Emerging Treatment Options for Infections by Multidrug-Resistant Gram-Positive Microorganisms
Abstract
:1. Introduction
2. Phase III Drugs and Drugs with NDA Submitted
2.1. Dihydrofolate Reductase Inhibitors
Iclaprim
2.2. Ketolides
2.2.1. Cethromycin
2.2.2. Solithromycin
2.3. Oxazolidinones
Contezolid
2.4. Quinolones
2.4.1. Lascufloxacin
2.4.2. Nemonoxacin
2.4.3. Levonadifloxacin
2.4.4. Zabofloxacin
2.5. Defensin Mimetic
Brilacidin
3. Phase II Drugs
3.1. β-lactams
3.1.1. Razupenem
3.1.2. Tomopenem
3.2. Brilacidin
Radezolid
3.3. Novel Bacterial Topoisomerase II Inhibitor
Gepotidacin
3.4. FabI Inhibitor
3.4.1. DEBIO1450
3.4.2. CG400549
4. Phase I Drugs
4.1. Aminoglycosides
ME1100
4.2. Quinolones
4.2.1. Alalevonadifloxacin
4.2.2. Avarofloxacin
4.3. Polymyxin Derivatives
SPR-741
4.4. Clostridium Difficile Infections (CDI)
4.4.1. Ridinilazole
4.4.2. CRS3123
4.4.3. DS-2969
4.4.4. MGB-BP-3
4.5. Other Antibiotic Categories
4.5.1. KBP-7072
4.5.2. Teixobactin
4.5.3. TP-271
5. Promising Alternative Treatment Approaches
5.1. Bacteriophages
AB-SA01 and Other Bacteriophages
5.2. Monoclonal Antibodies
5.2.1. CAL02
5.2.2. AR-301 (Formerly KBSA301)
5.2.3. ASN-100
6. Conclusions
Funding
Conflicts of Interest
References
- Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: An emerging crisis. Interdiscip. Perspect. Infect. Dis. 2014. [Google Scholar] [CrossRef] [Green Version]
- Gelband, H.; Molly Miller, P.; Pant, S.; Gandra, S.; Levinson, J.; Barter, D.; White, A.; Laxminarayan, R. The state of the world’s antibiotics 2015. Wound Heal. South. Afr. 2015, 8, 30–34. [Google Scholar]
- Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Med. Chem. 2014, 6, 25–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koulenti, D.; Xu, E.; Yin Sum Mok, I.; Song, A.; Karageorgopoulos, D.E.; Armaganidis, A.; Lipman, J.; Tsiodras, S. Novel antibiotics for multidrug-resistant gram-positive microorganisms. Microorganisms 2019, 7, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koulenti, D.; Xu, E.; Yin Sum Mok, I.; Song, A.; Karageorgopoulos, D.E.; Armaganidis, A.; Lipman, J.; Tsiodras, S. Lefamulin. Comment on: “Novel Antibiotics for Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms 2019, 7, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dale, G.E.; Broger, C.; Hartman, P.G.; Langen, H.; Page, M.G.; Then, R.L. Characterization of the gene for the chromosomal dihydrofolate reductase (DHFR) of Staphylococcus epidermidis ATCC 14990: The origin of the trimethoprim-resistant S1 DHFR from Staphylococcus aureus? J. Bacteriol. 1995, 177, 2965–2970. [Google Scholar] [CrossRef] [Green Version]
- Dale, G.E.; Broger, C.; D’Arcy, A.; Hartman, P.G.; DeHoogt, R.; Jolidon, S.; Kompis, I.; Labhardt, A.M.; Langen, H.; Locher, H.; et al. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J. Mol. Biol. 1997. [Google Scholar] [CrossRef] [Green Version]
- Laue, H.; Weiss, L.; Bernardi, A.; Hawser, S.; Lociuro, S.; Islam, K. In vitro activity of the novel diaminopyrimidine, iclaprim, in combination with folate inhibitors and other antimicrobials with different mechanisms of action. J. Antimicrob. Chemother. 2007, 60, 1391–1394. [Google Scholar] [CrossRef]
- Oefner, C.; Bandera, M.; Haldimann, A.; Laue, H.; Schulz, H.; Mukhija, S.; Parisi, S.; Weiss, L.; Lociuro, S.; Dale, G.E. Increased hydrophobic interactions of iclaprim with Staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity. J. Antimicrob. Chemother. 2009, 63, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Peppard, W.J.; Schuenke, C.D. Iclaprim, a diaminopyrimidine dihydrofolate reductase inhibitor for the potential treatment of antibiotic-resistant staphylococcal infections. Curr. Opin. Investig. Drugs 2008, 9, 210–225. [Google Scholar]
- Sader, H.S.; Fritsche, T.R.; Jones, R.N. Potency and bactericidal activity of iclaprim against recent clinical gram-positive isolates. Antimicrob. Agents Chemother. 2009, 53, 2171–2175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, J.; Honeybourne, D.; Ashby, J.; Jevons, G.; Fraise, A.; Fry, P.; Warrington, S.; Hawser, S.; Wise, R. Concentrations in plasma, epithelial lining fluid, alveolar macrophages and bronchial mucosa after a single intravenous dose of 1.6 mg/kg of iclaprim (AR-100) in healthy men. J. Antimicrob. Chemother. 2007, 60, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Holland, T.L.; O’Riordan, W.; McManus, A.; Shin, E.; Borghei, A.; File, T.M., Jr.; Wilcox, M.H.; Torres, A.; Dryden, M.; Lodise, T.; et al. A Phase 3, Randomized, Double-Blind, Multicenter Study to Evaluate the Safety and Efficacy of Intravenous Iclaprim versus Vancomycin for Treatment of Acute Bacterial Skin and Skin Structure Infections Suspected or Confirmed to Be Due to Gram-Positive Pathogens (REVIVE-2 Study). Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. Mersarex: Withdrawal of the Marketing Authorisation Application. Available online: https://www.ema.europa.eu/en/medicines/human/withdrawn-applications/mersarex (accessed on 24 November 2019).
- Sincak, C.A.; Schmidt, J.M. Iclaprim, a novel diaminopyrimidine for the treatment of resistant gram-positive infections. Ann. Pharmacother. 2009, 43, 1107–1114. [Google Scholar] [CrossRef]
- Kohlhoff, S.A.; Sharma, R. Iclaprim. Expert Opin. Investig. Drugs 2007, 16, 1441–1448. [Google Scholar] [CrossRef]
- Huang, D.B.; Strader, C.D.; MacDonald, J.S.; VanArendonk, M.; Peck, R.; Holland, T. An Updated Review of Iclaprim: A Potent and Rapidly Bactericidal Antibiotic for the Treatment of Skin and Skin Structure Infections and Nosocomial Pneumonia Caused by Gram-Positive Including Multidrug-Resistant Bacteria. Open Forum Infect Dis 2018, 5, ofy003. [Google Scholar] [CrossRef] [Green Version]
- Noviello, S.; Huang, D.B.; Corey, G.R. Iclaprim: A differentiated option for the treatment of skin and skin structure infections. Expert Rev. Anti-Infect. Ther. 2018, 16, 793–803. [Google Scholar] [CrossRef]
- Poulakou, G.; Giannitsioti, E.; Tsiodras, S. What is new in the management of skin and soft tissue infections in 2016? Curr. Opin. Infect. Dis. 2017, 30, 158–171. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. Clinical Efficacy of Intravenous Iclaprim Versus Vancomycin in the Treatment of Hospital-Acquired, Ventilator-Associated, or Health-Care-Associated Pneumonia. Available online: https://clinicaltrials.gov/ct2/show/NCT00543608 (accessed on 29 July 2019).
- Huang, D.B.; File, T.M., Jr.; Torres, A.; Shorr, A.F.; Wilcox, M.H.; Hadvary, P.; Dryden, M.; Corey, G.R. A Phase II Randomized, Double-blind, Multicenter Study to Evaluate Efficacy and Safety of Intravenous Iclaprim Versus Vancomycin for the Treatment of Nosocomial Pneumonia Suspected or Confirmed to be Due to Gram-positive Pathogens. Clin.Ther. 2017, 39, 1706–1718. [Google Scholar] [CrossRef]
- Krievins, D.; Brandt, R.; Hawser, S.; Hadvary, P.; Islam, K. Multicenter, randomized study of the efficacy and safety of intravenous iclaprim in complicated skin and skin structure infections. Antimicrob. Agents Chemother. 2009, 53, 2834–2840. [Google Scholar] [CrossRef] [Green Version]
- Stevens, D.; Leighton, A.; Dankner, W.M.; Islam, K.; Hadváry, P. Efficacy of iclaprim in complicated skin and skin structure infections: preliminary results of ASSIST-1. In Proceedings of the Annual Meeting of the Infectious Disease Society of America, San Diego, CA, USA, 4–7 October 2007. [Google Scholar]
- Dryden, M.; O’Hare, M.D.; Sidarous, E.; Hadváry, P.; Islam, K. Clinical efficacy of iclaprim in complicated skin and skin structure infection (cSSSI): Preliminary results from the ASSIST-2 clinical trial. In Proceedings of the Poster P545 presented at: The 18th Annual European Congress of Clinical Microbiology and Infectious Diseases Meeting, Barcelona, Spain, 19–22 April 2008. [Google Scholar]
- Arpida Ltd. FDA Issues Complete Response Letter for Iclaprim. Available online: https://www.fiercebiotech.com/biotech/fda-issues-complete-response-letter-for-iclaprim (accessed on 24 November 2019).
- Motif Bio. FDA Grants Fast Track Designation for Iclaprim. Available online: https://www.motifbio.com/news/fda-grants-fast-track-designation-for-iclaprim/ (accessed on 24 November 2019).
- Huang, D.B.; O’Riordan, W.; Overcash, J.S.; Heller, B.; Amin, F.; File, T.M.; Wilcox, M.H.; Torres, A.; Dryden, M.; Holland, T.L.; et al. A Phase 3, Randomized, Double-Blind, Multicenter Study to Evaluate the Safety and Efficacy of Intravenous Iclaprim Vs Vancomycin for the Treatment of Acute Bacterial Skin and Skin Structure Infections Suspected or Confirmed to be Due to Gram-Positive Pathogens: REVIVE-1. Clin. Infect. Dis. 2018, 66, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.B.; Corey, G.R.; Holland, T.L.; Lodise, T.; O’Riordan, W.; Wilcox, M.H.; File, T.M., Jr.; Dryden, M.; Balser, B.; Desplats, E.; et al. Pooled analysis of the phase 3 REVIVE trials: Randomised, double-blind studies to evaluate the safety and efficacy of iclaprim versus vancomycin for treatment of acute bacterial skin and skin-structure infections. Int. J. Antimicrob. Agents 2018, 52, 233–240. [Google Scholar] [CrossRef]
- Pharmaceutical Technology. US FDA Accepts the NDA for Motif Bio’s Iclaprim for ABSSSI Treatment. Available online: https://www.pharmaceutical-technology.com/news/fda-nda-motif-bios-iclaprim/ (accessed on 24 November 2019).
- Globe Newswire. Motif Bio Announces Path Forward for Iclaprim Following Receipt of FDA Meeting Minutes. Available online: https://www.drugs.com/clinical_trials/motif-bio-announces-path-forward-iclaprim-following-receipt-fda-meeting-minutes-18171.html (accessed on 19 January 2020).
- Motif Bio. Motif Bio Announces Iclaprim Granted Orphan Drug Designation by US FDA for Treatment of Staphylococcus Aureus Lung Infections in Patients with Cystic Fibrosis. Available online: https://globenewswire.com/news-release/2017/09/15/1123320/0/en/Motif-Bio-announces-iclaprim-granted-Orphan-Drug-Designation-by-US-FDA-for-treatment-of-Staphylococcus-aureus-lung-infections-in-patients-with-cystic-fibrosis.html (accessed on 24 November 2019).
- Van Bambeke, F.; Harms, J.M.; Van Laethem, Y.; Tulkens, P.M. Ketolides: pharmacological profile and rational positioning in the treatment of respiratory tract infections. Expert Opin. Pharm. 2008, 9, 267–283. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Crawford, S.A.; McElmeel, M.L.; Whitney, C.G. Activities of cethromycin and telithromycin against recent North American isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 605–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Outterson, K.; Powers, J.H.; Seoane-Vazquez, E.; Rodriguez-Monguio, R.; Kesselheim, A.S. Approval and withdrawal of new antibiotics and other antiinfectives in the U.S., 1980-2009. J. Law Med. Ethics 2013, 41, 688–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinker, A.D.; Wassel, R.T.; Lyndly, J.; Serrano, J.; Avigan, M.; Lee, W.M.; Seeff, L.B. Telithromycin-associated hepatotoxicity: Clinical spectrum and causality assessment of 42 cases. Hepatology 2009, 49, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, F.J.; Schwarz, S.; Milatovic, D.; Verhoef, J.; Fluit, A. In vitro activities of the ketolides ABT-773 and telithromycin and of three macrolides against genetically characterized isolates of Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis. J. Antimicrob. Chemother. 2002, 50, 145–148. [Google Scholar] [CrossRef] [Green Version]
- English, M.L.; Fredericks, C.E.; Milanesio, N.A.; Rohowsky, N.; Xu, Z.-Q.; Jenta, T.R.J.; Flavin, M.T.; Eiznhamer, D.A. Cethromycin versus clarithromycin for community-acquired pneumonia: Comparative efficacy and safety outcomes from two double-blinded, randomized, parallel-group, multicenter, multinational noninferiority studies. Antimicrob. Agents Chemother. 2012, 56, 2037–2047. [Google Scholar] [CrossRef] [Green Version]
- U.S. National Library of Medicine. Study Comparing the Safety and Efficacy of Cethromycin to Clarithromycin for the Treatment of Community-Acquired Pneumonia. Available online: https://clinicaltrials.gov/ct2/show/NCT00336544 (accessed on 24 November 2019).
- U.S. National Library of Medicine. Study Comparing the Safety and Efficacy of Cethromycin to Clarithromycin for the Treatment of Community-Acquired Pneumonia (CAP). Available online: https://clinicaltrials.gov/ct2/show/NCT00336505 (accessed on 24 November 2019).
- Advanced Life Sciences Holdings. Complete Response Letter for Restanza NDA. Available online: https://www.drugs.com/nda/restanza_090806.html (accessed on 24 November 2019).
- Buege, M.J.; Brown, J.E.; Aitken, S.L. Solithromycin: A novel ketolide antibiotic. Am J Health Syst Pharm 2017, 74, 875–887. [Google Scholar] [CrossRef]
- Fernandes, P.; Martens, E.; Bertrand, D.; Pereira, D. The solithromycin journey—It is all in the chemistry. Bioorganic Med. Chem. 2016, 24, 6420–6428. [Google Scholar] [CrossRef] [Green Version]
- Putnam, S.D.; Sader, H.S.; Farrell, D.J.; Biedenbach, D.J.; Castanheira, M. Antimicrobial characterisation of solithromycin (CEM-101), a novel fluoroketolide: Activity against staphylococci and enterococci. Int. J. Antimicrob. Agents 2011, 37, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Farrell, D.J.; Sader, H.S.; Castanheira, M.; Biedenbach, D.J.; Rhomberg, P.R.; Jones, R.N. Antimicrobial characterisation of CEM-101 activity against respiratory tract pathogens, including multidrug-resistant pneumococcal serogroup 19A isolates. Int. J. Antimicrob. Agents 2010, 35, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, S.; Van Bambeke, F.; Tulkens, P.M. Cellular accumulation and pharmacodynamic evaluation of the intracellular activity of CEM-101, a novel fluoroketolide, against Staphylococcus aureus, Listeria monocytogenes, and Legionella pneumophila in human THP-1 macrophages. Antimicrob. Agents Chemother. 2009, 53, 3734–3743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melinta Therapeutics. Cempra Pharmaceuticals Presents New Data on Its Next Generation Fluoroketolide, Solithromycin (Cem-101) at the 50th Interscience Conference on Antimicrobial Agents and Chemotherapy (Icaac). Available online: http://ir.melinta.com/news-releases/news-release-details/cempra-pharmaceuticals-presents-new-data-its-next-generation (accessed on 24 November 2019).
- Rodvold, K.A.; Gotfried, M.H.; Still, J.G.; Clark, K.; Fernandes, P. Comparison of plasma, epithelial lining fluid, and alveolar macrophage concentrations of solithromycin (CEM-101) in healthy adult subjects. Antimicrob. Agents Chemother. 2012, 56, 5076–5081. [Google Scholar] [CrossRef] [Green Version]
- Still, J.G.; Schranz, J.; Degenhardt, T.P.; Scott, D.; Fernandes, P.; Gutierrez, M.J.; Clark, K. Pharmacokinetics of solithromycin (CEM-101) after single or multiple oral doses and effects of food on single-dose bioavailability in healthy adult subjects. Antimicrob. Agents Chemother. 2011, 55, 1997–2003. [Google Scholar] [CrossRef]
- MacLauchlin, C.; Schneider, S.E.; Keedy, K.; Fernandes, P.; Jamieson, B.D. Metabolism, excretion, and mass balance of solithromycin in humans. Antimicrob. Agents Chemother. 2018, 62, e01474-17. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, B.D.; Ciric, S.; Fernandes, P. Safety and Pharmacokinetics of Solithromycin in Subjects with Hepatic Impairment. Antimicrob. Agents Chemother. 2015, 59, 4379–4386. [Google Scholar] [CrossRef] [Green Version]
- Barrera, C.M.; Mykietiuk, A.; Metev, H.; Nitu, M.F.; Karimjee, N.; Doreski, P.A.; Mitha, I.; Tanaseanu, C.M.; Molina, J.M.; Antonovsky, Y.; et al. Efficacy and safety of oral solithromycin versus oral moxifloxacin for treatment of community-acquired bacterial pneumonia: A global, double-blind, multicentre, randomised, active-controlled, non-inferiority trial (SOLITAIRE-ORAL). Lancet Infect. Dis. 2016, 16, 421–430. [Google Scholar] [CrossRef]
- File, T.M., Jr.; Rewerska, B.; Vucinic-Mihailovic, V.; Gonong, J.R.V.; Das, A.F.; Keedy, K.; Taylor, D.; Sheets, A.; Fernandes, P.; Oldach, D.; et al. SOLITAIRE-IV: A Randomized, Double-Blind, Multicenter Study Comparing the Efficacy and Safety of Intravenous-to-Oral Solithromycin to Intravenous-to-Oral Moxifloxacin for Treatment of Community-Acquired Bacterial Pneumonia. Clin. Infect. Dis. 2016, 63, 1007–1016. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. Safety and Efficacy of Solithromycin in Adolescents and Children with Community-Acquired Bacterial Pneumonia. Available online: https://clinicaltrials.gov/ct2/show/results/NCT02605122 (accessed on 24 November 2019).
- Cempra Pharmaceuticals. A Single-Center, Double-Blind, Randomized, Placebo-Controlled Crossover Study to Evaluate the Effect of Solithromycin on Airway Inflammation in Male and Female Patients with Chronic Obstructive Pulmonary Disease. Available online: https://www.clinicaltrialsregister.eu/ctr-search/rest/download/result/attachment/2014-003077-42/1/21688 (accessed on 24 November 2019).
- Chen, M.Y.; McNulty, A.; Avery, A.; Whiley, D.; Tabrizi, S.N.; Hardy, D.; Das, A.F.; Nenninger, A.; Fairley, C.K.; Hocking, J.S. Solithromycin versus ceftriaxone plus azithromycin for the treatment of uncomplicated genital gonorrhoea (SOLITAIRE-U): A randomised phase 3 non-inferiority trial. Lancet Infect. Dis. 2019, 19, 833–842. [Google Scholar] [CrossRef]
- Cempra Pharmaceuticals. Cempra Receives Complete Response Letter from FDA For Solithromycin NDAs. Available online: https://globenewswire.com/news-release/2016/12/29/902088/0/en/Cempra-Receives-Complete-Response-Letter-From-FDA-For-Solithromycin-NDAs.html (accessed on 24 November 2019).
- Li, C.R.; Zhai, Q.Q.; Wang, X.K.; Hu, X.X.; Li, G.Q.; Zhang, W.X.; Pang, J.; Lu, X.; Yuan, H.; Gordeev, M.F.; et al. In vivo antibacterial activity of MRX-I, a new oxazolidinone. Antimicrob Agents Chemother 2014, 58, 2418–2421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MicuRx Pharmaceuticals. MicuRx Announces Receipt of FDA’s QIDP and Fast Track Designations for Contezolid and Contezolid Acefosamil. Available online: http://micurxchina.com/corporate-news (accessed on 24 November 2019).
- Shinabarger, D. Mechanism of action of the oxazolidinone antibacterial agents. Expert Opin. Investig. Drugs 1999, 8, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Shoen, C.; DeStefano, M.; Hafkin, B.; Cynamon, M. In Vitro and In Vivo Activities of Contezolid (MRX-I) against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2018, 62, e00493-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordeev, M.F.; Yuan, Z.Y. New potent antibacterial oxazolidinone (MRX-I) with an improved class safety profile. J. Med. Chem. 2014, 57, 4487–4497. [Google Scholar] [CrossRef]
- Mehta, S.; Das, M.; Laxmeshwar, C.; Jonckheere, S.; Thi, S.S.; Isaakidis, P. Linezolid-Associated Optic Neuropathy in Drug-Resistant Tuberculosis Patients in Mumbai, India. PloS ONE 2016, 11, e0162138. [Google Scholar] [CrossRef]
- Eckburg, P.B.; Ge, Y.; Hafkin, B. Single-and multiple-dose study to determine the safety, tolerability, pharmacokinetics, and food effect of oral MRX-I versus linezolid in healthy adult subjects. Antimicrob. Agents Chemother. 2017, 61, e02181-16. [Google Scholar] [CrossRef] [Green Version]
- MicuRx Pharmaceuticals. MicuRx Initiates Phase 1 Clinical Trial in U.S. for Novel Antibiotic Agent MRX-4. Available online: https://www.prnewswire.com/news-releases/micurx-initiates-phase-1-clinical-trial-in-us-for-novel-antibiotic-agent-mrx-4-300369808.html (accessed on 24 November 2019).
- NS Healthcare Staff. MicuRx Reports Favorable Results of Phase 3 Trial of Contezolid in China. Available online: https://www.ns-healthcare.com/news/micurx-contezolid-china/ (accessed on 20 November 2019).
- Fitzhugh, M. Micurx Preps China NDA for Next-Gen Oral Oxazolidinone. Available online: http://www.bioworld.com/content/micurx-preps-china-nda-next-gen-oral-oxazolidinone-1 (accessed on 24 November 2019).
- U.S. National Library of Medicine. Single Dose Escalation and Multiple Dose Escalation Trial of an Intravenous Formulation of MRX-4. Available online: https://clinicaltrials.gov/ct2/show/NCT03033329 (accessed on 24 November 2019).
- U.S. National Library of Medicine. Single Dose Escalation and Multiple Dose Escalation Trial of an Oral Formulation of MRX-4. Available online: https://clinicaltrials.gov/ct2/show/NCT03033342 (accessed on 24 November 2019).
- U.S. National Library of Medicine. Contezolid Acefosamil Versus Linezolid for the Treatment of Acute Bacterial Skin and Skin Structure Infection. Available online: https://clinicaltrials.gov/ct2/show/NCT03747497 (accessed on 24 November 2019).
- MicuRx Pharmaceuticals. MicuRx Pharmaceuticals Reports Positive Top-Line Results from a US Phase 2 ABSSSI Clinical Trial of Novel Antibiotic Contezolid Acefosamil. Available online: https://www.businesswire.com/news/home/20190909005015/en/ (accessed on 19 January 2020).
- Adis Insight. Contezolid Acefosamil - MicuRx Pharmaceuticals. Available online: https://adisinsight.springer.com/drugs/800048417 (accessed on 24 November 2019).
- Cornick, J.E.; Bentley, S.D. Streptococcus pneumoniae: The evolution of antimicrobial resistance to beta-lactams, fluoroquinolones and macrolides. Microbes Infect. 2012, 14, 573–583. [Google Scholar] [CrossRef]
- Kishii, R.; Yamaguchi, Y.; Takei, M. In vitro activities and spectrum of the novel fluoroquinolone lascufloxacin (KRP-AM1977). Antimicrob. Agents Chemother. 2017, 61, e00120-17. [Google Scholar] [CrossRef] [Green Version]
- Furuie, H.; Tanioka, S.; Shimizu, K.; Manita, S.; Nishimura, M.; Yoshida, H. Intrapulmonary pharmacokinetics of lascufloxacin in healthy adult volunteers. Antimicrob. Agents Chemother. 2018, 62, e02169-17. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug resistant bacterial infections, including tuberculosis. World Health Organ. GenevaSwitz. 2017, 1–88. [Google Scholar]
- World Health Organization. Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline, Including Tuberculosis. World Health Organization, 2017. Available online: https://apps.who.int/iris/handle/10665/258965 (accessed on 19 January 2010).
- Adis Insight. Lascufloxacin - Kyorin Pharmaceutical. Available online: https://adisinsight.springer.com/drugs/800035339 (accessed on 19 January 2020).
- Qin, X.; Huang, H. Review of nemonoxacin with special focus on clinical development. Drug Des. Dev. 2014, 8, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Adam, H.J.; Laing, N.M.; King, C.R.; Lulashnyk, B.; Hoban, D.J.; Zhanel, G.G. In vitro activity of nemonoxacin, a novel nonfluorinated quinolone, against 2,440 clinical isolates. Antimicrob. Agents Chemother. 2009, 53, 4915–4920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arjona, A. Nemonoxacin Quinolone antibiotic. Drugs Future 2009, 34, 196–203. [Google Scholar] [CrossRef]
- Yuan, J.; Mo, B.; Ma, Z.; Lv, Y.; Cheng, S.L.; Yang, Y.; Tong, Z.; Wu, R.; Sun, S.; Cao, Z.; et al. Safety and efficacy of oral nemonoxacin versus levofloxacin in treatment of community-acquired pneumonia: A phase 3, multicenter, randomized, double-blind, double-dummy, active-controlled, non-inferiority trial. J. Microbiol. Immunol. Infect. 2019, 52, 35–44. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Library of Medicine. Safety and Efficacy Study of TG-873870 (Nemonoxacin) in Diabetic Foot Infections. Available online: https://clinicaltrials.gov/ct2/show/NCT00685698 (accessed on 29 July 2019).
- U.S. National Library of Medicine. Pharmacokinetics Study of Nemonoxacin Malate Capsules in Subjects with Severe Impaired Renal Function. Available online: https://clinicaltrials.gov/ct2/show/NCT02840812 (accessed on 29 July 2019).
- TaiGen Biotechnology. TaiGen Biotechnology Receives Qualified Infectious Disease Product and Fast Track Designations from The FDA For Nemonoxacin (Taigexyn®). Available online: https://www.biospace.com/article/releases/taigen-biotechnology-receives-qualified-infectious-disease-product-and-fast-track-designations-from-the-fda-for-nemonoxacin-taigexyn-and-0174-/ (accessed on 24 November 2019).
- Bhagwat, S.S.; Mundkur, L.A.; Gupte, S.V.; Patel, M.V.; Khorakiwala, H.F. The anti-methicillin-resistant Staphylococcus aureus quinolone WCK 771 has potent activity against sequentially selected mutants, has a narrow mutant selection window against quinolone-resistant Staphylococcus aureus, and preferentially targets DNA gyrase. Antimicrob. Agents Chemother. 2006, 50, 3568–3579. [Google Scholar] [CrossRef] [Green Version]
- Morrow, B.J.; Abbanat, D.; Baum, E.Z.; Crespo-Carbone, S.M.; Davies, T.A.; He, W.; Shang, W.; Queenan, A.M.; Lynch, A.S. Antistaphylococcal activities of the new fluoroquinolone JNJ-Q2. Antimicrob. Agents Chemother. 2011, 55, 5512–5521. [Google Scholar] [CrossRef] [Green Version]
- Tellis, M.; Joseph, J.; Khande, H.; Bhagwat, S.; Patel, M. In vitro bactericidal activity of levonadifloxacin (WCK 771) against methicillin-and quinolone-resistant Staphylococcus aureus biofilms. J. Med. Microbiol. 2019, 68, 1–8. [Google Scholar] [CrossRef]
- Jacobs, M.R.; Bajaksouzian, S.; Windau, A.; Appelbaum, P.C.; Patel, M.V.; Gupte, S.V.; Bhagwat, S.S.; De Souza, N.J.; Khorakiwala, H.F. In vitro activity of the new quinolone WCK 771 against staphylococci. Antimicrob. Agents Chemother. 2004, 48, 3338–3342. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.V.; De Souza, N.J.; Gupte, S.V.; Jafri, M.A.; Bhagwat, S.S.; Chugh, Y.; Khorakiwala, H.F.; Jacobs, M.R.; Appelbaum, P.C. Antistaphylococcal activity of WCK 771, a tricyclic fluoroquinolone, in animal infection models. Antimicrob. Agents Chemother. 2004, 48, 4754–4761. [Google Scholar] [CrossRef] [Green Version]
- Rodvold, K.A.; Gotfried, M.H.; Chugh, R.; Gupta, M.; Yeole, R.; Patel, A.; Bhatia, A. Intrapulmonary Pharmacokinetics of Levonadifloxacin following Oral Administration of Alalevonadifloxacin to Healthy Adult Subjects. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Wockhardt Drug Discovery. US FDA grants breakthrough (QIDP) drug discovery status to the New Antibiotic of Wockhardt. Available online: http://www.wockhardt.com/pdfs/US-FDA-grants-breakthrough-drug-discovery-2015.pdf (accessed on 24 November 2019).
- Chugh, R.; Lakdavala, F.; Bhatia, A. Safety and pharmacokinetics of multiple ascending doses of WCK 771 and WCK 2349. In Proceedings of the 26th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Amsterdam, The Netherlands, 9–12 April 2016; p. 1268. [Google Scholar]
- ICH GCP. A Phase III, Multi-centre, Randomized Study to Compare the Efficacy and Safety of Levonadifloxacin (IV and Oral) With Linezolid (IV and Oral) in Acute Bacterial Skin and Skin Structure Infections (ABSSSI) Comparative Study of Levonadifloxacin (IV and Oral) With Linezolid (IV and Oral) in Acute Bacterial Skin and Skin Structure Infections (ABSSSI). Available online: https://ichgcp.net/clinical-trials-registry/NCT03405064 (accessed on 24 November 2019).
- Park, H.S.; Jung, S.J.; Kwak, J.H.; Choi, D.R.; Choi, E.C. DNA gyrase and topoisomerase IV are dual targets of zabofloxacin in Streptococcus pneumoniae. Int. J. Antimicrob. Agents 2010, 36, 97–98. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, H.J.; Seol, M.J.; Choi, D.R.; Choi, E.C.; Kwak, J.H. In vitro and in vivo antibacterial activities of DW-224a, a new fluoronaphthyridone. Antimicrob. Agents Chemother. 2006, 50, 2261–2264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, H.; Kim, S.E.; Shin, K.H.; Lim, C.; Lim, K.S.; Yu, K.S.; Cho, J.Y. Comparison of pharmacokinetics between new quinolone antibiotics: The zabofloxacin hydrochloride capsule and the zabofloxacin aspartate tablet. Curr. Med. Res. Opin. 2013, 29, 1349–1355. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.K.; Chang, J.H.; Choi, E.G.; Kim, H.K.; Kwon, Y.S.; Kyung, S.Y.; Lee, J.H.; Park, M.J.; Yoo, K.H.; Oh, Y.M. Zabofloxacin versus moxifloxacin in patients with COPD exacerbation: A multicenter, double-blind, double-dummy, randomized, controlled, Phase III, non-inferiority trial. Int. J. Chron. Obs. Pulmon Dis. 2015, 10, 2265–2275. [Google Scholar] [CrossRef] [Green Version]
- Dong Wha Pharmaceuticals. Dong Wha Obtains Approval for Zabolante from MFDS. Available online: https://www.dong-wha.co.kr/english/customer/dnews/content.asp?t_idx=856 (accessed on 25 November 2019).
- U.S. National Library of Medicine. Safety and Efficacy Study of Oral Zabofloxacin in Community Acquired Pneumonia. Available online: https://clinicaltrials.gov/ct2/show/NCT01081964 (accessed on 25 November 2019).
- Kowalski, R.P.; Romanowski, E.G.; Yates, K.A.; Mah, F.S. An independent evaluation of a novel peptide mimetic, brilacidin (PMX30063), for ocular anti-infective. J. Ocul. Pharmacol. Ther. 2016, 32, 23–27. [Google Scholar] [CrossRef]
- Butler, M.S.; Cooper, M.A. Antibiotics in the clinical pipeline in 2011. J. Antibiot. 2011, 64, 413. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. Initial Treatment for Acute Bacterial Skin Infections (ABSSSI) Caused by Staphylococcus Aureus. Available online: https://clinicaltrials.gov/ct2/show/NCT01211470?cond=NCT01211470&draw=2&rank=1 (accessed on 27 December 2019).
- Mensa, B.; Howell, G.L.; Scott, R.; DeGrado, W.F. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob. Agents Chemother. 2014, 58, 5136–5145. [Google Scholar] [CrossRef] [Green Version]
- PolyMedix. PolyMedix Announces Positive Results from Phase 2 Clinical Trial With PMX-30063 First-in-Class Defensin-Mimetic Antibiotic. Available online: http://www.globenewswire.com/news-release/2012/04/23/473929/252858/en/PolyMedix-Announces-Positive-Results-From-Phase-2-Clinical-Trial-With-PMX-30063-First-in-Class-Defensin-Mimetic-Antibiotic.html (accessed on 27 December 2019).
- U.S. National Library of Medicine. Efficacy and Safety Study of Brilacidin to Treat Serious Skin Infections. Available online: https://www.clinicaltrials.gov/ct2/show/NCT02052388?term=cellceutix&rank=4 (accessed on 27 December 2019).
- Innovation Pharmaceuticals Inc. Brilacidin. Available online: http://www.ipharminc.com/brilacidin-1 (accessed on 27 December 2019).
- Tran, C.M.; Tanaka, K.; Yamagishi, Y.; Goto, T.; Mikamo, H.; Watanabe, K. In vitro antimicrobial activity of razupenem (SMP-601, PTZ601) against anaerobic bacteria. Antimicrob. Agents Chemother. 2011, 55, 2398–2402. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Merelli, M.; Temperoni, C.; Astilean, A. New antibiotics for bad bugs: Where are we? Ann Clin. Microbiol. Antimicrob. 2013, 12, 22. [Google Scholar] [CrossRef] [Green Version]
- Ueda, Y.; Kanazawa, K.; Eguchi, K.; Takemoto, K.; Eriguchi, Y.; Sunagawa, M. In vitro and in vivo antibacterial activities of SM-216601, a new broad-spectrum parenteral carbapenem. Antimicrob. Agents Chemother. 2005, 49, 4185–4196. [Google Scholar] [CrossRef] [Green Version]
- MacGowan, A.P.; Noel, A.; Tomaselli, S.; Elliott, H.; Bowker, K. Pharmacodynamics of razupenem (PZ601) studied in an in vitro pharmacokinetic model of infection. Antimicrob. Agents Chemother. 2011, 55, 1436–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. National Library of Medicine. Safety, Potential Efficacy, and Pharmacokinetics of PZ-601 in the Treatment of Complicated Skin and Skin Structure Infection. Available online: https://clinicaltrials.gov/ct2/show/NCT00671580 (accessed on 25 November 2019).
- Jarvis, L.M. Novartis Shutters Antibiotic Firm Protez. Available online: https://cen.acs.org/articles/88/i39/Novartis-Shutters-Antibiotic-Firm-Protez.html (accessed on 25 November 2019).
- Koga, T.; Masuda, N.; Kakuta, M.; Namba, E.; Sugihara, C.; Fukuoka, T. Potent in vitro activity of tomopenem (CS-023) against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2008, 52, 2849–2854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallalieu, N.L.; Lennon, S.; Liu, M.; Kirkpatrick, C.; Robson, R.; Luedin, E.; Davies, B.E. Effect of impaired renal function on the pharmacokinetics of tomopenem (RO4908463/CS-023), a novel carbapenem. Antimicrob. Agents Chemother. 2008, 52, 2360–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Solh, A.A.; Alhajhusain, A. Update on the treatment of Pseudomonas aeruginosa pneumonia. J. Antimicrob. Chemother. 2009, 64, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koga, T.; Abe, T.; Inoue, H.; Takenouchi, T.; Kitayama, A.; Yoshida, T.; Masuda, N.; Sugihara, C.; Kakuta, M.; Nakagawa, M. In vitro and in vivo antibacterial activities of CS-023 (RO4908463), a novel parenteral carbapenem. Antimicrob. Agents Chemother. 2005, 49, 3239–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugihara, K.; Tateda, K.; Yamamura, N.; Koga, T.; Sugihara, C.; Yamaguchi, K. Efficacy of human-simulated exposures of tomopenem (formerly CS-023) in a murine model of Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus infection. Antimicrob. Agents Chemother. 2011, 55, 5004–5009. [Google Scholar] [CrossRef] [Green Version]
- Morinaga, Y.; Yanagihara, K.; Nakamura, S.; Yamamoto, K.; Izumikawa, K.; Seki, M.; Kakeya, H.; Yamamoto, Y.; Yamada, Y.; Kohno, S.; et al. In vivo efficacy and pharmacokinetics of tomopenem (CS-023), a novel carbapenem, against Pseudomonas aeruginosa in a murine chronic respiratory tract infection model. J. Antimicrob. Chemother. 2008, 62, 1326–1331. [Google Scholar] [CrossRef]
- Shibayama, T.; Matsushita, Y.; Hirota, T.; Ikeda, T.; Kuwahara, S. Pharmacokinetics of CS-023 (RO4908463), a novel parenteral carbapenem, in healthy male Caucasian volunteers. Antimicrob. Agents Chemother. 2006, 50, 4186–4188. [Google Scholar] [CrossRef] [Green Version]
- Adis Insight. Tomopenem. Available online: https://adisinsight.springer.com/drugs/800014654 (accessed on 25 November 2019).
- Syue, L.S.; Chen, Y.H.; Ko, W.C.; Hsueh, P.R. New drugs for the treatment of complicated intra-abdominal infections in the era of increasing antimicrobial resistance. Int. J. Antimicrob. Agents 2016, 47, 250–258. [Google Scholar] [CrossRef]
- Aoki, H.; Ke, L.; Poppe, S.M.; Poel, T.J.; Weaver, E.A.; Gadwood, R.C.; Thomas, R.C.; Shinabarger, D.L.; Ganoza, M.C. Oxazolidinone antibiotics target the P site on Escherichia coli ribosomes. Antimicrob. Agents Chemother. 2002, 46, 1080–1085. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, S.; Tulkens, P.M.; Van Bambeke, F. Cellular pharmacokinetics of the novel biaryloxazolidinone radezolid in phagocytic cells: Studies with macrophages and polymorphonuclear neutrophils. Antimicrob. Agents Chemother. 2010, 54, 2540–2548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. National Library of Medicine. Safety and Efficacy Study of Oxazolidinones to Treat Uncomplicated Skin Infections. Available online: https://clinicaltrials.gov/ct2/show/NCT00646958 (accessed on 26 November 2019).
- Melinta Therapeutics. Radezolid: A Second-Generation Oxazolidinone. Available online: https://melinta.com/pipeline/oxazolidinone-and-macrolide-programs/ (accessed on 26 November 2019).
- Lemaire, S.; Kosowska-Shick, K.; Appelbaum, P.; Tulkens, P.; Van Bambeke, F. O31 Radezolid (RX-1741), a novel oxazolidinone, accumulates extensively within human macrophages and PMNs and shows activity towards intracellular linezolid-sensitive and linezolid-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents 2009, 34, S12. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. Safety and Efficacy Study of Oxazolidinone to Treat Pneumonia. Available online: https://clinicaltrials.gov/ct2/show/results/NCT00640926?cond=radezolid&rank=1 (accessed on 5 September 2019).
- Melinta Therapeutics. Melinta Therapeutics Announces Initiation of Program for Radezolid in Patients with Bacterial Vaginosis. Available online: http://ir.melinta.com/news-releases/news-release-details/melinta-therapeutics-announces-initiation-program-radezolid (accessed on 26 November 2019).
- Biedenbach, D.J.; Bouchillon, S.K.; Hackel, M.; Miller, L.A.; Scangarella-Oman, N.E.; Jakielaszek, C.; Sahm, D.F. In Vitro Activity of Gepotidacin, a Novel Triazaacenaphthylene Bacterial Topoisomerase Inhibitor, against a Broad Spectrum of Bacterial Pathogens. Antimicrob. Agents Chemother. 2016, 60, 1918–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bax, B.D.; Chan, P.F.; Eggleston, D.S.; Fosberry, A.; Gentry, D.R.; Gorrec, F.; Giordano, I.; Hann, M.M.; Hennessy, A.; Hibbs, M.; et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010, 466, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Farrell, D.J.; Sader, H.S.; Rhomberg, P.R.; Scangarella-Oman, N.E.; Flamm, R.K. In Vitro Activity of Gepotidacin (GSK2140944) against Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scangarella-Oman, N.; Hossain, M.; Dixon, P.; Ingraham, K.; Min, S.; Tiffany, C.; Perry, C.; Raychaudhuri, A.; Dumont, E.; Huang, J.; et al. P2.38 Microbiological analysis from a phase ii study in adults evaluating single doses of gepotidacin (GSK2140944) in the treatment of uncomplicated urogenital gonorrhoea caused by neisseria gonorrhoeae. Sex. Transm. Infect. 2017, 93, A84–A85. [Google Scholar] [CrossRef] [Green Version]
- Bulik, C.C.; Okusanya, Ó.O.; Lakota, E.A.; Forrest, A.; Bhavnani, S.M.; Hoover, J.L.; Andes, D.R.; Ambrose, P.G. Pharmacokinetic-pharmacodynamic evaluation of gepotidacin against Gram-positive organisms using data from murine infection models. Antimicrob. Agents Chemother. 2017, 61, e00115–e00116. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Zhou, M.; Tiffany, C.; Dumont, E.; Darpo, B. A Phase I, Randomized, Double-Blinded, Placebo- and Moxifloxacin-Controlled, Four-Period Crossover Study to Evaluate the Effect of Gepotidacin on Cardiac Conduction as Assessed by 12-Lead Electrocardiogram in Healthy Volunteers. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Negash, K.; Andonian, C.; Felgate, C.; Chen, C.; Goljer, I.; Squillaci, B.; Nguyen, D.; Pirhalla, J.; Lev, M.; Schubert, E.; et al. The metabolism and disposition of GSK2140944 in healthy human subjects. Xenobiotica 2016, 46, 683–702. [Google Scholar] [CrossRef] [PubMed]
- O’Riordan, W.; Tiffany, C.; Scangarella-Oman, N.; Perry, C.; Hossain, M.; Ashton, T.; Dumont, E. Efficacy, Safety, and Tolerability of Gepotidacin (GSK2140944) in the Treatment of Patients with Suspected or Confirmed Gram-Positive Acute Bacterial Skin and Skin Structure Infections. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- U.S. National Library of Medicine. Dose-Ranging Study of GSK2140944 in the Treatment of Subjects with Suspected or Confirmed Gram-Positive Acute Bacterial Skin and Skin Structure Infections. Available online: https://clinicaltrials.gov/ct2/show/NCT02045797?cond=NCT02045797&draw=2&rank=1 (accessed on 26 November 2019).
- U.S. National Library of Medicine. A Dose-Ranging Study Evaluating the Efficacy, Safety, and Tolerability of GSK2140944 in the Treatment of Uncomplicated Urogenital Gonorrhea Caused by Neisseria Gonorrhoeae. Available online: https://clinicaltrials.gov/ct2/show/NCT02294682?cond=NCT02294682&draw=2&rank=1 (accessed on 26 November 2019).
- Taylor, S.N.; Morris, D.H.; Avery, A.K.; Workowski, K.A.; Batteiger, B.E.; Tiffany, C.A.; Perry, C.R.; Raychaudhuri, A.; Scangarella-Oman, N.E.; Hossain, M.; et al. Gepotidacin for the Treatment of Uncomplicated Urogenital Gonorrhea: A Phase 2, Randomized, Dose-Ranging, Single-Oral Dose Evaluation. Clin. Infect. Dis. 2018, 67, 504–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. National Library of Medicine. A Study Evaluating Efficacy and Safety of Gepotidacin Compared with Ceftriaxone Plus Azithromycin in the Treatment of Uncomplicated Urogenital Gonorrhea. Available online: https://clinicaltrials.gov/ct2/show/NCT04010539 (accessed on 26 November 2019).
- GlaxoSmithKline plc. GSK Starts a Phase III Clinical Programme for a Potential First-in-Class Antibiotic, Gepotidacin. Available online: https://www.gsk.com/en-gb/media/press-releases/gsk-starts-a-phase-iii-clinical-programme-for-a-potential-first-in-class-antibiotic-gepotidacin/ (accessed on 19 January 2020).
- Kaplan, N.; Awrey, D.; Bardouniotis, E.; Berman, J.; Yethon, J.; Pauls, H.W.; Hafkin, B. In vitro activity (MICs and rate of kill) of AFN-1252, a novel FabI inhibitor, in the presence of serum and in combination with other antibiotics. J. Chemother. 2013, 25, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, N.; Garner, C.; Hafkin, B. AFN-1252 in vitro absorption studies and pharmacokinetics following microdosing in healthy subjects. Eur. J. Pharm. Sci. 2013, 50, 440–446. [Google Scholar] [CrossRef] [PubMed]
- DebioPharm International SA. FDA GRANTS FAST TRACK DESIGNATION TO DEBIOPHARM GROUP’S ANTIBIOTIC DEBIO 1450. Available online: https://www.debiopharm.com/debiopharm-international/press-releases/fda-grants-fast-track-designation-to-debiopharm-groups-antibiotic-debio-1450/ (accessed on 27 December 2019).
- Flamm, R.K.; Rhomberg, P.R.; Kaplan, N.; Jones, R.N.; Farrell, D.J. Activity of Debio1452, a FabI inhibitor with potent activity against Staphylococcus aureus and coagulase-negative Staphylococcus spp., including multidrug-resistant strains. Antimicrob. Agents Chemother. 2015, 59, 2583–2587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, N.; Albert, M.; Awrey, D.; Bardouniotis, E.; Berman, J.; Clarke, T.; Dorsey, M.; Hafkin, B.; Ramnauth, J.; Romanov, V. Mode of action, in vitro activity, and in vivo efficacy of AFN-1252, a selective antistaphylococcal FabI inhibitor. Antimicrob. Agents Chemother. 2012, 56, 5865–5874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafkin, B.; Kaplan, N.; Murphy, B. Efficacy and safety of AFN-1252, the first Staphylococcus-specific antibacterial agent, in the treatment of acute bacterial skin and skin structure infections, including those in patients with significant comorbidities. Antimicrob. Agents Chemother. 2016, 60, 1695–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. National Library of Medicine. A Study of Safety, Tolerability, and Efficacy of AFN-12520000 in the Treatment of Acute Bacterial Skin and Skin Structure Infections Due to Staphylococci. Available online: https://clinicaltrials.gov/ct2/show/NCT01519492 (accessed on 27 December 2019).
- U.S. National Library of Medicine. A Multiple Dose Study of Debio 1450 [Intravenous (IV) and Oral] in Healthy Volunteers. Available online: https://clinicaltrials.gov/ct2/show/NCT02214433?cond=debio1450&draw=2&rank=4 (accessed on 27 December 2019).
- U.S. National Library of Medicine. Study of Debio 1450 for Bacterial Skin Infections. Available online: https://clinicaltrials.gov/ct2/show/NCT02426918?cond=debio1450&draw=2&rank=1 (accessed on 27 December 2019).
- CrystalGenomics. Novel Antibiotic against MRSA and VRSA. Available online: http://www.crystalgenomics.com/en/clinical/antibiotic.html?ckattempt=3 (accessed on 27 December 2019).
- Park, H.S.; Yoon, Y.M.; Jung, S.J.; Kim, C.M.; Kim, J.M.; Kwak, J.-H. Antistaphylococcal activities of CG400549, a new bacterial enoyl-acyl carrier protein reductase (FabI) inhibitor. J. Antimicrob. Chemother. 2007, 60, 568–574. [Google Scholar] [CrossRef] [Green Version]
- CrystalGenomics. CrystalGenomics Reports Positive Top-Line Data from Phase 2a Study of CG400549 in Patients with Complicated Acute Bacterial Skin and Skin Structure Infections Caused by MRSA. Available online: https://www.prnewswire.com/news-releases/crystalgenomics-reports-positive-top-line-data-from-phase-2a-study-of-cg400549-in-patients-with-complicated-acute-bacterial-skin-and-skin-structure-infections-caused-by-mrsa-185870042.html (accessed on 27 December 2019).
- U.S. National Library of Medicine. Phase 2a Study of CG400549 for the Treatment of cABSSSI Caused by Methicillin-resistant Staphylococcus Aureus (CG400549). Available online: https://clinicaltrials.gov/ct2/show/NCT01593761?cond=cg400549&draw=2&rank=3 (accessed on 27 December 2019).
- Kobayashi, Y.; Uchida, H.; Kawakami, Y. Arbekacin. Int. J. Antimicrob. Agents 1995, 5, 227–230. [Google Scholar] [CrossRef]
- Mingeot-Leclercq, M.P.; Glupczynski, Y.; Tulkens, P.M. Aminoglycosides: Activity and resistance. Antimicrob. Agents Chemother. 1999, 43, 727–737. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T. Arbekacin: another novel agent for treating infections due to methicillin-resistant Staphylococcus aureus and multidrug-resistant Gram-negative pathogens. Clin. Pharm. 2014, 6, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Sader, H.S.; Rhomberg, P.R.; Farrell, D.J.; Jones, R.N. Arbekacin activity against contemporary clinical bacteria isolated from patients hospitalized with pneumonia. Antimicrob. Agents Chemother. 2015, 59, 3263–3270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pharmaceutical Daily. FDA Approves Meiji’s QIDP and Fast Track Designation to ME1100. Available online: http://www.pharmaceuticaldaily.com/fda-approves-meijis-qidp-and-fast-track-designation-to-me1100/ (accessed on 26 November 2019).
- U.S. National Library of Medicine. Intrapulmonary Pharmacokinetics of ME1100 in Healthy Volunteers. Available online: https://clinicaltrials.gov/ct2/show/NCT01961830 (accessed on 26 November 2019).
- U.S. National Library of Medicine. A Study to Assess the Pharmacokinetic Profile, the Safety, and the Tolerability of ME1100 Inhalation Solution in Patients with Mechanically Ventilated Bacterial Pneumonia. Available online: https://clinicaltrials.gov/ct2/show/NCT02459158 (accessed on 29 July 2019).
- Lakota, E.A.; Sato, N.; Koresawa, T.; Kondo, K.; Bhavnani, S.M.; Ambrose, P.G.; Rubino, C.M. Population Pharmacokinetic Analyses for Arbekacin after Administration of ME1100 Inhalation Solution. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Wenzler, E.; Fraidenburg, D.R.; Scardina, T.; Danziger, L.H. Inhaled antibiotics for Gram-negative respiratory infections. Clin. Microbiol. Rev. 2016, 29, 581–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza Mendes, C.D.u.; de Souza Antunes, A.M. Pipeline of Known Chemical Classes of Antibiotics. Antibiot. 2013, 2, 500–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K.; Page, M.G.P. What we may expect from novel antibacterial agents in the pipeline with respect to resistance and pharmacodynamic principles. J. Pharm. Pharm. 2017, 44, 113–132. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, S.S.; McGhee, P.; Kosowska-Shick, K.; Patel, M.V.; Appelbaum, P.C. In vitro activity of the quinolone WCK 771 against recent U.S. hospital and community-acquired Staphylococcus aureus pathogens with various resistance types. Antimicrob. Agents Chemother. 2009, 53, 811–813. [Google Scholar] [CrossRef] [Green Version]
- Flamm, K.R.; Farrell, J.D.; Sader, S.H.; Rhomberg, P.R.; Jones, R.N. In Vitro Activity of WCK 771, a Benzoquinolizine Fluoroquinolone (Levonadifloxacin) when Tested Against Contemporary Gram-Positive and -Negative Bacteria from a Global Surveillance Program. In Proceedings of the MICROBE 2016, Boston, MA, USA, 16–20 June 2016; Available online: https://www.jmilabs.com/data/posters/Microbe16-WCK-771-Sunday-456.pdf (accessed on 30 January 2020).
- Adis Insight. Alalevonadifloxacin-Wockhardt. Available online: https://adisinsight.springer.com/drugs/800038027 (accessed on 24 December 2019).
- U.S. National Library of Medicine. Study to Determine and Compare Plasma and Intrapulmonary Pharmacokinetics of WCK 2349 in Healthy Adult Human Subjects. Available online: https://clinicaltrials.gov/ct2/show/NCT02253342 (accessed on 29 July 2019).
- U.S. National Library of Medicine. Pharmacokinetics of WCK 2349 In Patients with Hepatic Impairment. Available online: https://clinicaltrials.gov/ct2/show/NCT02244827 (accessed on 29 July 2019).
- Jones, T.M.; Johnson, S.W.; DiMondi, V.P.; Wilson, D.T. Focus on JNJ-Q2, a novel fluoroquinolone, for the management of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. Infect. Drug Resist. 2016, 9, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Xu, C.; Domagala, J.; Drlica, K. DNA topoisomerase targets of the fluoroquinolones: A strategy for avoiding bacterial resistance. Proc. Natl. Acad. Sci. USA 1997, 94, 13991–13996. [Google Scholar] [CrossRef] [Green Version]
- Farrell, D.J.; Liverman, L.C.; Biedenbach, D.J.; Jones, R.N. JNJ-Q2, a new fluoroquinolone with potent in vitro activity against Staphylococcus aureus, including methicillin- and fluoroquinolone-resistant strains. Antimicrob. Agents Chemother. 2011, 55, 3631–3634. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, J.; Hilliard, J.J.; Morrow, B.J.; Melton, J.L.; Flamm, R.K.; Barron, A.M.; Lynch, A.S. Efficacy of a new fluoroquinolone, JNJ-Q2, in murine models of Staphylococcus aureus and Streptococcus pneumoniae skin, respiratory, and systemic infections. Antimicrob. Agents Chemother. 2011, 55, 5522–5528. [Google Scholar] [CrossRef] [Green Version]
- Morrow, B.J.; He, W.; Amsler, K.M.; Foleno, B.D.; Macielag, M.J.; Lynch, A.S.; Bush, K. In vitro antibacterial activities of JNJ-Q2, a new broad-spectrum fluoroquinolone. Antimicrob. Agents Chemother. 2010, 54, 1955–1964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davenport, J.M.; Covington, P.; Gotfried, M.; Medlock, M.; Watanalumlerd, P.; McIntyre, G.; Turner, L.; Almenoff, J. Summary of Pharmacokinetics and Tissue Distribution of a Broad-Spectrum Fluoroquinolone, JNJ-Q2. Clin Pharm. Drug Dev 2012, 1, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Allergan. Actavis Completes Acquisition of Furiex Pharmaceuticals. Available online: https://www.allergan.com/news/news/thomson-reuters/actavis-completes-acquisition-of-furiex-pharmaceut (accessed on 26 November 2019).
- Stainton, S.M.; Abdelraouf, K.; Utley, L.; Pucci, M.J.; Lister, T.; Nicolau, D.P. Assessment of the In Vivo Activity of SPR741 in Combination with Azithromycin against Multidrug Resistant Enterobacteriaceae isolates in the Neutropenic Murine Thigh Infection model. Antimicrob. Agents Chemother. 2018, 62, e00239-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddison, J.E.; Watson, A.; Elliott, J. Antibacterial drugs. Small Anim. Clin. Pharmacol. 2008, 2, 148–168. [Google Scholar]
- Corbett, D.; Wise, A.; Langley, T.; Skinner, K.; Trimby, E.; Birchall, S.; Dorali, A.; Sandiford, S.; Williams, J.; Warn, P. Potentiation of antibiotic activity by a novel cationic peptide: Potency and spectrum of activity of SPR741. Antimicrob. Agents Chemother. 2017, 61, e00200-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurawski, D.V.; Reinhart, A.A.; Alamneh, Y.A.; Pucci, M.J.; Si, Y.; Abu-Taleb, R.; Shearer, J.P.; Demons, S.T.; Tyner, S.D.; Lister, T. SPR741, an Antibiotic Adjuvant, Potentiates the In Vitro and In Vivo Activity of Rifampin against Clinically Relevant Extensively Drug-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother 2017, 61, e01239-17. [Google Scholar] [CrossRef] [Green Version]
- U.S. National Library of Medicine. A First in Human Study of the Safety and Tolerability of Single and Multiple Doses of SPR741 in Healthy Volunteers. Available online: https://clinicaltrials.gov/ct2/show/NCT03022175 (accessed on 29 July 2019).
- Eckburg, P.B.; Lister, T.; Walpole, S.; Keutzer, T.; Utley, L.; Tomayko, J.; Kopp, E.; Farinola, N.; Coleman, S. Safety, Tolerability, Pharmacokinetics, and Drug Interaction Potential of SPR741, an Intravenous Potentiator, after Single and Multiple Ascending Doses and When Combined with β-Lactam Antibiotics in Healthy Subjects. Antimicrob. Agents Chemother. 2019, 63, e00892-19. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.C.; Crotty, M.P.; Pardo, J. Ridinilazole: A novel antimicrobial for Clostridium difficile infection. Ann. Gastroenterol. 2019, 32, 134. [Google Scholar] [CrossRef]
- Vickers, R.; Robinson, N.; Best, E.; Echols, R.; Tillotson, G.; Wilcox, M. A randomised phase 1 study to investigate safety, pharmacokinetics and impact on gut microbiota following single and multiple oral doses in healthy male subjects of SMT19969, a novel agent for Clostridium difficile infections. BMC Infect. Dis. 2015, 15, 91. [Google Scholar] [CrossRef] [Green Version]
- Summit Therapeutics. Summit Therapeutics Announces Publication of Preclinical Data Showing Ridinilazole Outperformed Standard of Care in Reducing C. Difficile Toxins That Drive Disease Symptoms. Available online: http://www.globenewswire.com/news-release/2016/02/24/813565/0/en/Summit-Therapeutics-Announces-Publication-of-Preclinical-Data-Showing-Ridinilazole-Outperformed-Standard-of-Care-in-Reducing-C-Difficile-Toxins-That-Drive-Disease-Symptoms.html (accessed on 27 December 2019).
- U.S. National Library of Medicine. A Study of Ridinilazole (SMT19969) Compared with Fidaxomicin for the Treatment of Clostridium Difficile Infection (CDI). Available online: https://clinicaltrials.gov/ct2/show/NCT02784002?cond=NCT02784002&draw=2&rank=1 (accessed on 27 December 2019).
- Citron, D.M.; Warren, Y.A.; Tyrrell, K.L.; Merriam, V.; Goldstein, E.J.C. Comparative in vitro activity of REP3123 against Clostridium difficile and other anaerobic intestinal bacteria. J. Antimicrob. Chemother. 2009, 63, 972–976. [Google Scholar] [CrossRef] [Green Version]
- Critchley, I.A.; Green, L.S.; Young, C.L.; Bullard, J.M.; Evans, R.J.; Price, M.; Jarvis, T.C.; Guiles, J.W.; Janjic, N.; Ochsner, U.A. Spectrum of activity and mode of action of REP3123, a new antibiotic to treat Clostridium difficile infections. J. Antimicrob. Chemother. 2009, 63, 954–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochsner, U.A.; Bell, S.J.; O’Leary, A.L.; Hoang, T.; Stone, K.C.; Young, C.L.; Critchley, I.A.; Janjic, N. Inhibitory effect of REP3123 on toxin and spore formation in Clostridium difficile, and in vivo efficacy in a hamster gastrointestinal infection model. J. Antimicrob. Chemother. 2009, 63, 964–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, S.U.; Griffiss, J.M.L.; Blumer, J.; O’Riordan, M.A.; Gray, W.; McKenzie, R.; Jurao, R.A.; An, A.T.; Le, M.; Bell, S.J.; et al. Safety, Tolerability, Systemic Exposure, and Metabolism of CRS3123, a Methionyl-tRNA Synthetase Inhibitor Developed for Treatment of Clostridium difficile, in a Phase 1 Study. Antimicrob. Agents Chemother. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adis Insight. CRS 3123. Available online: https://adisinsight.springer.com/drugs/800027088 (accessed on 19 December 2019).
- Mathur, T.; Barman, T.K.; Kumar, M.; Singh, D.; Kumar, R.; Khera, M.K.; Yamada, M.; Inoue, S.-I.; Upadhyay, D.J.; Masuda, N. In Vitro and In Vivo Activities of DS-2969b, a Novel GyrB Inhibitor, against Clostridium difficile. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Barman, T.K.; Kumar, M.; Mathur, T.; Namba, E.; Singh, D.; Chaira, T.; Kurosaka, Y.; Yamada, M.; Upadhyay, D.J.; Masuda, N. In vitro and in vivo activities of DS-2969b, a novel GyrB inhibitor, and its water-soluble prodrug, DS11960558, against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2018, 62, e02556-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandell, A.G.; Inoue, S.; Dennie, J.; Nagasawa, Y.; Gajee, R.; Pav, J.; Zhang, G.; Zamora, C.; Masuda, N.; Senaldi, G. Phase 1 Study To Assess the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Multiple Oral Doses of DS-2969b, a Novel GyrB Inhibitor, in Healthy Subjects. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Inoue, S.; Dennie, J.; Nagasawa, Y.; Gajee, R.; Masuda, N.; Zamora, C.; Senaldi, G. A phase 1 study in healthy subjects to investigate safety, pharmacokinetics, and effect on intestinal flora of multiple ascending doses of DS-2969b, a novel oral DNA gyrase B inhibitor for the treatment of Clostridium difficile infection. Open Forum Infect. Dis. 2017. [Google Scholar] [CrossRef] [Green Version]
- Dr. Dawn Firmin. ANTIMICROBIAL RESISTANCE–MGB: The Minor Groove Binder. Available online: https://drug-dev.com/antimicrobial-resistance-mgb-the-minor-groove-binder/ (accessed on 26 November 2019).
- Suckling, C.J. The Antibacterial Drug MGB-BP3: From discovery to clinical trial. Chem. Biol. Interface 2015, 5, 166–174. [Google Scholar]
- Bhaduri, S.; Ranjan, N.; Arya, D.P. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J. Org. Chem. 2018, 14, 1051–1086. [Google Scholar] [CrossRef]
- Ravic, M.; Firmin, D.; Sahgal, O.; van den Berg, F.; Suckling, C.; Hunter, I.S. A Single-Centre, Double-Blind, Placebo-Controlled Study in Healthy Men to Assess the Safety and Tolerability of Single and Repeated Ascending Doses of MGB-BP-3, a New Class of Antibacterial Agent. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiN4uOk7KfnAhUWPXAKHRmzBPEQFjAAegQIBhAB&url=https%3A%2F%2Fwww.mgb-biopharma.com%2Fwp-content%2Fuploads%2F2016-ASM-Microbe-Poster.pdf&usg=AOvVaw1bQaYVu1lx7FG2aL9pLZpj (accessed on 30 January 2020).
- MGB Biopharma. MGB Biopharma Granted Qualified Infectious Disease Product (QIPD) Designation by U.S. FDA for the Treatment of Clostridium difficile-associated Diarrhoea (CDAD) for MGB-BP-3. Available online: http://www.mgb-biopharma.com/mgb-biopharma-granted-qualified-infectious-disease-product-qipd-designation-by-u-s-fda-for-the-treatment-of-clostridium-difficile-associated-diarrhoea-cdad-for-mgb-bp-3/ (accessed on 26 November 2019).
- U.S. National Library of Medicine. Safety, Blood Levels and Effects of MGB-BP-3. Available online: https://clinicaltrials.gov/ct2/show/NCT02518607?cond=NCT02518607&draw=2&rank=1 (accessed on 26 November 2019).
- U.S. National Library of Medicine. Study to Assess Safety, Tolerability and Efficacy of Incremental Doses of MGB-BP-3 in Patients with CDAD. Available online: https://clinicaltrials.gov/ct2/show/NCT03824795 (accessed on 26 November 2019).
- MGB Biopharma. MGB Biopharma–FDA and Health Canada Clear IND/CTA Applications for MGB-BP-3, a Novel, Potent Bactericidal Antibiotic Targeting Clostridium Difficile-Associated Diarrhoea (CDAD). Available online: http://www.mgb-biopharma.com/mgb-biopharma-fda-and-health-canada-clear-ind-cta-applications-for-mgb-bp-3-a-novel-potent-bactericidal-antibiotic-targeting-clostridium-difficile-associated-diarrhoea-cdad/ (accessed on 26 November 2019).
- Lepak, A.J.; Zhao, M.; Liu, Q.; Wang, P.; Wang, Y.; Bader, J.C.; Ambrose, P.G.; Andes, D.R. 1389. Pharmacokinetic/Pharmacodynamic (PK/PD) Evaluation of a Novel Aminomethylcycline Antibiotic, KBP-7072, in the Neutropenic Murine Pneumonia Model Against S. aureus (SA) and S. pneumoniae (SPN). Open Forum Infect. Dis. 2018. [Google Scholar] [CrossRef]
- Yang, F. Multiple Ascending Dose Safety, Tolerability, and Pharmacokinetics of KBP-7072, a Novel Third Generation Tetracycline. Open Forum Infect. Dis. 2017. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Chen, Y.; Yang, F. Single ascending dose safety, tolerability, and pharmacokinetics of KBP-7072, a novel third generation tetracycline. Open Forum Infect. Dis. 2016. [Google Scholar] [CrossRef] [Green Version]
- U.S. National Library of Medicine. National Library of Medicine. A Multiple Ascending Dose Study of KBP-7072 in Healthy Subjects. Available online: https://clinicaltrials.gov/ct2/show/NCT02654626?cond=nct02654626&draw=2&rank=1 (accessed on 26 November 2019).
- U.S. National Library of Medicine. Safety, Tolerability and Pharmacokinetics of KBP-7072. Available online: https://clinicaltrials.gov/ct2/show/NCT02454361?cond=nct02454361&draw=2&rank=1 (accessed on 26 November 2019).
- World Health Organization. Update of Antibacterial Agents in Clinical Development. Available online: http://apps.who.int/medicinedocs/documents/s23564en/s23564en.pdf (accessed on 26 November 2019).
- KBP Biosciences. KBP-7072 obtained QIDP and Fast Track Designations–KBP Biosciences. Available online: https://kbpbiosciences.com/kbp-7072-obtained-qidp-and-fast-track-designations/ (accessed on 26 November 2019).
- Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schaberle, T.F.; Hughes, D.E.; Epstein, S.; et al. A new antibiotic kills pathogens without detectable resistance. Nature 2015, 517, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Ramchuran, E.J.; Somboro, A.M.; Monaim, S.A.A.; Amoako, D.G.; Parboosing, R.; Kumalo, H.M.; Agrawal, N.; Albericio, F.; de La Torre, B.G.; Bester, L.A. In vitro antibacterial activity of Teixobactin derivatives on clinically relevant bacterial isolates. Front. Microbiol. 2018, 9, 1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmar, A.; Lakshminarayanan, R.; Iyer, A.; Mayandi, V.; Leng Goh, E.T.; Lloyd, D.G.; Chalasani, M.L.S.; Verma, N.K.; Prior, S.H.; Beuerman, R.W.; et al. Design and Syntheses of Highly Potent Teixobactin Analogues against Staphylococcus aureus, Methicillin-Resistant Staphylococcus aureus (MRSA), and Vancomycin-Resistant Enterococci (VRE) in Vitro and in Vivo. J. Med. Chem. 2018, 61, 2009–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossman, T.H.; Fyfe, C.; O’Brien, W.; Hackel, M.; Minyard, M.B.; Waites, K.B.; Dubois, J.; Murphy, T.M.; Slee, A.M.; Weiss, W.J.; et al. Fluorocycline TP-271 Is Potent against Complicated Community-Acquired Bacterial Pneumonia Pathogens. mSphere 2017, 2, e00004-17. [Google Scholar] [CrossRef] [Green Version]
- Brodersen, D.E.; Clemons, W.M., Jr.; Carter, A.P.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 2000, 103, 1143–1154. [Google Scholar] [CrossRef] [Green Version]
- U.S. National Library of Medicine. A Phase 1 Study to Assess the Safety, Tolerability and PK of IV TP-271. Available online: https://clinicaltrials.gov/ct2/show/NCT02724085 (accessed on 29 July 2019).
- U.S. National Library of Medicine. Comparative Study of Levonadifloxacin (IV and Oral) With Linezolid (IV and Oral) in Acute Bacterial Skin and Skin Structure Infections (ABSSSI). Available online: https://clinicaltrials.gov/ct2/show/NCT03405064 (accessed on 24 November 2019).
- U.S. National Library of Medicine. A Phase 1 TP-271 Oral PK Single Ascending Dose Study. Available online: https://clinicaltrials.gov/ct2/show/NCT03024034?cond=tp-271&draw=2&rank=3 (accessed on 26 November 2019).
- U.S. National Library of Medicine. A Phase 1 Safety and PK Study of IV TP-271. Available online: https://clinicaltrials.gov/ct2/show/NCT03234738?cond=tp-271&draw=2&rank=2 (accessed on 26 November 2019).
- Lin, D.M.; Koskella, B.; Lin, H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 162. [Google Scholar] [CrossRef]
- Lehman, S.M.; Mearns, G.; Rankin, D.; Cole, R.A.; Smrekar, F.; Branston, S.D.; Morales, S. Design and preclinical development of a phage product for the treatment of antibiotic-resistant Staphylococcus aureus infections. Viruses 2019, 11, 88. [Google Scholar] [CrossRef] [Green Version]
- Ooi, M.L.; Drilling, A.J.; Morales, S.; Fong, S.; Moraitis, S.; Macias-Valle, L.; Vreugde, S.; Psaltis, A.J.; Wormald, P.-J. Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus. Jama Otolaryngol.–Head Neck Surg. 2019, 145, 723–729. [Google Scholar] [CrossRef]
- AmpliPhi Biosciences Corporation. AmpliPhi Biosciences Successfully Optimizes Manufacturing Process and Scale Up for AB-SA01 Clinical Development. Available online: https://investor.armatapharma.com/2018-12-18-AmpliPhi-Biosciences-Successfully-Optimizes-Manufacturing-Process-and-Scale-Up-for-AB-SA01-Clinical-Development (accessed on 26 November 2019).
- Drug Development Technology. UC San Diego Receives FDA Approval for Trial of AB-SA01 Therapy. Available online: https://www.drugdevelopment-technology.com/news/fda-trial-bacteriophage/ (accessed on 26 November 2019).
- Fabijan, A.P.; Lin, R.C.; Ho, J.; Maddocks, S.; Iredell, J.R. Safety and Tolerability of Bacteriophage Therapy in Severe Staphylococcus aureus Infection. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- U.S. National Library of Medicine. Bacteriophages for Treating Urinary Tract Infections in Patients Undergoing Transurethral Resection of the Prostate. Available online: https://clinicaltrials.gov/ct2/show/NCT03140085 (accessed on 27 July 2018).
- U.S. National Library of Medicine. Standard Treatment Associated with Phage Therapy Versus Placebo for Diabetic Foot Ulcers Infected by S. Aureus (PhagoPied). Available online: https://clinicaltrials.gov/ct2/show/NCT02664740?cond=bacteriophage&rank=7 (accessed on 27 July 2019).
- U.S. National Library of Medicine. Experimental Phage Therapy of Bacterial Infections. Available online: https://clinicaltrials.gov/ct2/show/NCT00945087?cond=bacteriophage&rank=9 (accessed on 27 July 2019).
- Laterre, P.-F.; Colin, G.; Dequin, P.-F.; Dugernier, T.; Boulain, T.; da Silveira, S.A.; Lajaunias, F.; Perez, A.; François, B. CAL02, a novel antitoxin liposomal agent, in severe pneumococcal pneumonia: a first-in-human, double-blind, placebo-controlled, randomised trial. Lancet Infect. Dis. 2019, 19, 620–630. [Google Scholar] [CrossRef]
- Henry, B.D.; Neill, D.R.; Becker, K.A.; Gore, S.; Bricio-Moreno, L.; Ziobro, R.; Edwards, M.J.; Mühlemann, K.; Steinmann, J.; Kleuser, B. Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat. Biotechnol. 2015, 33, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- François, B.; Mercier, E.; Gonzalez, C.; Asehnoune, K.; Nseir, S.; Fiancette, M.; Desachy, A.; Plantefève, G.; Meziani, F.; de Lame, P.-A. Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus: first-in-human trial. Intensive Care Med. 2018, 44, 1787–1796. [Google Scholar] [CrossRef]
- Aridis Pharmaceuticals Inc. AR-301: Fully Human mAb Against Staphylococcus aureus. Available online: https://www.aridispharma.com/ar-301/ (accessed on 19 January 2020).
- Otto, M. Staphylococcus aureus toxins. Curr. Opin. Microbiol. 2014, 17, 32–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, L.R.; Graham, K.J.; Connolly, J.; Anwar, S.; Ridley, R.; Sabroe, I.; Foster, S.J.; Whyte, M.K. Staphylococcus aureus induces eosinophil cell death mediated by α-hemolysin. PLoS ONE 2012, 7, e31506. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.-Q.; Robbie, G.J.; Wu, Y.; Esser, M.T.; Jensen, K.; Schwartz, H.I.; Bellamy, T.; Hernandez-Illas, M.; Jafri, H.S. Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti-Staphylococcus aureus alpha-toxin human monoclonal antibody, in healthy adults. Antimicrob. Agents Chemother. 2017, 61, e01020-16. [Google Scholar] [CrossRef] [Green Version]
- U.S. National Library of Medicine. Adjunctive Therapy to Antibiotics in the Treatment of S. Aureus Ventilator-Associated Pneumonia With AR-301 (AR-301-002). Available online: https://clinicaltrials.gov/ct2/show/NCT03816956 (accessed on 31 August 2019).
- Rouha, H.; Weber, S.; Janesch, P.; Maierhofer, B.; Gross, K.; Dolezilkova, I.; Mirkina, I.; Visram, Z.C.; Malafa, S.; Stulik, L. Disarming Staphylococcus aureus from destroying human cells by simultaneously neutralizing six cytotoxins with two human monoclonal antibodies. Virulence 2018, 9, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Magyarics, Z.; Leslie, F.; Bartko, J.; Rouha, H.; Luperchio, S.; Schörgenhofer, C.; Schwameis, M.; Derhaschnig, U.; Lagler, H.; Stiebellehner, L. Penetration of a Monoclonal Antibody Combination (ASN100) Targeting S. aureus Cytotoxins in Lung Epithelial Lining Fluid: A Randomized, Double-blind, Placebo-controlled, Single Ascending Dose Study in Healthy Volunteers. Antimicrob. Agents Chemother. 2019, 63, e00350-19. [Google Scholar] [CrossRef] [Green Version]
- U.S. National Library of Medicine. Prevention of S. Aureus Pneumonia Study in Mechanically Ventilated Subjects Who Are Heavily Colonized with S. Aureus. Available online: https://clinicaltrials.gov/ct2/show/NCT02940626?cond=NCT02940626&draw=2&rank=1 (accessed on 26 November 2019).
- The Congress of ESCMID. L0011 Results of a Phase 2, Randomized, Double-Blind, Placebo-Controlled Study to Determine the Safety and Efficacy of a Single Dose of the Monoclonal Antibody Combination ASN100 for the Prevention of Staphylococcus aureus Pneumonia in Endotracheal Heavily Colonized, Mechanically Ventilated Subjects. Available online: https://www.escmid.org/escmid_publications/escmid_elibrary/material/?mid=66638 (accessed on 28 July 2019).
Drug Name | Phase | Company | Drug Class | Spectrum Against Gram-Positive Bacteria | Potential Indication | Ongoing Clinical Trials (ClinicalTrial.gov No.) |
---|---|---|---|---|---|---|
Iclaprim | NDA filed | Roche | dihydrofolate reductase inhibitor | MRSA, vancomycin-intermediate and vancomycin-resistant, and macrolide-, quinolone- and trimethoprim-resistant strains | ABSSSI | |
Cethromycin | NDA filed | Abbott Laboratories (acquired by Advanced Life Sciences Inc.) | ketolide | telithromycin-resistant S. pneumoniae | CABP | |
Solithromycin | Phase III | Cempra Pharmaceuticals | fluoroketolide | MRSA and macrolide-resistant M. pneumoniae | CABP | |
Contezolid (MRX-1) | Phase III | MicuRx Pharmaceuticals, Inc. | oxazolidinone | MRSA, penicillin-resistant and penicillin-intermediate S. pneumoniae, and VRE | ABSSSI | |
Contezolid Acefisamil (MRX-4) | Phase III | MicuRx Pharmaceuticals, Inc. | oxazolidinone | MRSA, VRE | MRSA & VRE infections in hospital setting | NCT03747497 |
Lascufloxacin | NDA filed | Kyorin Pharmaceutical Co., Ltd. | fluoroquinolone | MRSA, S. epidermidis, E. faecalis, S. pyogenes, S. agalactiae, and penicillin-resistant S. pneumoniae | CABP; URTI | |
Nemonoxacin (Taigexyn) 1 | Phase III | TaiGen Biotechnology Co., Ltd. | non-fluorinated quinolone | MRSA, multidrug-resistant S. pneumoniae and vancomycin-resistant pathogens | CABP; ABSSSI | NCT02840812 |
Levonadifloxacin (WCK771) | Phase III | Wockhardt Ltd. | fluoroquinolone | MRSA and staphylococci resistant to levofloxacin and moxifloxacin | ABSSSI; HAP | |
Zabofloxacin (DW-224a) 2 | Phase III | Dong Wha Pharmaceutical Industry Ltd. | fluoroquinolone | MRSA, methicillin-resistant coagulase-negative staphylococci, S. pyogenes, E. faecalis and S. pneumoniae | CABP | |
Brilacidin (PMX30063) | Phase III | Innovation Pharmaceuticals Inc. | defensin mimetic | S. aureus and S. epidermidis | ABSSSI |
Drug Name | Phase | Company | Drug Class | Spectrum Against Gram-Positive Bacteria | Potential Indication | Ongoing Clinical Trials (ClinicalTrial.gov No.) |
---|---|---|---|---|---|---|
Razupenem | Phase II | Protez Pharmaceuticals | carbapenem | MRSA, penicillin-resistant S. pneumoniae, VRE and ampicillin-resistant H. influenzae | cSSSI | |
Tomopenem (CS-023) | Phase II | Daiichi Sankyo Research Laboratories | carbapenem | MRSA and methicillin-susceptible S. epidermidis | Gram-positive bacterial infections | |
Radezolid (RX-1741) | Phase II | Melinta Therapeutics, Inc. | oxazolidinone | S. aureus, S. pneumoniae and enterococci | CABP and bacterial vaginosis | |
Gepotidacin | Phase II | GlaxoSmithKline | novel bacterial topoisomerase II inhibitor | MRSA, levofloxacin-resistant and multidrug-resistant S. aureus | ABSSSI | NCT04010539, NCT04079790, NCT04020341 |
Debio1450 (AFN-1720) | Phase II | Debiopharm | Fabl inhibitor | MRSA | ABSSSI | NCT03723551 |
CG400549 | Phase II | CrystalGenomics Inc. | Fabl inhibitor | MRSA | infections caused by MRSA and VRSA | |
Ridinilazole (SMT19969) | Phase II | Summit Therapeutics | new class-interferes with cell division | C. difficile | C. difficile-associated infections | NCT03595553, NCT03595566 |
ME1100 (Habekacin) 1 | Phase I | Meiji Seika Pharma Co. Ltd. | aminoglycoside | MRSA, gentamicin-resistant and vancomycin-resistant S. aureus | sepsis and pneumonia caused by MRSA | |
Alalevonadifloxacin (WCK2349) | Phase I | Wockhardt Ltd. | fluoroquinolone | MRSA, S. pneumoniae, H. influenzae, and M. catarrhalis | ABSSSI, CABP and HAP caused by MRSA | |
Avarofloxacin (JNJ-Q2 or acorafloxacin) | Phase I | Furiex Pharmaceuticals (now Allergan plc.) | fluoroquinolone | MRSA, fluoroquinolone-resistant S. pneumoniae | ABSSSI; CABP | |
SPR-741 | Phase I | Spero Therapeutics | polymyxin | Not specified | Gram-positive bacterial infections | |
CRS3123 (REP3123) | Phase I | Crestone Inc. | diaryldiamine | C. difficile | C. difficile-associated infections | |
DS-2969 | Phase I | Daichi Sankyo Co. Ltd. | DNA gyrase B inhibitor | C. difficile | C. difficile-associated infections | |
KBP-7072 | Phase I | KBP Biosciences | tetracycline | S. aureus and S. pneumoniae strains that exhibit higher minocycline MIC and beta-lactam resistance | CABP | |
MGB-BP-3 | Phase I | MGB Biopharma | DNA minor groove binder | MRSA, S. pneumoniae, vancomycin-resistant enterococci and C. difficile | C. difficile-associated diarrhoea | NCT03824795 |
Teixobactin | Phase I | Novobiotics Pharmaceuticals | depsipeptide | MRSA and VRE | Gram-positive bacterial infections | |
TP-271 | Phase I | Tetraphase Pharmaceuticals | fluorocycline | MRSA, S. pneumoniae and S. pyogenes | CABP | NCT03024034, NCT03234738 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koulenti, D.; Xu, E.; Song, A.; Sum Mok, I.Y.; Karageorgopoulos, D.E.; Armaganidis, A.; Tsiodras, S.; Lipman, J. Emerging Treatment Options for Infections by Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms 2020, 8, 191. https://doi.org/10.3390/microorganisms8020191
Koulenti D, Xu E, Song A, Sum Mok IY, Karageorgopoulos DE, Armaganidis A, Tsiodras S, Lipman J. Emerging Treatment Options for Infections by Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms. 2020; 8(2):191. https://doi.org/10.3390/microorganisms8020191
Chicago/Turabian StyleKoulenti, Despoina, Elena Xu, Andrew Song, Isaac Yin Sum Mok, Drosos E. Karageorgopoulos, Apostolos Armaganidis, Sotirios Tsiodras, and Jeffrey Lipman. 2020. "Emerging Treatment Options for Infections by Multidrug-Resistant Gram-Positive Microorganisms" Microorganisms 8, no. 2: 191. https://doi.org/10.3390/microorganisms8020191
APA StyleKoulenti, D., Xu, E., Song, A., Sum Mok, I. Y., Karageorgopoulos, D. E., Armaganidis, A., Tsiodras, S., & Lipman, J. (2020). Emerging Treatment Options for Infections by Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms, 8(2), 191. https://doi.org/10.3390/microorganisms8020191