Effect of Drying Process, Encapsulation, and Storage on the Survival Rates and Gastrointestinal Resistance of L. salivarius spp. salivarius Included into a Fruit Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Microencapsulation Process
2.3. Incorporation of Microorganisms into the Food Matrix and Drying Process
2.4. Determination of Physicochemical Properties
2.5. Texture and Color Measurements
2.6. Microorganisms Content Determination
2.7. Gastrointestinal Simulation Process
2.8. Storage
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Content of L. salivarius spp. salivarius after Drying and during Storage
3.3. Content of L. salivarius spp. salivarius after the Gastrointestinal (GI) Digestion Process
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brahma, S.; Sadiq, M.B.; Ahmad, I. Probiotics in Functional Foods. Ref. Modul. Food Sci. 2019. [Google Scholar] [CrossRef]
- International Dairy Federation (IDF/FIL). Physiological and functional properties of probiotics. Bull. Int. Dairy Fed. 1992, 272, 17–22. [Google Scholar]
- FAO/WHO. Probiotics in Food-Health and Nutritional Properties and Guidelines for Evaluation. 2006. Available online: http://www.fao.org/3/a-a0512e.pdf (accessed on 1 February 2020).
- Batista, A.L.D.; Silva, R.; Cappato, L.P.; Almada, C.N.; Garcia, R.K.A.; Silva, M.C.; Raices, R.S.L.; Arellano, D.B.; Sant’Ana, A.S.; Junior, C.A.C.; et al. Quality parameters of probiotic yogurt added to glucose oxidase compared to commercial products through microbiological, physical-chemical, and metabolic activity analyses. Food Res. Int. 2015, 77, 627–635. [Google Scholar] [CrossRef]
- Martinez, R.C.R.; Aynaou, A.E.; Albrecht, S.; Schols, H.A.; De Martinis, E.C.P.; Zoetendal, E.G.; Venema, K.; Saad, S.M.I.; Smidt, H. In vitro evaluation of gastrointestinal survival of Lactobacillus amylovorus DSM 16698 alone and combined with galactooligosaccharides, milk and/or Bifidobacterium animalis subsp. lactis Bb-12. Int. J. Food Microbiol. 2011, 149, 152–158. [Google Scholar] [CrossRef]
- Betoret, E.; Betoret, N.; Calabuig-Jiménez, L.; Patrignani, F.; Barrera, C.; Lanciotti, R.; Dalla Rosa, M. Probiotic survival and in vitro digestion of L. salivarius spp. salivarius encapsulated by high homogenization pressures and incorporated into a fruit matrix. LWT-Food Sci. Technol. 2019, 111, 883–888. [Google Scholar]
- Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J. Food Eng. 2011, 104, 467–483. [Google Scholar] [CrossRef]
- Capela, P.; Hay, T.K.C.; Shah, N.P. Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res. Int. 2005, 39, 203–211. [Google Scholar]
- Tsakalidou, E.; Papadimitriou, K. Stress Responses of Lactic Acid Bacteria; Springer: New York, NY, USA, 2011; Volume 23, pp. 23–67. [Google Scholar]
- Betoret, E.; Betoret, N.; Arilla, A.; Bennár, M.; Barrera, C.; Codoñer, P.; Fito, P. No invasive methodology to produce a probiotic low humid apple snack with potential effect against Helicobacter pylori. J. Food Eng. 2012, 110, 289–293. [Google Scholar] [CrossRef]
- Patrignani, F.; Siroli, L.; Serrazanetti, D.I.; Braschi, G.; Betoret, E.; Reinheimer, J.A.; Lanciotti, R. Microencapsulation of functional strains by high pressure homogenization for a potential use in fermented milk. Food Res. Int. 2017, 97, 250–257. [Google Scholar] [CrossRef]
- Betoret, E.; Betoret, N.; Rocculi, P.; Dalla Rosa, M. Strategies to improve food functionality: Structure-property relationships on high pressure homogenization, vacuum impregnation and drying operations. Trends Food Sci. Technol. 2015, 46, 1–12. [Google Scholar] [CrossRef]
- Betoret, E.; Calabuig-Jiménez, L.; Barrera, C.; Dalla Rosa, M. Sustainable drying technologies for the development of functional foods and preservation of bioactive compounds. In Sustainable Drying Technologies; Del Real Olvera, J., Ed.; IntechOpen: Rijeka, Croatia, 2016; pp. 37–57. [Google Scholar]
- Betoret, E.; Sentandreu, E.; Betoret, N.; Codoñer-Franch, P.; Valls-Bellés, V.; Fito, P. Homogenization pressures applied to citrus juices manufacturing. Functional properties and application. J. Food Eng. 2012, 111, 28–33. [Google Scholar] [CrossRef]
- Aiba, Y.; Suzuki, N.; Kabir, A.M.; Takagi, A.; Koga, Y. Lactic acid–mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. Am. J. Gastroenterol. 1998, 93, 2097–2101. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.K.; Shah, N.P. Effect of homogenization techniques on reducing the size of microcapsules and the survival of probiotic bacteria therein. J. Food Sci. 2009, 74, M231–M236. [Google Scholar] [CrossRef] [PubMed]
- Calabuig-Jiménez, L.; Betoret, E.; Betoret, N.; Patrignani, F.; Barrera, C.; Seguí, L.; Lanciotti, R.; Dalla Rosa, M. High pressures homogenization (HPH) to microencapsulate L. salivarius spp. salivarius in mandarin juice. Probiotic survival and in vitro digestion. J. Food Eng. 2019, 240, 43–48. [Google Scholar]
- Maskan, M. Drying shrinkage and rehydration characteristics of kiwifruits during microwave drying. J. Food Eng. 2001, 48, 177–182. [Google Scholar] [CrossRef]
- Lewicki, P.P.; Jakubczyk, E. Effect of hot air temperature on mechanical properties of dried apples. J. Food Eng. 2004, 64, 307–314. [Google Scholar] [CrossRef]
- Chiralt, A.; Martínez-Navarrete, N.; Martínez-Monzó, J.; Talens, P.; Moraga, G.; Ayala, A.; Fito, P. Changes in mechanical properties throughout osmotic processes: Cryoprotectant effect. J. Food Eng. 2001, 49, 129–135. [Google Scholar] [CrossRef]
- Contreras, C.; Martín, M.E.; Martín-Navarrete, N.; Chiralt, A. Effect of vacuum impregnation and microwave application on structural changes which occurred during air-drying of apple. LWT-Food Sci. Technol. 2004, 38, 471–477. [Google Scholar] [CrossRef]
- Santos, M.G.; Carpinteiro, D.A.; Thomazini, M.; Rocha-Selmi, G.A.; da Cruz, A.G.; Rodrigues, C.E.C.; Favaro-Trindade, C.S. Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Res. Int. 2014, 66, 454–462. [Google Scholar] [CrossRef]
- Qaziyani, S.D.; Pourfarzad, A.; Gheibi, S.; Nasiraie, L.R. Effect of encapsulation and wall material on the probiotic survival and physicochemical properties of symbiotic chewing gum: Study with univariate and multivariate analyses. Heliyon 2019, 5, e02144. [Google Scholar] [CrossRef] [Green Version]
- Alonso García, E.; Pérez Montoro, B.; Benomar, N.; Castillo-Gutiérrez, S.; Estudillo-Martínez, M.D.; Knapp, C.W.; Abriouel, H. New insight into the molecular effects and probiotic properties of Lactobacillus pentosus pre-adapted to edible oils. LWT-Food Sci. Technol. 2019, 109, 153–162. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, J.; Zhong, Q. Effects of media, heat adaptation, and outlet temperature on the survival of Lactobacillus salivarius NRRL B-30514 after spray drying and subsequent storage. LWT- Food Sci. Technol. 2016, 74, 441–447. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, M.; Gobbetti, M. Stress Responses of Lactobacilli. In Stress Responses of Lactic Acid Bacteria, 1st ed.; Tsakalidou, E., Papadimitriou, K., Eds.; Springer: New York, NY, USA, 2011; Volume 23, pp. 219–249. [Google Scholar]
- Dianawati, D.; Shah, N.P. Enzyme stability of microencapsulated Bifidobacterium animalis ssp. lactis Bb12 after freeze drying and during storage in low water activity at room temperature. J. Food Sci. 2011, 76, M463–M471. [Google Scholar] [CrossRef] [PubMed]
- Anal, A.K.; Singh, H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 2007, 18, 240–251. [Google Scholar] [CrossRef]
- Soares, M.B.; Martínez, R.C.R.; Pereira, E.P.R.; Balthazar, C.F.; Cruz, A.G.; Ranadheera, C.S.; Sant´Ana, A.S. The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Res. Int. 2019, 125, 108542. [Google Scholar] [CrossRef]
- Ribeiro, M.C.E.; Chaves, K.S.; Gebara, C.; Infante, F.N.; Grosso, C.R.; Gigante, M.L. Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Res. Int. 2014, 66, 424–431. [Google Scholar] [CrossRef]
- Yonekura, L.; Sun, H.; Soukoulis, C.; Fisk, I. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion. J. Funct. Foods 2014, 6, 205–214. [Google Scholar] [CrossRef]
- Kajfasz, J.K.; Quivey, G. Responses of Lactic Acid Bacteria to Acid Stress. In Stress Responses of Lactic Acid Bacteria, 1st ed.; Tsakalidou, E., Papadimitriou, K., Eds.; Springer: New York, NY, USA, 2011; Volume 23, pp. 23–53. [Google Scholar]
- Valerio, F.; De Bellis, P.; Lonigro, S.L.; Morelli, L.; Visconti, A.; Lavermicocca, P. In vitro and in vivo survival and transit tolerance of potentially probiotic strains carried by artichokes in the gastrointestinal tract. Appl. Environ. Microbiol. 2006, 72, 3042–3045. [Google Scholar] [CrossRef] [Green Version]
Storage (days) | aw | xw(kgwater/kgsample) | pH | Fmax | ||
---|---|---|---|---|---|---|
Air Drying | Encapsulated | 1 | 0.56 ± 0.02 | 0.111 ± 0.009 | 3.67 ± 0.03 | 7 ± 2 |
7 | 0.553 ± 0.003 | 0.103 ± 0.012 | 3.66 ± 0.02 | 6.1 ± 0.6 | ||
14 | 0.527 ± 0.003 | 0.130 ± 0.019 | 3.62 ± 0.01 | 7.9 ± 0.7 | ||
21 | 0.541 ± 0.003 | 0.114 ± 0.001 | 3.78 ± 0.01 | 7.1 ± 1.6 | ||
28 | 0.554 ± 0.004 | 0.101 ± 0.006 | 3.64 ± 0.02 | 7.9 ± 0.7 | ||
Non-Encapsulated | 1 | 0.454 ± 0.015 | 0.142 ± 0.016 | 3.65 ± 0.02 | 14.4 ± 1.5 | |
7 | 0.463 ± 0.01 | 0.114 ± 0.050 | 3.67 ± 0.02 | 14.8 ± 1.8 | ||
14 | 0.455 ± 0.004 | 0.099 ± 0.006 | 3.75 ± 0.012 | 13.3 ± 1.6 | ||
21 | 0.480 ± 0.018 | 0.105 ± 0.004 | 3.78 ± 0.010 | 17 ± 4 | ||
28 | 0.453 ± 0.009 | 0.094 ± 0.008 | 3.67 ± 0.02 | 17 ± 4 | ||
Freeze Drying | Encapsulated | 1 | 0.23 ± 0.02 | 0.059 ± 0.008 | 4.076 ± 0.016 | 5.8 ± 0.9 |
7 | 0.37 ± 0.02 | 0.044± 0.007 | 3.59 ± 0.02 | 3.8 ± 1.6 | ||
14 | 0.367 ± 0.003 | 0.085 ± 0.005 | 3.52 ± 0.02 | 2.7 ± 0.5 | ||
21 | 0.385 ± 0.014 | 0.053 ± 0.002 | 3.58 ± 0.02 | 5.3 ± 1.7 | ||
28 | 0.398 ± 0.007 | 0.084 ± 0.005 | 3.61 ± 0.05 | 6.4 ± 1.8 | ||
Non-Encapsulated | 1 | 0.381 ± 0.012 | 0.05 ± 0.02 | 3.88 ± 0.04 | 2.4 ± 0.3 | |
7 | 0.415 ± 0.003 | 0.032 ± 0.002 | 3.780 ± 0.012 | 4.3 ± 0.5 | ||
14 | 0.408 ± 0.004 | 0.049 ± 0.003 | 3.845 ± 0.006 | 4.3 ± 1.2 | ||
21 | 0.42 ± 0.01 | 0.068 ± 0.012 | 4.01 ± 0.02 | 6.79 ± 1.14 | ||
28 | 0.433 ± 0.009 | 0.049 ± 0.002 | 3.940 ± 0.012 | 5 ± 2 | ||
p-Values | Drying (D) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Encapsulation (E) | 0.0013 | 0.0589 | 0.0000 | 0.0000 | ||
Storage (S) | 0.0000 | 0.0328 | 0.0000 | 0.0001 | ||
D*E | 0.0000 | 0.0927 | 0.0000 | 0.0000 | ||
D*S | 0.0000 | 0.0150 | 0.0000 | 0.9067 | ||
E*S | 0.0000 | 0.0030 | 0.0000 | 0.0122 |
Storage (Days) | L* | a* | b* | C*ab | h*ab | ||
---|---|---|---|---|---|---|---|
Air Drying | Encapsulated | 1 | 43 ± 12 | 3 ± 2 | 19 ± 9 | 19 ± 9 | 81 ± 7 |
7 | 48 ± 10 | 3.6 ± 0.4 | 24 ± 8 | 24 ± 8 | 81 ± 4 | ||
14 | 61 ± 5 | 3.10 ± 1.09 | 29 ± 3 | 30 ± 3 | 84 ± 2 | ||
21 | 40 ± 5 | 4 ± 2 | 20 ± 7 | 20 ± 7 | 77 ± 5 | ||
28 | 53 ± 10 | 6 ± 2 | 29 ± 9 | 30 ± 10 | 78 ± 3 | ||
Non-Encapsulated | 1 | 55 ± 2 | 5.4 ± 1.2 | 31 ± 3 | 31 ± 3 | 80 ± 3 | |
7 | 62 ± 10 | 8 ± 3 | 33 ± 6 | 34 ± 7 | 76 ± 4 | ||
14 | 47 ± 7 | 7 ± 3 | 26 ± 3 | 27 ± 3 | 75 ± 6 | ||
21 | 47 ± 5 | 8.1 ± 1.6 | 26 ± 5 | 27 ± 4 | 72 ± 6 | ||
28 | 40 ± 4 | 10.4 ± 1.6 | 22 ± 2 | 24 ± 2 | 64 ± 5 | ||
Freeze Drying | Encapsulated | 1 | 82.9 ± 1.4 | −0.4 ± 0.9 | 27.6 ± 0.9 | 27.6 ± 0.9 | 91 ± 2 |
7 | 82.1 ± 0.6 | −2.1 ± 0.3 | 27 ± 3 | 27 ± 3 | 94.60 ± 1.02 | ||
14 | 81.1 ± 1.5 | −1.1 ± 1.2 | 25 ± 4 | 25 ± 4 | 93 ± 3 | ||
21 | 81.3 ± 0.9 | −2.0 ± 0.6 | 27 ± 5 | 28 ± 5 | 94.3 ± 1.5 | ||
28 | 80.7 ± 1.6 | 0.1 ± 1.3 | 31 ± 4 | 31 ± 4 | 90 ± 3 | ||
Non-Encapsulated | 1 | 78.5 ± 0.9 | 3.1 ± 0.5 | 37 ± 4 | 37 ± 4 | 85.1 ± 0.3 | |
7 | 78 ± 2 | 5 ± 2 | 37 ± 3 | 37 ± 3 | 83 ± 3 | ||
14 | 78 ± 3 | 4.2 ± 1.3 | 37 ± 2 | 37 ± 2 | 83 ± 2 | ||
21 | 78.1 ± 1.8 | 4.4 ± 1.9 | 38 ± 4 | 39 ± 4 | 84 ± 3 | ||
28 | 78.3 ± 1.4 | 5 ± 2 | 38 ± 3 | 38 ± 3 | 82 ± 3 | ||
p-Values | Drying (D) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Encapsulation (E) | 0.4986 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||
Storage (S) | 0.0721 | 0.0004 | 0.6644 | 0.5766 | 0.0005 | ||
D*E | 0.0933 | 0.0351 | 0.0073 | 0.0150 | 0.2208 | ||
D*S | 0.0790 | 0.0951 | 0.2234 | 0.2813 | 0.0197 | ||
E*S | 0.0060 | 0.2359 | 0.0181 | 0.0308 | 0.0683 |
Day 1 | Day 7 | Day 14 | Day 21 | Day 28 | ||
---|---|---|---|---|---|---|
Air Drying | Encapsulated | 6.28 ± 0.09 (100) | 5.030 ± 0.106 (80) | 3.9 ± 0.3 (62) | 3.36 ± 0.12 (53.5) | 2.54 ± 0.06 (40.4) |
Non-Encapsulated | 6.45 ± 0.09 (100) | 6.19 ± 0.04 (96) | 5.66 ± 0.06 (87.8) | 5.36 ± 0.04 (83) | 5.14 ± 0.08 (79.7) | |
Freeze Drying | Encapsulated | 7.00 ± 0.13 (100) | 5.01 ± 0.04 (71.6) | 3.61 ± 0.07 (51.6) | 3.86 ± 0.06 (55) | 2.64 ± 0.13 (37.7) |
Non-Encapsulated | 7.10 ± 0.04 (100) | 5.40 ± 0.07 (76) | 5.13 ± 0.05 (72.3) | 3.80 ± 0.05 (53.5) | 3.2 ± 0.2 (45.1) |
Day 1 | Day 7 | Day14 | Day 21 | Day 28 | |||
---|---|---|---|---|---|---|---|
Air Drying | Encapsulated | t0 | 6.28 ± 0.09 (100) | 5.030 ± 0.106 (100) | 3.9 ± 0.3 (100) | 3.36 ± 0.1 (100) | 2.54 ± 0.06 (100) |
t1 | 8.6 ± 0.2 (138) | 3.649 ± 0.103 (73) | 2.84 ± 0.07 (72) | 3.46 ± 0.06 (103) | 3.16 ± 0.04 (124) | ||
t2 | 6.3 ± 0.2 (101) | 3.02 ± 0.07 (60) | 1.9 ± 0.2 (48) | 2.73 ± 0.03 (81) | 2.052 ± 0.104 (81) | ||
t3 | 6.0 ± 0.2 (95) | 2.64 ± 0.06 (52) | 2.48 ± 0.12 (63) | 2.80 ± 0.04 (83) | 2.42 ± 0.12 (95) | ||
t4 | 5.6 ± 0.3 (89) | 2.94 ± 0.04 (59) | 1.9 ± 0.3 (50) | 2.84 ± 0.09 (84) | 1.5 ± 0.2 (60) | ||
Non-Encapsulated | t0 | 6.45 ± 0.09 (100) | 6.19 ± 0.04 (100) | 5.66 ± 0.06 (100) | 5.36 ± 0.04 (100) | 5.14 ± 0.08 (100) | |
t1 | 7.23 ± 0.04 (112) | 6.06 ± 0.13 (98) | 5.63 ± 0.09 (100) | 2.50 ± 0.09 (47) | 1.9 ± 0.2 (37) | ||
t2 | 5.18 ± 0.09 (80) | 4.32 ± 0.05 (70) | 4.04 ± 0.09 (71) | 1.65 ± 0.09 (31) | 1.2 ± 0.8 (23) | ||
t3 | 5.25 ± 0.05 (81) | 1.85 ± 0.09 (30) | 2.88 ± 0.06 (51) | 1.673 ± 0.102 (31) | 1.5 ± 0.9 (28) | ||
t4 | 4.046 ± 0.112 (63) | 2.85 ± 0.04 (46) | 1.9 ± 0.2 (34) | 1.56 ± 0.04 (29) | 1.2 ± 0.2 (23) | ||
Freeze Drying | Encapsulated | t0 | 7.00 ± 0.13 (100) | 5.01 ± 0.04 (100) | 3.61 ± 0.07 (100) | 3.86 ± 0.06 (100) | 2.64 ± 0.13 (100) |
t1 | 6.40 ± 0.07 (91) | 4.62 ± 0.13 (92) | 2.95 ± 0.04 (82) | 2.4 ± 0.2 (62) | 2.2 ± 0.2 (85) | ||
t2 | 5.25 ± 0.09 (75) | 2.8 ± 0.3 (56) | 2.4 ± 0.5 (67) | 1.7 ± 0.3 (44) | 1.94 ± 0.13 (74) | ||
t3 | 3.42 ± 0.12 (49) | 2.2 ± 0.2 (43) | 2.1 ± 0.4 (58) | 1.2 ± 0.3 (32) | 1.13 ± 0.06 (43) | ||
t4 | 1.900 ± 0.102 (27) | 2.3 ± 0.2 (47) | 1.4 ± 0.2 (39) | 0.6 ± 0.4 (16) | 1.1 ± 0.2 (43) | ||
Non-Encapsulated | t0 | 7.10 ± 0.04 (100) | 5.40 ± 0.07 (100) | 5.13 ± 0.05 (100) | 3.80 ± 0.05 (100) | 3.2 ± 0.2 (100) | |
t1 | 6.481 ± 0.112 (91) | 4.242 ± 0.012 (79) | 4.06 ± 0.12 (79) | 3.02 ± 0.07 (79) | 0.7 ± 0.7 (20) | ||
t2 | 2.93 ± 0.12 (41) | 2.3 ± 0.2 (42) | 1.7 ± 0.3 (33) | 2.06 ± 0.14 (54) | 0.3 ± 0.7 (10) | ||
t3 | 1.4 ± 0.9 (20) | 1.2 ± 0.2 (22) | 1.39 ± 0.05 (27) | 0.8 ± 0.5 (20) | 0.3 ± 0.7 (10) | ||
t4 | 0.5 ± 0.4 (8) | 0.7 ± 0.2 (14) | 0.4 ± 0.4 (9) | 0.3 ± 0.3 (8) | 0.2 ± 0.3 (5) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betoret, E.; Betoret, N.; Calabuig-Jiménez, L.; Barrera, C.; Dalla Rosa, M. Effect of Drying Process, Encapsulation, and Storage on the Survival Rates and Gastrointestinal Resistance of L. salivarius spp. salivarius Included into a Fruit Matrix. Microorganisms 2020, 8, 654. https://doi.org/10.3390/microorganisms8050654
Betoret E, Betoret N, Calabuig-Jiménez L, Barrera C, Dalla Rosa M. Effect of Drying Process, Encapsulation, and Storage on the Survival Rates and Gastrointestinal Resistance of L. salivarius spp. salivarius Included into a Fruit Matrix. Microorganisms. 2020; 8(5):654. https://doi.org/10.3390/microorganisms8050654
Chicago/Turabian StyleBetoret, Ester, Noelia Betoret, Laura Calabuig-Jiménez, Cristina Barrera, and Marco Dalla Rosa. 2020. "Effect of Drying Process, Encapsulation, and Storage on the Survival Rates and Gastrointestinal Resistance of L. salivarius spp. salivarius Included into a Fruit Matrix" Microorganisms 8, no. 5: 654. https://doi.org/10.3390/microorganisms8050654
APA StyleBetoret, E., Betoret, N., Calabuig-Jiménez, L., Barrera, C., & Dalla Rosa, M. (2020). Effect of Drying Process, Encapsulation, and Storage on the Survival Rates and Gastrointestinal Resistance of L. salivarius spp. salivarius Included into a Fruit Matrix. Microorganisms, 8(5), 654. https://doi.org/10.3390/microorganisms8050654