 |
H8 | A | G | G | 0.0648 | 0.0166 | 0.0369 | 0.12 (0.04–0.35) | 1 × 10−4 |
D-Stat/p-Values | STAT6 (rs3024974) | CD209 (rs4804803) | CD28 (rs35593994) |
---|---|---|---|
STAT6 (rs3024974) | - | 0.0075 | 0.0103 |
CD209 (rs4804803) | 0.187 | - | 0.0022 |
CD28 (rs35593994) | 0.0582 | 0.7655 | - |
Polymorphism | Genotype | Age (Months) | Temperature (Celsius) | PCV (%) | Parasitemia (per μL of blood) |
---|---|---|---|---|---|
STAT6 (rs3024974) | GG | 59 | 38 | 34 | 24,952 |
GA | 46 | 38 | 31 | 8891 | |
AA | 96 | 38 | 34 | 22,523 | |
MeanTotal | 201 | 114 | 99 | 56,366 | |
p-value | GG vs. GA | 0.0552 | 0.0272 | 0.0539 | 0.0012 |
GG vs. AA | 0.0035 | 0.1474 | 0.7942 | 0.7357 | |
GA vs. AA | 0.0003 | 0.0096 | 0.0083 | 0.0568 | |
CD28(snp: -372G/A) | GG | 77 | 38 | 34 | 14,956 |
GA | 53 | 38 | 34 | 24,279 | |
AA | 67 | 38 | 32 | 19,727 | |
Mean Total | 197 | 114 | 100 | 58962 | |
p-value | GG vs. GA | 0.0708 | 0.4436 | 0.2428 | 0.4489 |
GG vs. AA | 0.3617 | 0.4131 | 0.1878 | 0.4521 | |
GA vs. AA | 0.0211 | 0.1292 | 0.7745 | 0.1315 | |
CD209(snp: -383A/G) | AA | 37 | 38 | 30 | 12,139 |
AG | 78 | 38 | 33 | 22,415 | |
GG | 58 | 38 | 36 | 26,028 | |
Mean Total | 173 | 114 | 99 | ||
p-value | AA vs. AG | 6.1306 ×10−4 | 0.3679 | 0.0045 | 0.0495 |
AA vs. GG | 0.0019 | 0.2925 | 0.0941 | 0.0399 | |
AG vs. GG | 0.0094 | 0.8312 | 0.4369 | 0.5983 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morenikeji, O.B.; Metelski, J.L.; Hawkes, M.E.; Capria, A.L.; Seamans, B.N.; Falade, C.O.; Ojurongbe, O.; Thomas, B.N. CD209 and Not CD28 or STAT6 Polymorphism Mediates Clinical Malaria and Parasitemia among Children from Nigeria. Microorganisms 2020, 8, 158. https://doi.org/10.3390/microorganisms8020158
Morenikeji OB, Metelski JL, Hawkes ME, Capria AL, Seamans BN, Falade CO, Ojurongbe O, Thomas BN. CD209 and Not CD28 or STAT6 Polymorphism Mediates Clinical Malaria and Parasitemia among Children from Nigeria. Microorganisms. 2020; 8(2):158. https://doi.org/10.3390/microorganisms8020158
Chicago/Turabian StyleMorenikeji, Olanrewaju B., Jessica L. Metelski, Megan E. Hawkes, Anna L. Capria, Brooke N. Seamans, Catherine O. Falade, Olusola Ojurongbe, and Bolaji N. Thomas. 2020. "CD209 and Not CD28 or STAT6 Polymorphism Mediates Clinical Malaria and Parasitemia among Children from Nigeria" Microorganisms 8, no. 2: 158. https://doi.org/10.3390/microorganisms8020158
APA StyleMorenikeji, O. B., Metelski, J. L., Hawkes, M. E., Capria, A. L., Seamans, B. N., Falade, C. O., Ojurongbe, O., & Thomas, B. N. (2020). CD209 and Not CD28 or STAT6 Polymorphism Mediates Clinical Malaria and Parasitemia among Children from Nigeria. Microorganisms, 8(2), 158. https://doi.org/10.3390/microorganisms8020158