Predominance of Distinct Listeria Innocua and Listeria Monocytogenes in Recurrent Contamination Events at Dairy Processing Facilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolate Selection and Listeria Species Confirmation
2.2. Molecular Epidemiological Analysis
2.3. Screening for Stress Survival Islets (SSI-1 and SSI-2)
2.4. L. Monocytogenes and L. Innocua Minimum Inhibitory Concentration (MIC) towards Biocides
3. Results
3.1. Isolate Characteristics
3.2. Molecular Epidemiological Interpretation
3.3. Susceptibility to Biocides
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Linke, K.; Rückerl, I.; Brugger, K.; Karpiskova, R.; Walland, J.; Muri-Klinger, S.; Tichy, A.; Wagner, M.; Stessl, B. Reservoirs of Listeria species in three environmental ecosystems. Appl. Environ. Microbiol. 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivant, A.L.; Garmyn, D.; Piveteau, P. Listeria monocytogenes, a down-to-earth pathogen. Front. Cell. Infect. Microbiol. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsi, R.H.; Wiedmann, M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl. Microbiol. Biotechnol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Lüth, S.; Boone, I.; Kleta, S.; Al Dahouk, S. Analysis of RASFF notifications on food products contaminated with Listeria monocytogenes reveals options for improvement in the rapid alert system for food and feed. Food Control 2019. [Google Scholar] [CrossRef]
- Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernández Escámez, P.S.; Girones, R.; Herman, L.; Koutsoumanis, K.; Nørrung, B.; et al. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 2018. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Gorris, L.G.M.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017. [Google Scholar] [CrossRef]
- NicAogáin, K.; O’Byrne, C.P. The role of stress and stress adaptations in determining the fate of the bacterial pathogen Listeria monocytogenes in the food chain. Front. Microbiol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Bierne, H.; Milohanic, E.; Kortebi, M. To be cytosolic or vacuolar: The double life of Listeria monocytogenes. Front. Cell. Infect. Microbiol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Maury, M.M.; Tsai, Y.H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gaultier, C.; Roussel, S.; Brisabois, A.; et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 2016. [Google Scholar] [CrossRef] [Green Version]
- Milillo, S.R.; Friedly, E.C.; Saldivar, J.C.; Muthaiyan, A.; O’Bryan, C.; Crandall, P.G.; Johnson, M.G.; Ricke, S.C. A Review of the Ecology, Genomics, and Stress Response of Listeria innocua and Listeria monocytogenes. Crit. Rev. Food Sci. Nutr. 2012. [Google Scholar] [CrossRef]
- Schmid, M.W.; Ng, E.Y.W.; Lampidis, R.; Emmerth, M.; Walcher, M.; Kreft, J.; Goebel, W.; Wagner, M.; Schleifer, K.H. Evolutionary history of the genus Listeria and its virulence genes. Syst. Appl. Microbiol. 2005. [Google Scholar] [CrossRef] [PubMed]
- Moura, A.; Disson, O.; Lavina, M.; Thouvenot, P.; Huang, L.; Leclercq, A.; Fredriksson-Ahomaa, M.; Eshwar, A.K.; Stephan, R.; Lecuit, M. Atypical hemolytic Listeria innocua isolates are virulent, albeit less than Listeria monocytogenes. Infect. Immun. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Chen, Q.; Jiang, L.; Cheng, C.; Bai, F.; Wang, J.; Mo, F.; Fang, W. Internalin profiling and multilocus sequence typing suggest four Listeria innocua subgroups with different evolutionary distances from Listeria monocytogenes. BMC Microbiol. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, C.; Chen, Y.; Niedermeyer, J.; Hernandez, K.; Kathariou, S. Draft Genome Sequence of Multidrug-Resistant Listeria innocua Strain UAM003-1A, Isolated from a Wild Black Bear (Ursus americanus). Microbiol. Resour. Announc. 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Zowalaty, M.E.; Hickman, R.A.; Moura, A.; Lecuit, M.; Zishiri, O.T.; Noyes, N.; Järhult, J.D. Genome Sequence of Listeria innocua Strain MEZLIS26, Isolated from a Goat in South Africa. Microbiol. Resour. Announc. 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roche, S.M.; Grépinet, O.; Kerouanton, A.; Ragon, M.; Leclercq, A.; Témoin, S.; Schaeffer, B.; Skorski, G.; Mereghetti, L.; Le Monnier, A.; et al. Polyphasic characterization and genetic relatedness of low-virulence and virulent Listeria monocytogenes isolates. BMC Microbiol. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, B.; Perich, A.; Gómez, D.; Yangüela, J.; Rodríguez, A.; Garriga, M.; Aymerich, T. Diversity and distribution of Listeria monocytogenes in meat processing plants. Food Microbiol. 2014. [Google Scholar] [CrossRef]
- Schmitz-Esser, S.; Müller, A.; Stessl, B.; Wagner, M. Genomes of sequence type 121 Listeria monocytogenes strains harbor highly conserved plasmids and prophages. Front. Microbiol. 2015. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, G.M.; Nielsen, J.B.; Marvig, R.L.; Ng, Y.; Worning, P.; Westh, H.; Gram, L. Genome-wide-analyses of Listeria monocytogenes from food-processing plants reveal clonal diversity and date the emergence of persisting sequence types. Environ. Microbiol. Rep. 2017. [Google Scholar] [CrossRef] [Green Version]
- Muhterem-Uyar, M.; Ciolacu, L.; Wagner, K.H.; Wagner, M.; Schmitz-Esser, S.; Stessl, B. New aspects on Listeria monocytogenes ST5-ECVI predominance in a heavily contaminated cheese processing environment. Front. Microbiol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Asperger, H.; Wagner, M.; Brandl, E. An approach towards public health and foodborne human listeriosis —The Austrian Listeria monitoring. Berl. Munch. Tierarztl. Wochenschr. 2001. [Google Scholar] [CrossRef]
- Wagner, M.; Stessl, B. Sampling the Food Processing Environment: Taking Up the Cudgel for Preventive Quality Management in Food Processing Environments. Methods Mol. Biol. 2014, 1157, 275–283. [Google Scholar] [PubMed]
- Walsh, P.S.; Metzger, D.A.; Higushi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 2013. [Google Scholar] [CrossRef] [Green Version]
- Bubert, A.; Hein, I.; Rauch, M.; Lehner, A.; Yoon, B.; Goebel, W.; Wagner, M. Detection and differentiation of Listeria spp. by a single reaction based on multiplex PCR. Appl. Environ. Microbiol. 1999, 65, 4688–4692. [Google Scholar] [CrossRef] [Green Version]
- Leclercq, A.; Chenal-Francisque, V.; Dieye, H.; Cantinelli, T.; Drali, R.; Brisse, S.; Lecuit, M. Characterization of the novel Listeria monocytogenes PCR serogrouping profile IVb-v1. Int. J. Food Microbiol. 2011. [Google Scholar] [CrossRef]
- Ryan, S.; Begley, M.; Hill, C.; Gahan, C.G.M. A five-gene stress survival islet (SSI-1) that contributes to the growth of Listeria monocytogenes in suboptimal conditions. J. Appl. Microbiol. 2010. [Google Scholar] [CrossRef]
- Hein, I.; Klinger, S.; Dooms, M.; Flekna, G.; Stessl, B.; Leclercq, A.; Hill, C.; Allerberger, F.; Wagner, M. Stress survival islet 1 (SSI-1) survey in Listeria monocytogenes reveals an insert common to Listeria innocua in sequence type 121 L. monocytogenes strains. Appl. Environ. Microbiol. 2011. [Google Scholar] [CrossRef] [Green Version]
- Mereghetti, L.; Quentin, R.; Marquet-Van Der Mee, N.; Audurier, A. Low sensitivity of Listeria monocytogenes to quaternary ammonium compounds. Appl. Environ. Microbiol. 2000. [Google Scholar] [CrossRef] [Green Version]
- Rückerl, I.; Muhterem-Uyar, M.; Muri-Klinger, S.; Wagner, K.H.; Wagner, M.; Stessl, B.L. Monocytogenes in a cheese processing facility: Learning from contamination scenarios over three years of sampling. Int. J. Food Microbiol. 2014. [Google Scholar] [CrossRef]
- Melero, B.; Stessl, B.; Manso, B.; Wagner, M.; Esteban-Carbonero, Ó.J.; Hernández, M.; Rovira, J.; Rodriguez-Lázaro, D. Listeria monocytogenes colonization in a newly established dairy processing facility. Int. J. Food Microbiol. 2019. [Google Scholar] [CrossRef]
- Martinez-Rios, V.; Dalgaard, P. Prevalence of Listeria monocytogenes in European cheeses: A systematic review and meta-analysis. Food Control 2018. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Skandamis, P.; Allerberger, F.; Schoder, D.; Lassnig, C.; Müller, M.; Rychli, K. The impact of shelf life on exposure as revealed from quality control data associated with the quargel outbreak. Int. J. Food Microbiol. 2018. [Google Scholar] [CrossRef]
- Dzieciol, M.; Schornsteiner, E.; Muhterem-Uyar, M.; Stessl, B.; Wagner, M.; Schmitz-Esser, S. Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment. Int. J. Food Microbiol. 2016. [Google Scholar] [CrossRef]
- Stessl, B.; Szakmary-Brändle, K.; Vorberg, U.; Schoder, D.; Wagner, M. Temporal analysis of the Listeria monocytogenes population structure in floor drains during reconstruction and expansion of a meat processing plant. Int. J. Food Microbiol. 2019. [Google Scholar] [CrossRef]
- Berrang, M.E.; Frank, J.F. Generation of airborne Listeria innocua from model floor drains. J. Food Prot. 2012. [Google Scholar] [CrossRef]
- Parisi, A.; Latorre, L.; Fraccalvieri, R.; Miccolupo, A.; Normanno, G.; Caruso, M.; Santagada, G. Occurrence of Listeria spp. in dairy plants in Southern Italy and molecular subtyping of isolates using AFLP. Food Control 2013. [Google Scholar] [CrossRef]
- Lomonaco, S.; Decastelli, L.; Nucera, D.; Gallina, S.; Manila Bianchi, D.; Civera, T. Listeria monocytogenes in Gorgonzola: Subtypes, diversity and persistence over time. Int. J. Food Microbiol. 2009. [Google Scholar] [CrossRef]
- Moura, A.; Criscuolo, A.; Pouseele, H.; Maury, M.M.; Leclercq, A.; Tarr, C.; Björkman, J.T.; Dallman, T.; Reimer, A.; Enouf, V.; et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2016. [Google Scholar] [CrossRef]
- Jagadeesan, B.; Baert, L.; Wiedmann, M.; Orsi, R.H. Comparative analysis of tools and approaches for source tracking Listeria monocytogenes in a food facility using whole-genome sequence data. Front. Microbiol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Cabal, A.; Pietzka, A.; Huhulescu, S.; Allerberger, F.; Ruppitsch, W.; Schmid, D. Isolate-Based Surveillance of Listeria monocytogenes by Whole Genome Sequencing in Austria. Front. Microbiol. 2019. [Google Scholar] [CrossRef]
- Hurley, D.; Luque-Sastre, L.; Parker, C.T.; Huynh, S.; Eshwar, A.K.; Nguyen, S.V.; Andrews, N.; Moura, A.; Fox, E.M.; Jordan, K.; et al. Whole-Genome Sequencing-Based Characterization of 100 Listeria monocytogenes Isolates Collected from Food Processing Environments over a Four-Year Period. mSphere 2019. [Google Scholar] [CrossRef] [Green Version]
- Painset, A.; Björkman, J.T.; Kiil, K.; Guillier, L.; Mariet, J.F.; Felix, B.; Amar, C.; Rotariu, O.; Roussel, S.; Perez-Reche, F.; et al. Liseq—Whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microb. Genomics 2019. [Google Scholar] [CrossRef]
- Maury, M.M.; Bracq-Dieye, H.; Huang, L.; Vales, G.; Lavina, M.; Thouvenot, P.; Disson, O.; Leclercq, A.; Brisse, S.; Lecuit, M. Hypervirulent Listeria monocytogenes clones’ adaption to mammalian gut accounts for their association with dairy products. Nat. Commun. 2019. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Murrieta, C.M.; Rule, D.C.; Miller, K.W. Exogenous or L-rhamnose-derived 1,2-propanediol is metabolized via a pduD-dependent pathway in Listeria innocua. Appl. Environ. Microbiol. 2008. [Google Scholar] [CrossRef] [Green Version]
- Salazar, J.K.; Wu, Z.; David McMullen, P.; Luo, Q.; Freitag, N.E.; Tortorello, M.L.; Hu, S.; Zhanga, W. prfa-like transcription factor gene lmo0753 contributes to l-rhamnose utilization in Listeria monocytogenes strains associated with human food-borne infections. Appl. Environ. Microbiol. 2013. [Google Scholar] [CrossRef] [Green Version]
- Trudelle, D.M.; Bryan, D.W.; Hudson, L.K.; Denes, T.G. Cross-resistance to phage infection in Listeria monocytogenes serotype 1/2a mutants. Food Microbiol. 2019. [Google Scholar] [CrossRef]
- Pasquali, F.; Palma, F.; Guillier, L.; Lucchi, A.; Cesare, A.D.; Manfreda, G. Listeria monocytogenes sequence types 121 and 14 repeatedly isolated within one year of sampling in a rabbit meat processing plant: Persistence and ecophysiology. Front. Microbiol. 2018. [Google Scholar] [CrossRef]
- Harter, E.; Wagner, E.M.; Zaiser, A.; Halecker, S.; Wagner, M.; Rychli, K. Stress survival islet 2, predominantly present in Listeria monocytogenes strains of sequence type 121, is involved in the alkaline and oxidative stress responses. Appl. Environ. Microbiol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Harrand, A.S.; Jagadeesan, B.; Baert, L.; Wiedmann, M.; Orsi, R.H. Evolution of Listeria monocytogenes in a food-processing plant involves limited single nucleotide substitutions, but considerable diversification by gain and loss of prophages. Appl. Environ. Microbiol. 2020. [Google Scholar] [CrossRef]
- Bansal, M.; Nannapaneni, R.; Sharma, C.S.; Kiess, A. Listeria monocytogenes response to sublethal chlorine induced oxidative stress on homologous and heterologous stress adaptation. Front. Microbiol. 2018, 2050. [Google Scholar] [CrossRef]
- Xu, D.; Deng, Y.; Fan, R.; Shi, L.; Bai, J.; Yan, H. Coresistance to Benzalkonium Chloride Disinfectant and Heavy Metal Ions in Listeria monocytogenes and Listeria innocua Swine Isolates from China. Foodborne Pathog. Dis. 2019. [Google Scholar] [CrossRef] [PubMed]
- Katharios-Lanwermeyer, S.; Rakic-Martinez, M.; Elhanafi, D.; Ratani, S.; Tiedje, J.M.; Kathariou, S. Coselection of cadmium and benzalkonium chloride resistance in conjugative transfers from nonpathogenic Listeria spp. to other Listeriae. Appl. Environ. Microbiol. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korsak, D.; Chmielowska, C.; Szuplewska, M.; Bartosik, D. Prevalence of plasmid-borne benzalkonium chloride resistance cassette bcrABC and cadmium resistance cadA genes in nonpathogenic Listeria spp. isolated from food and food-processing environments. Int. J. Food Microbiol. 2019. [Google Scholar] [CrossRef]
- Parsons, C.; Lee, S.; Kathariou, S. Heavy metal resistance determinants of the foodborne pathogen Listeria monocytogenes. Genes 2019, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Moreno, L.Z.; Paixão, R.; Gobbi, D.D.; Raimundo, D.C.; Ferreira, T.P.; Hofer, E.; Matte, M.H.; Moreno, A.M. Characterization of atypical Listeria innocua isolated from swine slaughterhouses and meat markets. Res. Microbiol. 2012. [Google Scholar] [CrossRef]
- Volokhov, D.V.; Duperrier, S.; Neverov, A.A.; George, J.; Buchrieser, C.; Hitchins, A.D. The presence of the internalin gene in natural atypically hemolytic Listeria innocua strains suggests descent from L. monocytogenes. Appl. Environ. Microbiol. 2007, 73, 1928–1939. [Google Scholar] [CrossRef] [Green Version]
- Petran, R.L.; Swanson, K.M.J. Simultaneous Growth of Listeria monocytogenes and Listeria innocua. J. Food Prot. 1993. [Google Scholar] [CrossRef]
- Jemmi, T.; Stephan, R. Listeria monocytogenes: Food-borne pathogen and hygiene indicator. OIE Rev. Sci. Tech. 2006. [Google Scholar]
- ISO. Microbiology of the Food Chain-Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp-Part 1: Detection Method; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Keys, A.L.; Dailey, R.C.; Hitchins, A.D.; Smiley, R.D. Postenrichment population differentials using buffered Listeria enrichment broth: Implications of the presence of Listeria innocua on Listeria monocytogenes in food test samples. J. Food Prot. 2013. [Google Scholar] [CrossRef] [Green Version]
- Pusztahelyi, T.; Szabó, J.; Dombrádi, Z.; Kovács, S.; Pócsi, I. Foodborne Listeria monocytogenes: A Real Challenge in Quality Control. Scientifica 2016. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-López, P.; Bernárdez, M.; Rodríguez-Herrera, J.J.; Comesaña, Á.S.; Cabo, M.L. Identification and metagenetic characterisation of Listeria monocytogenes-harbouring communities present in food-related industrial environments. Food Control 2019. [Google Scholar] [CrossRef] [Green Version]
PRODUCER | SOURCE | OCCURRENCE | TIME- FRAME | ISOLATES (n) | PFGE PROFILE (ASCI/APAI) | CC f | ST (Serogroup) | abcZ | bglA | cat | dapE | dat | ldh | lhkA | SSI-1 + g | SSI-1- h | SSI-2 i |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L. monocytogenes (API profile 6-5-1-0) | |||||||||||||||||
C | milk filter (PA) | sporc | once | 1 | M9[C] | 1 (I) | 1 (4b, 4d, 4e) | 3 | 1 | 1 | 1 | 3 | 1 | 3 | 0 | 1 | 0 |
D | smear (PAL) | spor | once | 1 | M6[D] | 3 (I) | 3 (1/2b, 3b) | 4 | 4 | 4 | 3 | 2 | 1 | 5 | 1 | 0 | 0 |
A | soft cheese (P) | spor | once | 1 | M8[A] | 7 (II) | 7 (1/2a, 3a) | 5 | 8 | 5 | 7 | 6 | 404 | 1 | 1 | 0 | 0 |
E | smear (PAL) | spor | once | 1 | M4[E] | 398 (II) | 398 (1/2a, 3a) | 7 | 13 | 19 | 6 | 1 | 7 | 1 | 0 | 1 | 0 |
A | smear (PAL) | spor | once | 1 | M12[A] | ST529 (III) | 529 (4b, 4d, 4e) | 25 | 73 | 82 | 96 | 45 | 211 | 67 | 0 | 1 | 0 |
E | acid curd cheese (P)/smear (PAL) | rec b | 2 mo d | 2 | M1[E] | 59 (I) | 59 (1/2b, 3b) | 11 | 1 | 12 | 16 | 3 | 1 | 7 | 0 | 1 | 0 |
C | swab (FCS) | recc | 1 yr d | 2 | M10[C] | 155 (II) | 155 (1/2a, 3a) | 7 | 10 | 16 | 7 | 5 | 2 | 1 | 1 | 0 | 0 |
E | smear (PAL) | recc | 7 mo | 2 | M3[E] | 403 (II) | 403 (1/2a, 3a) | 7 | 7 | 10 | 4 | 5 | 24 | 1 | 1 | 0 | 0 |
A/D | drain water (EL)/smear (PAL) | recc/spor | 11 yr/once | 11/1 | M11[A]=M7[D] | 14 (II) | 14 (1/2a, 3a) | 8 | 6 | 13 | 6 | 5 | 2 | 1 | 1 | 0 | 0 |
E | acid curd cheese (P)/culture (PA)/environment (NFCS) | rec b | 1 mo | 3 | M2[E] | 121 (II) | 121 (1/2a, 3a) | 7 | 6 | 8 | 8 | 6 | 37 | 1 | 0 | 0 | 1 |
B/D/E | smear (PAL) | recc/recb/spor | 7 yr/4mo/once | 47/7/1 | M5[B]=M5[D]=M5[E] | 121 (II) | 121 (1/2a, 3a) | 7 | 6 | 8 | 8 | 6 | 37 | 1 | 0 | 0 | 1 |
L. innocua (API profile 7-5-1-0) | |||||||||||||||||
C | smear (PAL) | spor | once | 1 | IN10[C] | ST1596 | 1596 | 26 | 21 | 33 | 33 | 48 | 213 | 216 | 0 | 0 | 1 |
C | cheese (P) | spor | once | 1 | IN18[C] | ST530 | 530 | 28 | 62 | 40 | 97 | 45 | 214 | 53 | 0 | 0 | 1 |
A | smear (PAL) | spor | once | 1 | IN12[A] | 140 | 637 | 28 | 23 | 33 | 35 | 23 | 192 | 16 | 0 | 0 | 1 |
C | floor water (NFCS) | spor | once | 1 | IN15[C] | 140 | 637 | 28 | 23 | 33 | 35 | 23 | 192 | 16 | 0 | 0 | 1 |
E | smear (PAL) | rec b | 4 mo | 2 | IN2[E] | 140 | 637 | 28 | 23 | 33 | 35 | 23 | 192 | 16 | 0 | 0 | 1 |
E | smear (PAL) | spor | once | 1 | IN4ST[E] | 600 | 603 | 36 | 21 | 40 | 108 | 65 | 243 | 81 | 0 | 0 | 1 |
C/E | hard cheese (P)/acid curd cheese (P)/smear (PAL) environment (NFCS | spor/recc | once/5.6 yr | 1/12 | IN4[C]=IN4[E] /n. t.e | 600 | 603a | 36 | 21 | 40 | 108 | 65 | 243 | 81 | 0 | 0 | 1 |
A/C/D/E | grating cheese (P)/smear, brine(PAL)/floor water (EL) | rec c/rec c/rec c/rec c | 1 yr/6.8yr/6.2yr/1yr | 2/22/68/2 | IN5[A]=IN5[C]=IN5[D]=IN5[E]/n. t. | ST1597 | 1597 a | 36 | 23 | 30 | 96 | 195 | 19 | 16 | 0 | 0 | 1 |
A | smear (PAL) | spor | once | 1 | IN9[A] | 448 | 448 | 65 | 21 | 40 | 33 | 45 | 170 | 53 | 0 | 0 | 1 |
C | raw milk (RM) | spor | once | 1 | IN14[C] | ST1598 | 1598 | 79 | 21 | 33 | 97 | 20 | 356 | 58 | 0 | 0 | 1 |
A | smear (PAL) | spor | once | 1 | IN16[A] | ST43 | 43 | 143 | 21 | 40 | 167 | 55 | 307 | 16 | 0 | 0 | 1 |
C | hard cheese (P) | spor | once | 1 | IN21[C] | ST43 | 43 | 143 | 21 | 40 | 167 | 55 | 307 | 16 | 0 | 0 | 1 |
A/C/D | soft cheese (P)/smear (PAL) | rec b/spor/rec b | 5 mo/once/4mo | 02.01.2003 | IN6[A]=IN6[C]=IN6[D] | ST1599 | 1599a | 143 | 95 | 30 | 96 | 55 | 180 | 16 | 0 | 0 | 1 |
L. innocua (API profile 7-1-1-0) | |||||||||||||||||
E | acid curd cheese (P)/enrichment (PAL)/drain water (EL) | rec c | 6 mo | 3 | IN1[E] | ST1595 | 1595 a | 25 | 73 | 237 | 130 | 55 | 19 | 16 | 0 | 0 | 1 |
D | semi-hard cheese (P) | spor | once | 1 | IN8[D] | ST1482 | 1482 | 26 | 21 | 40 | 33 | 45 | 19 | 53 | 0 | 0 | 1 |
C | cheese (P) | spor | once | 1 | IN17[C] | ST605 | 605 | 36 | 21 | 30 | 35 | 45 | 69 | 17 | 0 | 0 | 1 |
C | cheese (P) | spor | once | 1 | IN20[C] | ST605 | 605 | 36 | 21 | 30 | 35 | 45 | 69 | 17 | 0 | 0 | 1 |
C | cheese (P) | spor | once | 1 | IN19[C] | ST1087 | 1087 | 191 | 21 | 184 | 110 | 45 | 356 | 16 | 0 | 0 | 1 |
C | smear (PAL) | rec c | 1.3 yr | 2 | IN7[C] | ST1085 | 1085 a | 188 | 157 | 182 | 223 | 136 | 353 | 148 | 0 | 0 | 1 |
E | acid curd cheese (P) smear (PAL) | rec c | 6 mo | 4 | IN3[E] | ST1601 | 1601 a | 250 | 140 | 73 | 223 | 136 | 341 | 214 | 0 | 0 | 1 |
L. innocua (API profile 7-5-3-0) | |||||||||||||||||
A | smear (PAL) | spor | once | 1 | IN13[A] | ST1600 | 1600 | 40 | 62 | 30 | 33 | 55 | 356 | 17 | 0 | 0 | 1 |
A | smear (PAL) | spor | once | 1 | IN11[A] | ST1008 | 1008 | 173 | 140 | 173 | 208 | 136 | 341 | 138 | 0 | 0 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaszoni-Rückerl, I.; Mustedanagic, A.; Muri-Klinger, S.; Brugger, K.; Wagner, K.-H.; Wagner, M.; Stessl, B. Predominance of Distinct Listeria Innocua and Listeria Monocytogenes in Recurrent Contamination Events at Dairy Processing Facilities. Microorganisms 2020, 8, 234. https://doi.org/10.3390/microorganisms8020234
Kaszoni-Rückerl I, Mustedanagic A, Muri-Klinger S, Brugger K, Wagner K-H, Wagner M, Stessl B. Predominance of Distinct Listeria Innocua and Listeria Monocytogenes in Recurrent Contamination Events at Dairy Processing Facilities. Microorganisms. 2020; 8(2):234. https://doi.org/10.3390/microorganisms8020234
Chicago/Turabian StyleKaszoni-Rückerl, Irene, Azra Mustedanagic, Sonja Muri-Klinger, Katharina Brugger, Karl-Heinz Wagner, Martin Wagner, and Beatrix Stessl. 2020. "Predominance of Distinct Listeria Innocua and Listeria Monocytogenes in Recurrent Contamination Events at Dairy Processing Facilities" Microorganisms 8, no. 2: 234. https://doi.org/10.3390/microorganisms8020234
APA StyleKaszoni-Rückerl, I., Mustedanagic, A., Muri-Klinger, S., Brugger, K., Wagner, K. -H., Wagner, M., & Stessl, B. (2020). Predominance of Distinct Listeria Innocua and Listeria Monocytogenes in Recurrent Contamination Events at Dairy Processing Facilities. Microorganisms, 8(2), 234. https://doi.org/10.3390/microorganisms8020234