Microbial Consortiums of Hydrogenotrophic Methanogenic Mixed Cultures in Lab-Scale Ex-Situ Biogas Upgrading Systems under Different Conditions of Temperature, pH and CO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Hydrogenotrophic Methanogenic Mixed Cultures
2.2. High-Throughput 16S rRNA GENE Sequencing
2.2.1. DNA Extraction
2.2.2. Polymerase Chain Reaction
2.2.3. DNA Purification and Quantitative Mixing
2.3. Statistical Data Analysis
2.3.1. Alpha Diversity Analysis
2.3.2. Microbial Community Analysis
2.3.3. Correlative Analysis Between Microbial Community and Environmental Variables
3. Results and Discussion
3.1. Overview of Community Diversity under Various Temperature, pH, and CO Conditions
3.2. Microbial Community Structure of Hydrogenotrophic Methanogenic Mixed Cultures
3.3. Correlative Relationship Between Microorganisms and Temperature, pH, and CO
3.4. The Multivariable Sensitivity of Hydrogenotrophic Methanogenic Mixed Cultures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rittmann, S.; Seifert, A.; Herwig, C. Essential Prerequisites for Successful Bioprocess Development of Biological CH4 Production from CO2 and H2. Crit. Rev. Biotechnol. 2015, 35, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Rittmann, S.K.-M.R. A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems. In Biogas Science and Technology; Guebitz, G.M., Bauer, A., Bochmann, G., Gronauer, A., Weiss, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 117–135. [Google Scholar]
- Rachbauer, L.; Voitl, G.; Bochmann, G.; Fuchs, W. Biological Biogas Upgrading Capacity of a Hydrogenotrophic Community in a Trickle-Bed Reactor. Appl. Energ. 2016, 180, 483–490. [Google Scholar] [CrossRef]
- Luo, G.; Angelidaki, I. Integrated Biogas Upgrading and Hydrogen Utilization in An Anaerobic Reactor Containing Enriched Hydrogenotrophic Methanogenic Culture. Biotechnol. Bioeng. 2012, 109, 2729–2736. [Google Scholar] [CrossRef]
- Mulat, D.G.; Mosbaek, F.; Ward, A.J.; Polag, D.; Greule, M.; Keppler, F.; Nielsen, J.L.; Feilberg, A. Exogenous Addition of H2 for An In-situ Biogas Upgrading Through Biological Reduction of Carbon Dioxide into Methane. Waste Manag. 2017, 68, 146–156. [Google Scholar] [CrossRef]
- Maegaard, K.; Garcia-Robledo, E.; Kofoed, M.V.W.; Agneessens, L.M.; de Jonge, N.; Nielsen, J.L.; Ottosen, L.D.M.; Nielsen, L.P.; Revsbech, N.P. Biogas Upgrading with Hydrogenotrophic Methanogenic Biofilms. Bioresour. Technol. 2019, 287, 121422. [Google Scholar] [CrossRef]
- Bassani, I.; Kougias, P.G.; Treu, L.; Angelidaki, I. Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions. Environ. Sci. Technol. 2015, 49, 12585–12593. [Google Scholar] [CrossRef] [PubMed]
- Guneratnam, A.J.; Ahern, E.; FitzGerald, J.A.; Jackson, S.A.; Xia, A.; Dobson, A.D.W.; Murphy, J.D. Study of the Performance of a Thermophilic Biological Methanation System. Bioresour. Technol. 2017, 225, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Agneessens, L.M.; Ottosen, L.D.M.; Voigt, N.V.; Nielsen, J.L.; de Jonge, N.; Fischer, C.H.; Kofoed, M.V.W. In-situ Biogas Upgrading with Pulse H2 Additions: The Relevance of Methanogen Adaption and Inorganic Carbon Level. Bioresour. Technol. 2017, 233, 256–263. [Google Scholar] [CrossRef]
- Bassani, I.; Kougias, P.G.; Treu, L.; Porte, H.; Campanaro, S.; Angelidaki, I. Optimization of Hydrogen Dispersion in Thermophilic Up-flow Reactors for Ex-situ Biogas Upgrading. Bioresour. Technol. 2017, 234, 310–319. [Google Scholar] [CrossRef]
- Luo, G.; Angelidaki, I. Co-digestion of Manure and Whey for In-situ Biogas Upgrading by the Addition of H2: Process Performance and Microbial Insights. Appl. Microbiol. Biot. 2013, 97, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Kougias, P.G.; Treu, L.; Benavente, D.P.; Boe, K.; Campanaro, S.; Angelidaki, I. Ex-situ Biogas Upgrading and Enhancement in Different Reactor Systems. Bioresour. Technol. 2017, 225, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas Upgrading and Utilization: Current Status and Perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peillex, J.P.; Fardeau, M.L.; Belaich, J.P. Growth of Methanobacterium Thermoautotrophicum on H2-CO2: High CH4 Productivities in Continuous Culture. Biomass 1990, 21, 315–321. [Google Scholar] [CrossRef]
- Rittmann, S.K.M.R.; Seifert, A.H.; Bernacchi, S. Kinetics, Multivariate Statistical Modelling, and Physiology of CO2-Based Biological Methane Production. Appl. Energ. 2018, 216, 751–760. [Google Scholar] [CrossRef]
- Thema, M.; Weidlich, T.; Horl, M.; Bellack, A.; Mors, F.; Hackl, F.; Kohlmayer, M.; Gleich, J.; Stabenau, C.; Trabold, T.; et al. Biological CO2-Methanation: An Approach to Standardization. Energies 2019, 12, 1670. [Google Scholar] [CrossRef] [Green Version]
- Angelidaki, I.; Karakashev, D.; Batstone, D.J.; Plugge, C.M.; Stams, A.J.M. Biomethanation and Its Potential. Method Enzym. 2011, 494, 327–351. [Google Scholar]
- Chen, J.L.; Ortiz, R.; Steele, T.W.J.; Stuckey, D.C. Toxicants Inhibiting Anaerobic Digestion: A Review. Biotechnol. Adv. 2014, 32, 1523–1534. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.S.; Bu, F.; Zhou, Q.; Khanal, S.K.; Xie, L. Performance and Microbial Community of Hydrogenotrophic Methanogenesis under Thermophilic and Extreme-Thermophilic Conditions. Bioresour. Technol. 2018, 266, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xie, L.; Luo, G.; Zhou, Q.; Angelidaki, I. Performance and Microbial Community Analysis of the Anaerobic Reactor with Coke Oven Gas Biomethanation and In-situ Biogas Upgrading. Bioresour. Technol. 2013, 146, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Bu, F.; Dong, N.S.; Khanal, S.K.; Xie, L.; Zhou, Q. Effects of CO on Hydrogenotrophic Methanogenesis under Thermophilic and Extreme-Thermophilic Conditions: Microbial Community and Biomethanation Pathways. Bioresour. Technol. 2018, 266, 364–373. [Google Scholar] [CrossRef]
- Peng, X.Y.; Zhang, S.Y.; Li, L.; Zhao, X.F.; Ma, Y.; Shi, D.Z. Long-Term High-Solids Anaerobic Digestion of Food Waste: Effects of Ammonia on Process Performance and Microbial Community. Bioresour. Technol. 2018, 262, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Zhang, Y.B.; Tan, D.M.; Zhao, Z.Q.; Zhao, H.M.; Quan, X. Roles of Magnetite and Granular Activated Carbon in Improvement of Anaerobic Sludge Digestion. Bioresour. Technol. 2018, 249, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Kochling, T.; Sanz, J.L.; Gavazza, S.; Florencio, L. Analysis of Microbial Community Structure and Composition in Leachates from A Young Landfill by 454 Pyrosequencing. Appl. Microbiol. Biot. 2015, 99, 5657–5668. [Google Scholar] [CrossRef]
- Luo, G.; Wang, W.; Angelidaki, I. Anaerobic Digestion for Simultaneous Sewage Sludge Treatment and CO Biomethanation: Process Performance and Microbial Ecology. Environ. Sci Technol. 2013, 47, 10685–10693. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl. Environ. Microb. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- McArdle, B.H.; Anderson, M.J. Fitting Multivariate Models to Community Data: A Comment on Distance-Based Redundancy Analysis. Ecology 2001, 82, 290–297. [Google Scholar] [CrossRef]
- Terbraak, C.J.F. Canonical Correspondence-Analysis—A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecology 1986, 67, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.P.; Lu, F.; Li, L.; Wu, Q.; Shao, L.M.; He, P.J. Self-Adaption of Methane-Producing Communities to pH Disturbance at Different Acetate Concentrations by Shifting Pathways and Population Interaction. Bioresource Technol. 2013, 140, 319–327. [Google Scholar] [CrossRef]
- Garcia, J.-L.; Ollivier, B.; Whitman, W.B. The Order Methanomicrobiales. In The Prokaryotes: Archaea. Bacteria: Firmicutes, Actinomycetes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer New York: New York, NY, USA, 2006; Volume 3, pp. 208–230. [Google Scholar]
- Rout, S.P.; Charles, C.J.; Garratt, E.J.; Laws, A.P.; Gunn, J.; Humphreys, P.N. Evidence of the Generation of Isosaccharinic Acids and Their Subsequent Degradation by Local Microbial Consortia within Hyper-Alkaline Contaminated Soils, with Relevance to Intermediate Level Radioactive Waste Disposal. PLoS ONE 2015, 10, e0119164. [Google Scholar] [CrossRef]
- Daniels, L.; Fuchs, G.; Thauer, R.K.; Zeikus, J.G. Carbon-Monoxide Oxidation by Methanogenic Bacteria. J. Bacteriol. 1977, 132, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diender, M.; Pereira, R.; Wessels, H.J.C.T.; Stams, A.J.M.; Sousa, D.Z. Proteomic Analysis of the Hydrogen and Carbon Monoxide Metabolism of Methanothermobacter marburgensis. Front. Microbiol 2016, 7, 1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagliano, M.C.; Braguglia, C.M.; Petruccioli, M.; Rossetti, S. Ecology and Biotechnological Potential of the Thermophilic Fermentative Coprothermobacter spp. FEMS Microbiol. Ecol. 2015, 91, fiv018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozina, I.V.; Kublanov, I.V.; Kolganova, T.V.; Chernyh, N.A.; Bonch-Osmolovskaya, E.A. Caldanaerobacteruzonensis sp nov. An Anaerobic, Thermophilic, Heterotrophic Bacterium Isolated from A Hot Spring. Int. J. Syst. Evol. Micr. 2010, 60, 1372–1375. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Morita, M.; Sasaki, D.; Nagaoka, J.; Matsumoto, N.; Ohmura, N.; Shinozaki, H. Syntrophic Degradation of Proteinaceous Materials by the Thermophilic Strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. J. BioSci. Bioeng. 2011, 112, 469–472. [Google Scholar] [CrossRef]
- Tandishabo, K.; Nakamura, K.; Umetsu, K.; Takamizawa, K. Distribution and Role of Coprothermobacter spp. in Anaerobic Digesters. J. BioSci. Bioeng. 2012, 114, 518–520. [Google Scholar] [CrossRef]
- Ho, D.; Jensen, P.; Gutierrez-Zamora, M.L.; Beckmann, S.; Manefield, M.; Batstone, D. High-rate, High Temperature Acetotrophic Methanogenesis Governed by a Three Population Consortium in Anaerobic Bioreactors. PLoS ONE 2016, 11, e0159760. [Google Scholar] [CrossRef]
- Shestakova, N.M.; Ivoilov, V.S.; Tourova, T.P.; Belyaev, S.S.; Poltaraus, A.B.; Nazina, T.N. Which Microbial Communities Are Present? Application of Clone Libraries: Syntrophic Acetate Degradation to Methane in a High-Temperature Petroleum Reservoir Culture-Based and 16S rRNA Genes Characterisation. In Applied Microbiology and Molecular Biology in Oilfield Systems; Whitby, C., Skovhus, T.L., Eds.; Springer Science+Business Media B.V.: Berlin, Germany, 2011; p. 45. [Google Scholar]
- Lee, J.; Koo, T.; Yulisa, A.; Hwang, S. Magnetite as An Enhancer in Methanogenic Degradation of Volatile Fatty Acids under Ammonia-Stressed Condition. J. Environ. Manag. 2019, 241, 418–426. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Matsui, T.; Morimura, S.; Wu, X.L.; Kida, K. Effect of Temperature on Microbial Community of a Glucose-Degrading Methanogenic Consortium under Hyperthermophilic Chemostat Cultivation. J. BioSci. Bioeng. 2008, 106, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Crapart, S.; Fardeau, M.L.; Cayol, J.L.; Thomas, P.; Sery, C.; Ollivier, B.; Combet-Blanc, Y. Exiguobacteriumprofundum sp nov. A Moderately Thermophilic, Lactic Acid-Producing Bacterium Isolated from A Deep-Sea Hydrothermal Vent. Int. J. Syst. Evol. Micr. 2007, 57, 287–292. [Google Scholar] [CrossRef]
- Westerholm, M.; Roos, S.; Schnurer, A. Tepidanaerobacter acetatoxydans sp. nov. An Anaerobic, Syntrophic Acetate-Oxidizing Bacterium Isolated from Two Ammonium-Enriched Mesophilic Methanogenic Processes. Syst. Appl. Microbiol. 2011, 34, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Balk, M.; Heilig, H.G.H.J.; van Eekert, M.H.A.; Stams, A.J.M.; Rijpstra, I.C.; Damste, J.S.S.; de Vos, W.M.; Kengen, S.W.M. Isolation and Characterization of a New CO-Utilizing Strain, Thermoanaerobacter thermohydrosulfuricus subsp Carboxydovorans, Isolated from A Geothermal Spring in Turkey. Extremophiles 2009, 13, 885–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, J.I.; Alves, M.M.; Plugge, C.M.; Stams, A.J.M.; Sousa, D.Z. Comparative Analysis of Carbon Monoxide Tolerance among Thermoanaerobacter Species. Front. Microbiol 2016, 7, 1275. [Google Scholar] [CrossRef] [Green Version]
- Weghoff, M.C.; Muller, V. CO Metabolism in the Thermophilic Acetogen Thermoanaerobacter kivui. Appl. Environ. Microb. 2016, 82, 2312–2319. [Google Scholar] [CrossRef] [Green Version]
- Heidelberg, J.F.; Seshadri, R.; Haveman, S.A.; Hemme, C.L.; Paulsen, I.T.; Kolonay, J.F.; Eisen, J.A.; Ward, N.; Methe, B.; Brinkac, L.M.; et al. The Genome Sequence of the Anaerobic, Sulfate-Reducing Bacterium Desulfovibrio Vulgaris Hildenborough. Nat. BioTechnol. 2004, 22, 554–559. [Google Scholar] [CrossRef]
- Perevalova, A.A.; Kublanov, I.V.; Baslerov, R.V.; Zhang, G.X.; Bonch-Osmolovskaya, E.A. Brockialithotrophica gen. nov. sp nov. An Anaerobic Thermophilic Bacterium from A Terrestrial Hot Spring. Int. J. Syst. Evol. Micr. 2013, 63, 479–483. [Google Scholar] [CrossRef]
- Mori, K.; Hanada, S.; Maruyama, A.; Marumo, K. Thermanaeromonastoyohensis gen. nov. sp nov. A Novel Thermophilic Anaerobe Isolated from A Subterranean Vein in the Toyoha Mines. Int. J. Syst. Evol. Micr. 2002, 52, 1675–1680. [Google Scholar]
- Rusmanis, D.; O’Shea, R.; Wall, D.M.; Murphy, J.D. Biological Hydrogen Methanation Systems: An Overview of Design and Efficiency. Bioengineered 2019, 10, 604–634. [Google Scholar] [CrossRef] [Green Version]
- Zeikus, J.G.; Wolfe, R.S. Methanobacterium thermoautotrophicus sp. n. An Anaerobic, Autotrophic, Extreme Thermophile. J. Bacteriol. 1972, 109, 707–715. [Google Scholar] [CrossRef] [Green Version]
Bioreactor | 20N | 30N | 55N | 55A | 55B | 55N_5 | 55N_10 | 65N | 70N | 70A | 70B | 70N_5 | 70N_10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total volume (mL) | 300 | 300 | 300 | 620 | 620 | 620 | 620 | 300 | 300 | 620 | 620 | 620 | 620 |
Working volume (mL) | 100 | 100 | 100 | 300 | 300 | 300 | 300 | 100 | 100 | 300 | 300 | 300 | 300 |
Initial VS (g/L) | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 20 | 20 | 30 | 30 | 30 | 30 |
Temperature (°C) | 20 | 30 | 55 | 55 | 55 | 55 | 55 | 65 | 70 | 70 | 70 | 70 | 70 |
pH | 7.5 ± 0.2 | 7.5 ± 0.2 | 7.5 ± 0.2 | 6.0 ± 0.2 | 8.5 ± 0.2 | 7.5 ± 0.2 | 7.5 ± 0.2 | 7.5 ± 0.2 | 7.5 ± 0.2 | 6.0 ± 0.2 | 8.5 ± 0.2 | 7.5 ± 0.2 | 7.5 ± 0.2 |
Daily CO2 addition (Nml) | 37.3 | 37.3 | 45.8 | 74.5 | 74.5 | 74.5 | 74.5 | 45.8 | 45.8 | 74.5 | 74.5 | 74.5 | 74.5 |
H2:CO2(v/v) a | 5:1 | 5:1 | 5:1 * | 5:1 | 5:1 | - | - | 5:1 * | 5:1 * | 5:1 | 5:1 | - | - |
H2:CO2:CO(v/v) | - | - | - | - | - | 80:16:5 | 80:16:11 | - | - | - | - | 80:16:5 | 80:16:11 |
Carbon-loading rate (×10−4 mol/g VS) b | 8.33 | 8.33 | 10.22 | 3.70 | 3.70 | 4.85 | 6.24 | 10.22 | 10.22 | 3.70 | 3.70 | 4.85 | 6.24 |
Speed (rpm) | 120 ± 5 | 120 ± 5 | 120 ± 5 | 120 ± 5 | 120 ± 5 | 120 ± 5 | 120 ± 5 | 120 ± 5 | 120 ± 5 | 120 ± 5 | 120 ± 5 | 120 ± 5 | 120 ± 5 |
HRT(days) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Average daily CH4 production (NmL) | 30 | 30 | 43.3 ± 3.0 | 76.5 ± 7.5 | 77.6 ± 6.8 | 94.4 ± 3.8 | 102 ± 2.2 | 46.1 ± 2.3 | 46.9 ± 1.6 | 63.9 ± 11.4 | 73.9 ± 8.7 | 89.5 ± 4.6 | 99.4 ± 2.8 |
Sample | Archaea | Bacteria | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OTUs | Coverage | Richness | Evenness | OTUs | Coverage | Richness | Evenness | |||||
Chao | ACE | Shannon | Simpson | Chao | ACE | Shannon | Simpson | |||||
20N | 26 | 1.0000 | 26.33 | 26.91 | 1.60 | 0.32 | 269 | 0.9992 | 290.25 | 291.15 | 3.03 | 0.11 |
30N | 25 | 0.9999 | 26.00 | 32.05 | 1.79 | 0.24 | 282 | 0.9995 | 295.80 | 293.80 | 3.28 | 0.09 |
55N | 22 | 1.0000 | 22.00 | 22.00 | 1.62 | 0.27 | 223 | 0.9992 | 254.14 | 253.03 | 1.79 | 0.31 |
55A a | 16 | 1.0000 | 16.00 | 16.34 | 0.33 | 0.83 | N/A | N/A | N/A | N/A | N/A | N/A |
55B | 11 | 1.0000 | 11.00 | 11.00 | 0.74 | 0.66 | 206 | 0.9992 | 251.04 | 248.11 | 2.09 | 0.31 |
55N_5 | 25 | 0.9999 | 28.00 | 32.20 | 1.65 | 0.26 | 245 | 0.9992 | 261.35 | 271.12 | 2.01 | 0.35 |
55N_10 | 16 | 0.9999 | 17.00 | 19.36 | 1.35 | 0.35 | 209 | 0.9991 | 265.89 | 252.44 | 2.37 | 0.27 |
65N | 13 | 0.9998 | 19.00 | 20.97 | 0.51 | 0.71 | 167 | 0.9995 | 177.22 | 183.28 | 2.90 | 0.10 |
70N | 21 | 0.9998 | 26.00 | 25.14 | 0.68 | 0.60 | 89 | 0.9995 | 110.11 | 107.21 | 2.24 | 0.19 |
70A a | 24 | 1.0000 | 24.00 | 24.26 | 0.17 | 0.94 | N/A | N/A | N/A | N/A | N/A | N/A |
70B | 9 | 1.0000 | 9.00 | 9.00 | 0.64 | 0.62 | 186 | 0.9993 | 223.84 | 221.85 | 2.67 | 0.10 |
70N_5 | 14 | 0.9999 | 17.00 | 16.15 | 0.42 | 0.78 | 71 | 0.9998 | 84.00 | 83.98 | 2.66 | 0.10 |
70N_10 | 12 | 0.9999 | 13.00 | 16.66 | 0.41 | 0.76 | 88 | 0.9995 | 107.09 | 113.10 | 2.59 | 0.12 |
Microbial Genera | Temperature | pH | CO |
---|---|---|---|
Archaeal | |||
Methanothermobacter | 0.560 * | −0.732 ** | −0.077 |
Methanobacterium | −0.893 *** | 0.369 | −0.202 |
Methanomassiliicoccus | −0.932 *** | 0.138 | −0.164 |
Methanosaeta | −0.246 | −0.530 | −0.161 |
Norank p Bathyarchaeota | −0.823 *** | 0.067 | −0.168 |
Norank f ARC26 | −0.812 *** | 0.032 | −0.186 |
Methanosarcina | 0.129 | −0.584 * | −0.185 |
Methanomethylovorans | −0.051 | 0.029 | 0.603 * |
Norank f Terrestrial Miscellaneous Gp TMEG | −0.603 * | 0.055 | −0.131 |
Methanobrevibacter | 0.058 | −0.725 ** | −0.239 |
Methanoculleus | 0.228 | −0.824 *** | −0.056 |
Methanospirillum | 0.083 | −0.650 * | −0.315 |
Unclassified k norank | −0.007 | −0.702 ** | −0.302 |
Methanosphaera | −0.036 | −0.568 * | −0.179 |
Norank f Thermoplasmatales Incertae Sedis | 0.171 | −0.836 *** | −0.263 |
Bacterial | |||
Caldanaerobacter | 0.537 * | 0.266 | −0.167 |
Thioclava | −0.911 *** | −0.222 | −0.329 |
Unclassified f Family_III | 0.525 * | 0.455 | −0.277 |
Exiguobacterium | 0.346 | 0.775 ** | −0.148 |
Norank p WS2 | 0.572 * | −0.438 | 0.391 |
unclassified k norank | 0.306 | 0.888 *** | −0.269 |
Unclassified f Thermoanaerobacteraceae | 0.286 | −0.21 | 0.753 ** |
Citrobacter | 0.344 | 0.779 ** | −0.152 |
Sulfurovum | −0.916 *** | −0.219 | −0.324 |
Acinetobacter | 0.023 | 0.686 * | −0.269 |
Proteocatella | −0.762 ** | −0.201 | −0.297 |
Norank f Anaerolineaceae | −0.704 * | −0.172 | −0.284 |
Proteiniclasticum | −0.915 *** | −0.218 | −0.322 |
Sulfuricurvum | −0.792 ** | −0.174 | −0.257 |
Thermodesulfobacterium | 0.534 * | 0.053 | −0.088 |
Pseudomonas | 0.34 | 0.761 ** | −0.144 |
Caldicoprobacter | 0.603 ** | 0.627 * | −0.228 |
Petrimonas | −0.917 *** | −0.219 | −0.325 |
Norank f TTA-B61 | 0.589 * | −0.435 | 0.606 * |
Anaerobaculum | −0.029 | −0.244 | 0.497 |
Sedimentibacter | −0.842 ** | −0.214 | −0.318 |
Norank c Bacteroidetes vadinHA17 | −0.82 ** | −0.207 | −0.321 |
Norank p Aminicenantes | −0.022 | −0.179 | 0.624 * |
Longilinea | −0.792 ** | −0.207 | −0.314 |
Norank c Candidatus_Nomurabacteria | −0.916 *** | −0.22 | −0.326 |
Christensenellaceae R-7 group | −0.846 ** | −0.173 | −0.331 |
Norank c SJA-15 | −0.584 | −0.039 | −0.297 |
Norank f Lentimicrobiaceae | −0.04 | −0.237 | 0.568 |
Hydrogenibacillus | 0.486 | 0.568 | −0.517 |
Thermincola | −0.018 | −0.154 | 0.592 |
Desulfovibrio | −0.936 *** | −0.248 | −0.357 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Bu, F.; Zhu, W.; Luo, G.; Xie, L. Microbial Consortiums of Hydrogenotrophic Methanogenic Mixed Cultures in Lab-Scale Ex-Situ Biogas Upgrading Systems under Different Conditions of Temperature, pH and CO. Microorganisms 2020, 8, 772. https://doi.org/10.3390/microorganisms8050772
Xu J, Bu F, Zhu W, Luo G, Xie L. Microbial Consortiums of Hydrogenotrophic Methanogenic Mixed Cultures in Lab-Scale Ex-Situ Biogas Upgrading Systems under Different Conditions of Temperature, pH and CO. Microorganisms. 2020; 8(5):772. https://doi.org/10.3390/microorganisms8050772
Chicago/Turabian StyleXu, Jun, Fan Bu, Wenzhe Zhu, Gang Luo, and Li Xie. 2020. "Microbial Consortiums of Hydrogenotrophic Methanogenic Mixed Cultures in Lab-Scale Ex-Situ Biogas Upgrading Systems under Different Conditions of Temperature, pH and CO" Microorganisms 8, no. 5: 772. https://doi.org/10.3390/microorganisms8050772
APA StyleXu, J., Bu, F., Zhu, W., Luo, G., & Xie, L. (2020). Microbial Consortiums of Hydrogenotrophic Methanogenic Mixed Cultures in Lab-Scale Ex-Situ Biogas Upgrading Systems under Different Conditions of Temperature, pH and CO. Microorganisms, 8(5), 772. https://doi.org/10.3390/microorganisms8050772