Diverse Microbial Community Profiles of Propionate-Degrading Cultures Derived from Different Sludge Sources of Anaerobic Wastewater Treatment Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Enrichment Process
2.2. Sample Collection and Molecular Analysis
2.3. Microbiome Analysis Based on the 16S rRNA Gene Sequences
3. Results
3.1. A Shift of Microbiome Profiles from Inoculums to Enriched Propionate-Degrading Cultures
3.2. Microbiome Profiles of Propionate-Degrading Cultures Enriched from Different Inoculum Sources
3.3. Common and Unique Microorganisms in Propionate-Degrading Cultures Enriched from Different Inoculum Sources
3.4. Several Uncultured Microbes Found in the Propionate-Degrading Cultures Using the Culture-Independent Amplicon-Based Sequencing Approach
4. Discussion
4.1. The Schematic Propionate-Degrading Pathway in the Enriched Cultures for Methane Production
4.2. Different Taxa of Hydrogenotrophic Methanogens Found Specifically to Different Sludge Sources
4.3. Unique Microbial Community in the Propionate-Degrading Culture Enriched from Seafood Sludge
4.4. Overall Microbial Profiles of Propionate-Degrading Cultures and Unculturable Microbes Revealed Through Amplicon-Based Sequencing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bajpai, P. Basics of Anaerobic Digestion Process. In Anaerobic Technology in Pulp and Paper Industry; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Abdelgadir, A.; Chen, X.; Liu, J.; Xie, X.; Zhang, J.; Zhang, K.; Wang, H.; Liu, N. Characteristics, process parameters, and inner components of anaerobic bioreactors. Biomed. Res. Int. 2014, 2014, 841573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amha, Y.M.; Anwar, M.Z.; Brower, A.; Jacobsen, C.S.; Stadler, L.B.; Webster, T.M.; Smith, A.L. Inhibition of anaerobic digestion processes: Applications of molecular tools. Bioresour. Technol. 2018, 247, 999–1014. [Google Scholar] [CrossRef] [PubMed]
- Grzelak, J.; Ślęzak, R.; Krzystek, L.; Ledakowicz, S. Effect of pH on the production of volatile fatty acids in dark fermentation process of organic waste. Ecol. Chem. Eng. S 2018, 25, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Mir, M.A.; Hussain, A.; Verma, C. Design considerations and operational performance of anaerobic digester: A review. Cogent Eng. 2016, 3, 1181696. [Google Scholar] [CrossRef]
- Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008, 99, 7928–7940. [Google Scholar] [CrossRef]
- Wrońska, I.; Cybulska, K. Quantity and quality of biogas produced from the poultry sludge optimized by filamentous fungi. Ecol. Chem. Eng. S 2018, 25, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Wacławek, S.; Grübel, K.; Silvestri, D.; Padil, V.V.; Wacławek, M.; Černík, M.; Varma, R.S. Disintegration of wastewater activated sludge (WAS) for improved biogas production. Energies 2019, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Meyer, T.; Edwards, E.A. Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Res. 2014, 65, 321–349. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Hu, D.; Su, H.; Chen, Z.; Cui, Y.; Ran, C.; Xu, J.; Xiao, T.; Li, X.; Wang, H.; Tian, Y. Performance evaluation and microbial community dynamics in a novel AnMBR for treating antibiotic solvent wastewater. Bioresour. Technol. 2017, 243, 218–227. [Google Scholar] [CrossRef]
- Fukuzaki, S.; Nishio, N.; Shobayashi, M.; Nagai, S. Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate. Appl. Env. Microbiol. 1990, 56, 719–723. [Google Scholar] [CrossRef] [Green Version]
- Lins, P.; Malin, C.; Wagner, A.O.; Illmer, P. Reduction of accumulated volatile fatty acids by an acetate-degrading enrichment culture. FEMS Microbiol. Ecol. 2010, 71, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Amani, T.; Nosrati, M.; Mousavi, S.; Kermanshahi, R. Study of syntrophic anaerobic digestion of volatile fatty acids using enriched cultures at mesophilic conditions. Int. J. Env. Sci. Technol. 2011, 8, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Tale, V.P.; Maki, J.S.; Struble, C.A.; Zitomer, D.H. Methanogen community structure-activity relationship and bioaugmentation of overloaded anaerobic digesters. Water Res. 2011, 45, 5249–5256. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Sun, Y.; Wu, S.; Kong, X.; Yuan, Z.; Dong, R. The performance efficiency of bioaugmentation to prevent anaerobic digestion failure from ammonia and propionate inhibition. Bioresour. Technol. 2017, 231, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houwen, F.P.; Plokker, J.; Stams, A.J.; Zehnder, A.J. Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii. Arch. Microbiol. 1990, 155, 52–55. [Google Scholar] [CrossRef]
- Kosaka, T.; Uchiyama, T.; Ishii, S.-I.; Enoki, M.; Imachi, H.; Kamagata, Y.; Ohashi, A.; Harada, H.; Ikenaga, H.; Watanabe, K. Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum. J. Bacteriol. 2006, 188, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Ferry, J.G. Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr. Opin. Biotechnol. 2011, 22, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Harmsen, H.J.; Van Kuijk, B.L.; Plugge, C.M.; Akkermans, A.D.; De Vos, W.M.; Stams, A.J. Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int. J. Syst. Evol. Microbiol. 1998, 48, 1383–1387. [Google Scholar] [CrossRef] [Green Version]
- Wallrabenstein, C.; Hauschild, E.; Schink, B. Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch. Microbiol. 1995, 164, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Boone, D.R.; Bryant, M.P. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Env. Microbiol. 1980, 40, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ban, Q.; Zhang, L.; Jha, A.K. Syntrophic propionate degradation in anaerobic digestion: A review. Int. J. Agric. Biol. 2012, 14, 843–850. [Google Scholar]
- De Bok, F.A.; Stams, A.J.; Dijkema, C.; Boone, D.R. Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl. Env. Microbiol. 2001, 67, 1800–1804. [Google Scholar] [CrossRef] [Green Version]
- Dolfing, J. Syntrophic propionate oxidation via butyrate: A novel window of opportunity under methanogenic conditions. Appl. Env. Microbiol. 2013, 79, 4515–4516. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Balkwill, D.L.; Aldrich, H.C.; Drake, G.R.; Boone, D.R. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int. J. Syst. Bacteriol. 1999, 49, 545–556. [Google Scholar] [CrossRef]
- Wawrik, B.; Marks, C.R.; Davidova, I.A.; McInerney, M.J.; Pruitt, S.; Duncan, K.E.; Suflita, J.M.; Callaghan, A.V. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by ‘Smithella’spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens. Environ. Microbiol. 2016, 18, 2604–2619. [Google Scholar] [CrossRef]
- Glenn, T.C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 2011, 11, 759–769. [Google Scholar] [CrossRef]
- Handelsman, J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 2004, 68, 669–685. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Zepeda, A.; Vera-Ponce de Leon, A.; Sanchez-Flores, A. The Road to Metagenomics: From Microbiology to DNA Sequencing Technologies and Bioinformatics. Front. Genet. 2015, 6, 348. [Google Scholar] [CrossRef] [Green Version]
- Wirth, R.; Kovacs, E.; Maroti, G.; Bagi, Z.; Rakhely, G.; Kovacs, K.L. Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol. Biofuels 2012, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Schluter, A.; Bekel, T.; Diaz, N.N.; Dondrup, M.; Eichenlaub, R.; Gartemann, K.H.; Krahn, I.; Krause, L.; Kromeke, H.; Kruse, O.; et al. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J. Biotechnol. 2008, 136, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Wilkins, D.; Chen, J.; Ng, S.-K.; Lu, H.; Jia, Y.; Lee, P.K. Metagenomic reconstruction of key anaerobic digestion pathways in municipal sludge and industrial wastewater biogas-producing systems. Front. Microbiol. 2016, 7, 778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Peng, Y.; Ni, B.J.; Han, X.; Fan, L.; Yuan, Z. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb. Cell Fact. 2015, 14, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Sun, Y.; Yang, G.; Hu, K.; Lv, P.; Li, L. Vertical distribution of microbial community and metabolic pathway in a methanogenic propionate degradation bioreactor. Bioresour. Technol. 2017, 245, 1022–1029. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Li, L.; Yuan, Z. Acclimation of acid-tolerant methanogenic propionate-utilizing culture and microbial community dissecting. Bioresour. Technol. 2018, 250, 117–123. [Google Scholar] [CrossRef]
- Scholten, J.C.; Conrad, R. Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures. Appl. Env. Microbiol. 2000, 66, 2934–2942. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Env. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Kolde, R. Pheatmap: Pretty Heatmaps. R package version 1.0.12. 2019. Available online: https://rdrr.io/cran/pheatmap/ (accessed on 18 December 2019).
- Clarke, K.; Green, R. Statistical design and analysis for a‘biological effects’ study. Mar. Ecol. Prog. Ser. 1988, 213–226. [Google Scholar] [CrossRef]
- Koch, M.; Dolfing, J.; Wuhrmann, K.; Zehnder, A.J. Pathways of propionate degradation by enriched methanogenic cultures. Appl. Env. Microbiol. 1983, 45, 1411–1414. [Google Scholar] [CrossRef] [Green Version]
- Shigematsu, T.; Era, S.; Mizuno, Y.; Ninomiya, K.; Kamegawa, Y.; Morimura, S.; Kida, K. Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl. Microbiol. Biotechnol. 2006, 72, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Chaiprasert, P.; Hudayah, N.; Auphimai, C. Efficacies of Various Anaerobic Starter Seeds for Biogas Production from Different Types of Wastewater. Biomed. Res. Int. 2017, 2017, 2782850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McInerney, M.J.; Bryant, M.P.; Hespell, R.B.; Costerton, J.W. Syntrophomonas wolfei gen. nov. sp. nov., an Anaerobic, Syntrophic, Fatty Acid-Oxidizing Bacterium. Appl. Env. Microbiol. 1981, 41, 1029–1039. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, K.; Fujita, T.; Akada, S.; Tonouchi, A. Methanobacterium kanagiense sp. nov., a hydrogenotrophic methanogen, isolated from rice-field soil. Int. J. Syst. Evol. Microbiol. 2011, 61, 1246–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yashiro, Y.; Sakai, S.; Ehara, M.; Miyazaki, M.; Yamaguchi, T.; Imachi, H. Methanoregula formicica sp. nov., a methane-producing archaeon isolated from methanogenic sludge. Int. J. Syst. Evol. Microbiol. 2011, 61, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kougias, P.G.; Campanaro, S.; Treu, L.; Zhu, X.; Angelidaki, I. A novel archaeal species belonging to Methanoculleus genus identified via de-novo assembly and metagenomic binning process in biogas reactors. Anaerobe 2017, 46, 23–32. [Google Scholar] [CrossRef]
- Imachi, H.; Sakai, S.; Sekiguchi, Y.; Hanada, S.; Kamagata, Y.; Ohashi, A.; Harada, H. Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int. J. Syst. Evol. Microbiol. 2008, 58, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Dahle, H.; Birkeland, N.K. Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int. J. Syst. Evol. Microbiol. 2006, 56, 1539–1545. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Sekiguchi, Y.; Imachi, H.; Kamagata, Y.; Ohashi, A.; Harada, H. Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl. Env. Microbiol. 2005, 71, 7493–7503. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Hou, X.; Su, H. Exploration of the relationship between biogas production and microbial community under high salinity conditions. Sci. Rep. 2017, 7, 1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, B.; Wang, L.Y.; Mbadinga, S.M.; Liu, J.F.; Yang, S.Z.; Gu, J.D.; Mu, B.Z. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 2015, 5, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIlroy, S.J.; Kirkegaard, R.H.; Dueholm, M.S.; Fernando, E.; Karst, S.M.; Albertsen, M.; Nielsen, P.H. Culture-independent analyses reveal novel anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge. Front. Microbiol. 2017, 8, 1134. [Google Scholar] [CrossRef] [PubMed]
- Imachi, H.; Sekiguchi, Y.; Kamagata, Y.; Ohashi, A.; Harada, H. Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl. Env. Microbiol. 2000, 66, 3608–3615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Anaerobic Sludge from Various Anaerobic Wastewater Treatment Plants | Reactor Performance | Specific Methanogenic Activity (SMA) (g COD/g VSS/d) | ||||
---|---|---|---|---|---|---|
pH | TVA/Alkalinity | COD Reduction (%) | Biogas Composition (%) | |||
%CH4 | %CO2 | |||||
Domestic | 7.50 | 0.30 | 86.5 | 60.0 | 35.5 | 0.22 ± 0.016 |
FruitJuice | 7.50 | 0.30 | 85.0 | 62.5 | 34.0 | 0.17 ± 0.011 |
PalmOil | 7.49 | 0.30 | 86.5 | 75.0 | 22.0 | 0.20 ± 0.009 |
Starch | 7.56 | 0.25 | 90.0 | 73.5 | 23.5 | 0.22 ± 0.007 |
PigManure | 7.57 | 0.27 | 89.0 | 75.5 | 21.0 | 0.28 ± 0.003 |
Seafood | 7.52 | 0.35 | 80.0 | 80.0 | 17.5 | 0.14 ± 0.015 |
OTUs | Taxonomic Lineage | Propionate-Enriched Culture | ||||
---|---|---|---|---|---|---|
Domestic | FruitJuice | PalmOil | PigManure | Starch | ||
OTU00001 | Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosaetaceae; Methanosaeta | ✓ | ✓ | ✓ | ✓ | ✓ |
OTU00002 | Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Syntrophaceae; Smithella | ✓ | ✓ | ✓ | ✓ | ✓ |
OTU00003 | Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosaeta; Methanosaeta | ✓ | ✓ | ✓ | ✓ | |
OTU00006 | Bacteria; Synergistetes; Synergistia; Synergistales; Synergistaceae; Syner-01 | ✓ | ✓ | ✓ | ||
OTU00011 | Bacteria; Firmicutes; Clostridia; Clostridiales; Syntrophomonadaceae; Syntrophomonas | ✓ | ✓ | ✓ | ||
OTU00012 | Bacteria; Firmicutes; Cloastridia; Clostridiales; Syntrophomonadaceae; Syntrophomonas | ✓ | ✓ | ✓ | ✓ | |
OTU00022 | Bacteria; Firmicutes; Clostridia; Clostridiales; Syntrophomonadaceae; Syntrophomonas | ✓ | ✓ | ✓ | ✓ |
OTU | Hydrogenotrophic Methanogen | Observed Sample | |
---|---|---|---|
Family | Genus | ||
OTU00061 | Methanoregulaceae | Methanoregula | Domestic |
OTU00023 | Methanobacteriaceae | Methanobacterium | FruitJuice |
OTU00105 | Methanobacteriaceae | Methanobacterium | FruitJuice |
OTU00100 | Methanomicrobiaceae | Methanoculleus | PalmOil |
OTU00036 | Methanoregulaceae | Metanoregula | PigManure |
OTU00097 | Methanoregulaceae | Metanoregula | PigManure |
OTU00015 | Methanoregulaceae | Methanolinea | Starch |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puengrang, P.; Suraraksa, B.; Prommeenate, P.; Boonapatcharoen, N.; Cheevadhanarak, S.; Tanticharoen, M.; Kusonmano, K. Diverse Microbial Community Profiles of Propionate-Degrading Cultures Derived from Different Sludge Sources of Anaerobic Wastewater Treatment Plants. Microorganisms 2020, 8, 277. https://doi.org/10.3390/microorganisms8020277
Puengrang P, Suraraksa B, Prommeenate P, Boonapatcharoen N, Cheevadhanarak S, Tanticharoen M, Kusonmano K. Diverse Microbial Community Profiles of Propionate-Degrading Cultures Derived from Different Sludge Sources of Anaerobic Wastewater Treatment Plants. Microorganisms. 2020; 8(2):277. https://doi.org/10.3390/microorganisms8020277
Chicago/Turabian StylePuengrang, Pantakan, Benjaphon Suraraksa, Peerada Prommeenate, Nimaradee Boonapatcharoen, Supapon Cheevadhanarak, Morakot Tanticharoen, and Kanthida Kusonmano. 2020. "Diverse Microbial Community Profiles of Propionate-Degrading Cultures Derived from Different Sludge Sources of Anaerobic Wastewater Treatment Plants" Microorganisms 8, no. 2: 277. https://doi.org/10.3390/microorganisms8020277
APA StylePuengrang, P., Suraraksa, B., Prommeenate, P., Boonapatcharoen, N., Cheevadhanarak, S., Tanticharoen, M., & Kusonmano, K. (2020). Diverse Microbial Community Profiles of Propionate-Degrading Cultures Derived from Different Sludge Sources of Anaerobic Wastewater Treatment Plants. Microorganisms, 8(2), 277. https://doi.org/10.3390/microorganisms8020277