Next-Generation Sequencing of the Whole Bacterial Genome for Tracking Molecular Insight into the Broad-Spectrum Antimicrobial Resistance of Helicobacter pylori Clinical Isolates from the Democratic Republic of Congo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Biological Samples
2.2. Phenotypic Antimicrobial Susceptibility Testing
2.3. Preparation of Genomic DNA, Library Preparation, and Whole Genome Sequencing
2.4. Bioinformatics
2.5. Statistical Analyses
2.6. Nucleotide Sequence Accession Number
2.7. Ethical Issues
3. Results
3.1. Baseline Characteristics of Patients Included in the Study
3.2. H. pylori Primary Antimicrobial Susceptibility in Kinshasa, DRC
3.3. Validation of the Method Used for Assessing AMR-Related Genetic Determinants
3.4. AMR-Related Genetic Determinants and Prediction of Phenotypic Resistance
3.4.1. Amoxicillin Resistance (AMX-R)
3.4.2. Clarithromycin Resistance (CLA-R)
3.4.3. Levofloxacin Resistance (LEVO-R)
3.4.4. Resistance to Metronidazole (MTZ-R)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasciana, T.; Serra, N.; Capra, G.; Mascarella, C.; Gagliardi, C.; Di Carlo, P.; Cannella, S.; Simonte, M.R.; Lipari, D.; Sciortino, M.; et al. Helicobacter pylori and Epstein-Barr Virus Infection in Gastric Diseases: Correlation with IL-10 and IL1RN Polymorphism. J. Oncol. 2019, 2019, 1785132–1785138. [Google Scholar] [CrossRef] [Green Version]
- Yamaoka, Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 629–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaoka, Y. How to eliminate gastric cancer-related death worldwide? Nat. Rev. Clin. Oncol. 2018, 15, 407–408. [Google Scholar] [CrossRef]
- Sgouras, D.N.; Trang, T.T.H.; Yamaoka, Y. Pathogenesis of Helicobacter pylori Infection. Helicobacter 2015, 20, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Malfertheiner, P.; Megraud, F.; A. O’Morain, C.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; et al. Management of Helicobacter pylori infection—The Maastricht V/Florence Consensus Report. Gut 2016, 66, 6–30. [Google Scholar] [CrossRef] [Green Version]
- Thung, I.; Aramin, H.; Vavinskaya, V.; Gupta, S.; Park, J.Y.; Crowe, S.E.; Valasek, M.A. Review article: The global emergence of Helicobacter pylori antibiotic resistance. Aliment. Pharmacol. Ther. 2016, 43, 514–533. [Google Scholar] [CrossRef] [Green Version]
- Hombach, M.; Zbinden, R.; Böttger, E.C. Standardisation of disk diffusion results for antibiotic susceptibility testing using the sirscan automated zone reader. BMC Microbiol. 2013, 13, 225. [Google Scholar] [CrossRef] [Green Version]
- Lauener, F.N.; Imkamp, F.; Lehours, P.; Buissonnière, A.; Bénejat, L.; Zbinden, R.; Keller, P.M.; Wagner, K. Genetic Determinants and Prediction of Antibiotic Resistance Phenotypes in Helicobacter pylori. J. Clin. Med. 2019, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Berry, I.M.; Melendrez, M.C.; A. Bishop-Lilly, K.; Rutvisuttinunt, W.; Pollett, S.; Talundzic, E.; Morton, L.; Jarman, R.G. Next Generation Sequencing and Bioinformatics Methodologies for Infectious Disease Research and Public Health: Approaches, Applications, and Considerations for Development of Laboratory Capacity. J. Infect. Dis. 2019. [Google Scholar] [CrossRef] [Green Version]
- Tuan, V.; Narith, D.; Tshibangu-Kabamba, E.; Dung, H.D.Q.; Viet, P.T.; Sokomoth, S.; Binh, T.T.; Sokhem, S.; Tri, T.D.; Ngov, S.; et al. A Next-Generation Sequencing-Based Approach to Identify Genetic Determinants of Antibiotic Resistance in Cambodian Helicobacter pylori Clinical Isolates. J. Clin. Med. 2019, 8, 858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendriksen, R.S.; Bortolaia, V.; Tate, H.; Tyson, G.H.; Aarestrup, F.M.; McDermott, P.F. Using Genomics to Track Global Antimicrobial Resistance. Front. Public Health 2019, 7, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, M.; Satola, S.W.; Read, T.D. Genome-Based Prediction of Bacterial Antibiotic Resistance. J. Clin. Microbiol. 2018, 57, e01405–e01418. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, B.; Sichtig, H.; Geyer, C.; Ledeboer, N.; Weinstock, G.M. Making the Leap from Research Laboratory to Clinic: Challenges and Opportunities for Next-Generation Sequencing in Infectious Disease Diagnostics. mBio 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacCannell, D. Next Generation Sequencing in Clinical and Public Health Microbiology. Clin. Microbiol. Newsl. 2016, 38, 169–176. [Google Scholar] [CrossRef]
- Maiden, M.C.J.; Jl, G.; Nj, L. Faculty Opinions recommendation of Towards a genomics-informed, real-time, global pathogen surveillance system. Fac. Opin.—Post-Public. Peer Rev. Biomed. Lit. 2018, 19. [Google Scholar] [CrossRef]
- Smith, S.; Fowora, M.; Pellicano, R. Infections with Helicobacter pylori and challenges encountered in Africa. World J. Gastroenterol. 2019, 25, 3183–3195. [Google Scholar] [CrossRef]
- Hooi, J.K.; Lai, W.Y.; Ng, W.K.; Suen, M.M.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.; Wu, J.C.; et al. Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Linz, B.; Balloux, F.; Moodley, Y.; Manica, A.; Liu, H.; Roumagnac, P.; Falush, D.; Stamer, C.; Prugnolle, F.; Van Der Merwe, S.W.; et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature 2007, 445, 915–918. [Google Scholar] [CrossRef] [Green Version]
- Yamaoka Y, Kodama T, Kita M, Imanishi J, Kashima K, Graham DY: Relationship of vacA genotypes of Helicobacter pylori to cagA status, cytotoxin production, and clinical outcome. Helicobacter 1998, 3, 241–253. [CrossRef]
- Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; Clinical Lab Standards Institute: Wayne, PA, USA, 2016.
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roosaare, M.; Puustusmaa, M.; Möls, M.; Vaher, M.; Remm, M. PlasmidSeeker: Identification of known plasmids from bacterial whole genome sequencing reads. PeerJ 2018, 6, e4588. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Boil. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; Beer, T.A.P.D.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Yuan, Y. Resistance mechanisms of Helicobacter pylori and its dual target precise therapy. Crit. Rev. Microbiol. 2018, 44, 371–392. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, M.; Lu, B.; Dai, J. Helicobacter pylori and Antibiotic Resistance, A Continuing and Intractable Problem. Helicobacter 2016, 21, 349–363. [Google Scholar] [CrossRef]
- Dunnen, J.D.; Antonarakis, S.E. Nomenclature for the description of human sequence variations. Qual. Life Res. 2001, 109, 121–124. [Google Scholar] [CrossRef]
- Ogino, S.; Gulley, M.L.; Den Dunnen, J.T.; Wilson, R.B. Training AfMP, Committee E: Standard mutation nomenclature in molecular diagnostics: Practical and educational challenges. J. Mol. Diagn. 2007, 9, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livermore, D.M. Beta-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 1995, 8, 557–584. [Google Scholar] [CrossRef] [PubMed]
- Gerrits, M.M.; Schuijffel, D.; Van Zwet, A.A.; Kuipers, E.J.; Vandenbroucke-Grauls, C.M.J.E.; Kusters, J.G. Alterations in Penicillin-Binding Protein 1A Confer Resistance to β-Lactam Antibiotics in Helicobacter pylori. Antimicrob. Agents Chemother. 2002, 46, 2229–2233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binh, T.T.; Shiota, S.; Suzuki, R.; Matsuda, M.; Trang, T.T.H.; Kwon, D.H.; Iwatani, S.; Yamaoka, Y. Discovery of novel mutations for clarithromycin resistance in Helicobacter pylori by using next-generation sequencing. J. Antimicrob. Chemother. 2014, 69, 1796–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, R.A.; Beckthold, B.; Wong, S.; Kureishi, A.; Bryan, L.E. Nucleotide sequence of the gyrA gene and characterization of ciprofloxacin-resistant mutants of Helicobacter pylori. Antimicrob. Agents Chemother. 1995, 39, 107–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tankovic, J.; Lascols, C.; Sculo, Q.; Petit, J.-C.; Soussy, C.-J. Single and double mutations in gyrA but not in gyrB are associated with low-and high-level fluoroquinolone resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 2003, 47, 3942–3944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodwin, A.; Kersulyte, D.; Sisson, G.; Van Zanten, S.J.O.V.; Berg, D.E.; Hoffman, P.S. Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Mol. Microbiol. 1998, 28, 383–393. [Google Scholar] [CrossRef]
- Sisson, G.; Jeong, J.-Y.; Goodwin, A.; Bryden, L.; Rossler, N.; Lim-Morrison, S.; Raudonikiene, A.; Berg, D.E.; Hoffman, P.S. Metronidazole Activation Is Mutagenic and Causes DNA Fragmentation in Helicobacter pylori and in Escherichia coli Containing a Cloned H. pylori rdxA+ (Nitroreductase) Gene. J. Bacteriol. 2000, 182, 5091–5096. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.-Y.; Mukhopadhyay, A.K.; Dailidiene, D.; Wang, Y.; Velapatiño, B.; Gilman, R.H.; Parkinson, A.J.; Nair, G.B.; Wong, B.C.Y.; Lam, S.K.; et al. Sequential Inactivation of rdxA (HP0954) and frxA (HP0642) Nitroreductase Genes Causes Moderate and High-Level Metronidazole Resistance in Helicobacter pylori. J. Bacteriol. 2000, 182, 5082–5090. [Google Scholar] [CrossRef] [Green Version]
- Albert, T.J.; Dailidiene, D.; Dailide, G.; Norton, J.E.; Kalia, A.; Richmond, T.A.; Molla, M.; Singh, J.; Green, R.D.; Berg, D.E. Mutation discovery in bacterial genomes: Metronidazole resistance in Helicobacter pylori. Nat. Methods 2005, 2, 951–953. [Google Scholar] [CrossRef]
- Smith, M.A.; Edwards, D.I. Oxygen scavenging, NADH oxidase and metronidazole resistance in Helicobacter pylori. J. Antimicrob. Chemother. 1997, 39, 347–353. [Google Scholar] [CrossRef]
- Choi, S.S.; Chivers, P.T.; Berg, D.E. Point Mutations in Helicobacter pylori’s fur Regulatory Gene that Alter Resistance to Metronidazole, a Prodrug Activated by Chemical Reduction. PLoS ONE 2011, 6, e18236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.-C.; Ho, S.-W.; Yang, J.-C.; Wang, J.-T. Isolation of a Genetic Locus Associated with Metronidazole Resistance in Helicobacter pylori. Biochem. Biophys. Res. Commun. 1997, 236, 785–788. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.A.; Blaser, M.J. Isolation of the Helicobacter pylori recA gene and involvement of the recA region in resistance to low pH. Infect. Immun. 1995, 63, 2185–2193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacey, S.; Moss, S.; Taylor, G. Metronidazole uptake by sensitive and resistant isolates of Helicobacter pylori. J. Antimicrob. Chemother. 1993, 32, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.A.; Beckthold, B.; Bryan, L.E. Metronidazole uptake in Helicobacter pylori. Can. J. Microbiol. 1995, 41, 746–749. [Google Scholar] [CrossRef]
- Hoffman, P.S.; Goodwin, A.; Johnsen, J.; Magee, K.; Van Zanten, S.J.V. Metabolic activities of metronidazole-sensitive and -resistant strains of Helicobacter pylori: Repression of pyruvate oxidoreductase and expression of isocitrate lyase activity correlate with resistance. J. Bacteriol. 1996, 178, 4822–4829. [Google Scholar] [CrossRef] [Green Version]
- Glupczynski, Y.; Burette, A.; Koster, E.; Nyst, J.-F.; Deltenre, M.; Cadranel, S.; Bourdeaux, L.; De Vos, D. Metronidazole resistance in Helicobacter pylori. Lancet 1990, 335, 976–977. [Google Scholar] [CrossRef]
- Jaka, H.; Rhee, J.A.; Östlundh, L.; Smart, L.; Peck, R.N.; Mueller, A.; Kasang, C.; Mshana, S.E. The magnitude of antibiotic resistance to Helicobacter pylori in Africa and identified mutations which confer resistance to antibiotics: Systematic review and meta-analysis. BMC Infect. Dis. 2018, 18, 193. [Google Scholar] [CrossRef]
- Megraud, F. Resistance of Helicobacter pylori to antibiotics. Aliment. Pharmacol. Ther. 1997, 11, 43–53. [Google Scholar] [CrossRef]
- Gerrits, M.M.; Godoy, A.P.O.; Kuipers, E.J.; Ribeiro, M.; Stoof, J.; Mendonça, S.; Van Vliet, A.H.; Pedrazzoli, J.; Kusters, J.G. Multiple Mutations in or Adjacent to the Conserved Penicillin-Binding Protein Motifs of the Penicillin-Binding Protein 1A Confer Amoxicillin Resistance to Helicobacter pylori. Helicobacter 2006, 11, 181–187. [Google Scholar] [CrossRef]
- Rimbara, E.; Noguchi, N.; Kawai, T.; Sasatsu, M. Correlation between Substitutions in Penicillin-Binding Protein 1 and Amoxicillin Resistance in Helicobacter pylori. Microbiol. Immunol. 2007, 51, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Matteo, M.J.; Granados, G.; Olmos, M.; Wonaga, A.; Catalano, M. Helicobacter pylori amoxicillin heteroresistance due to point mutations in PBP-1A in isogenic isolates. J. Antimicrob. Chemother. 2008, 61, 474–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimbara, E.; Noguchi, N.; Kawai, T.; Sasatsu, M. Mutations in penicillin-binding proteins 1, 2 and 3 are responsible for amoxicillin resistance in Helicobacter pylori. J. Antimicrob. Chemother. 2008, 61, 995–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyachi, H.; Miki, I.; Aoyama, N.; Shirasaka, D.; Matsumoto, Y.; Toyoda, M.; Mitani, T.; Morita, Y.; Tamura, T.; Kinoshita, S.; et al. Primary Levofloxacin Resistance and gyrA/B Mutations Among Helicobacter pylori in Japan. Helicobacter 2006, 11, 243–249. [Google Scholar] [CrossRef]
- Miftahussurur, M.; Shrestha, P.K.; Subsomwong, P.; Sharma, R.P.; Yamaoka, Y. Emerging Helicobacter pylori levofloxacin resistance and novel genetic mutation in Nepal. BMC Microbiol. 2016, 16, 256. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.-H.; El-Zaatari, F.A.K.; Kato, M.; Osato, M.S.; Reddy, R.; Yamaoka, Y.; Graham, D.Y. Analysis of rdxA and Involvement of Additional Genes Encoding NAD(P)H Flavin Oxidoreductase (FrxA) and Ferredoxin-Like Protein (FdxB) in Metronidazole Resistance of Helicobacter pylori. Antimicrob. Agents Chemother. 2000, 44, 2133–2142. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.H.; Kato, M.; El-Zaatari, F.A.; Osato, M.S.; Graham, D.Y. Frame-shift mutations in NAD (P) H flavin oxidoreductase encoding gene (frxA) from metronidazole resistant Helicobacter pylori ATCC43504 and its involvement in metronidazole resistance. FEMS Microbiol. Lett. 2000, 188, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Júlvez, M.; Rojas, A.L.; Olekhnovich, I.; Angarica, V.E.; Hoffman, P.S.; Sancho, J. Structure of R dx A—An oxygen-insensitive nitroreductase essential for metronidazole activation in Helicobacter pylori. FEBS J. 2012, 279, 4306–4317. [Google Scholar] [CrossRef] [Green Version]
- Latham, S.R.; Labigne, A.; Jenks, P.J. Production of the RdxA protein in metronidazole-susceptible and -resistant isolates of Helicobacter pylori cultured from treated mice. J. Antimicrob. Chemother. 2002, 49, 675–678. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Joo, Y.M.; Lee, H.S.; Chung, I.-S.; Yoo, Y.-J.; Merrell, D.S.; Cha, J.-H. Genetic analysis of Helicobacter pylori clinical isolates suggests resistance to metronidazole can occur without the loss of functional rdxA. J. Antibiot. 2009, 62, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Witney, A.A.; Cosgrove, C.A.; Arnold, A.; Hinds, J.; Stoker, N.G.; Butcher, P.D. Clinical use of whole genome sequencing for Mycobacterium tuberculosis. BMC Med. 2016, 14, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizvanov, A.A.; Haertlé, T.; Bogomolnaya, L.; Talebi Bezmin Abadi, A. Helicobacter pylori and Its Antibiotic Heteroresistance: A Neglected Issue in Published Guidelines. Front. Microbiol. 2019, 10, 1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alebouyeh, M.; Yadegar, A.; Farzi, N.; Miri, M.; Zojaji, H.; Gharibi, S.; Fazeli, Z.; Daryani, N.E.; Aghdaei, H.A.; Zali, M.R. Impacts of H. pylori mixed-infection and heteroresistance on clinical outcomes. Gastroenterol. Hepatol. Bed Bench 2015, 8, S1–S5. [Google Scholar] [PubMed]
- Tsugawa, H.; Suzuki, H.; Muraoka, H.; Ikeda, F.; Hirata, K.; Matsuzaki, J.; Saito, Y.; Hibi, T. Enhanced bacterial efflux system is the first step to the development of metronidazole resistance in Helicobacter pylori. Biochem. Biophys. Res. Commun. 2011, 404, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Suzuki, H.; Nishizawa, T.; Tsugawa, H.; Muraoka, H.; Saito, Y.; Matsuzaki, J.; Hibi, T. Contribution of efflux pumps to clarithromycin resistance in Helicobacter pylori. J. Gastroenterol. Hepatol. 2010, 25, S75–S79. [Google Scholar] [CrossRef]
- Van Amsterdam, K.; Bart, A.; Van Der Ende, A. A Helicobacter pylori TolC Efflux Pump Confers Resistance to Metronidazole. Antimicrob. Agents Chemother. 2005, 49, 1477–1482. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-Q.; Zheng, P.-Y.; Yang, P.-C. Efflux pump gene hefA of Helicobacter pylori plays an important role in multidrug resistance. World J. Gastroenterol. 2008, 14, 5217. [Google Scholar] [CrossRef]
- Qureshi, N.N.; Gallaher, B.; Schiller, N.L. Evolution of Amoxicillin Resistance of Helicobacter pylori In Vitro: Characterization of Resistance Mechanisms. Microb. Drug Resist. 2014, 20, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Lorusso, F.; Caleca, M.P.; Bellavia, C.; Pistoia, D.; Gallina, S.; Speciale, R.; Dispenza, F.; Fasciana, T.; Capra, G. The EBV-DNA Can be Used as a Diagnostic and Follow-up Parameter of the Rhinopharyngeal Tumors in the Non-Endemic Population of the Western Sicily. Indian J. Otolaryngol. Head Neck Surg. 2018, 71, 396–400. [Google Scholar] [CrossRef]
- Cowell, A.; Winzeler, E.A. Exploration of the Plasmodium falciparum Resistome and Druggable Genome Reveals New Mechanisms of Drug Resistance and Antimalarial Targets. Microbiol. Insights 2018, 11. [Google Scholar] [CrossRef] [Green Version]
Phenotypic Susceptibility Profile | n | % (95%-CI) |
---|---|---|
Susceptibility to all antimicrobials | 5 | 4.9 (2.1; 10.9) |
Resistance to at least one antimicrobial | 98 | 96.1 (90.3; 98.5) |
MTZ-R | 92 | 90.2 (82.9; 94.6) |
LEVO-R | 67 | 65.7 (56.1; 74.2) |
AMX-R | 35 | 34.3 (25.8; 43.9) |
CLA-R | 24 | 23.5 (16.4; 32.6) |
Single drug resistance | 21 | 20.6 (13.9; 29.4) |
MTZ-R only | 17 | 16.7 (10.7; 25.1) |
CLA-R only | 2 | 2.0 (0.3; 6.9) |
LEVO-R only | 2 | 2.0 (0.3; 6.9) |
AMX-R only | 1 | 1.0 (0.1; 5.3) |
Multidrug resistance | 75 | 73.5 (64.2; 81.1) |
LEVO-R + MTZ-R | 29 | 28.4 (20.6; 37.8) |
AMX-R + LEVO-R + MTZ-R | 15 | 14.7 (9.1; 22.9) |
CLA-R + LEVO-R + MTZ-R | 10 | 9.8 (5.4; 17.1) |
AMX-R + CLA-R + LEVO-R + MTZ-R | 8 | 7.8 (4.0; 14.7) |
AMX-R + MTZ-R | 5 | 4.9 (2.1; 10.9) |
CLA-R + MTZ-R | 3 | 2.9 (0.8; 8.3) |
AMX-R + LEVO-R | 2 | 2.0 (0.3; 6.9) |
CLA-R + LEVO-R | 2 | 2.0 (0.3; 6.9) |
AMX-R + CLA-R + MTZ-R | 1 | 1.0 (0.1; 5.3) |
Genotypic AST (Antimicrobial)** | Phenotypic AST | p-Value | Se | Sp | Youden’s Index (95%-CI) | Cohen’s Kappa (95%-CI) | |||
---|---|---|---|---|---|---|---|---|---|
Resistant | Susceptible | ||||||||
n | % | n | % | ||||||
pbp1A gene mutations (AMX) | |||||||||
Resistant | 29 | 82.9 | 1 | 1.5 | <0.001 | 82.9 | 98.5 | 0.8134 (0.583; 0.934) | 0.842 (0.729; 0.955) |
Susceptible | 6 | 17.1 | 66 | 98.5 | |||||
Domain V of 23S rRNA gene (CLA) | |||||||||
Resistant | 21 | 87.5 | 0 | 0.0 | <0.001 | 87.5 | 100.0 | 0.875 (0.630; 0.973) | 0.914 (0.819; 1.000) |
Susceptible | 3 | 12.5 | 78 | 100.0 | |||||
QRDR of gyrA and gyrB genes (LEVO) | |||||||||
Resistant | 62 | 92.5 | 3 | 8.6 | <0.001 | 92.5 | 91.4 | 0.839 (0.604;0.957) | 0.828 (0.714;0.942) |
Susceptible | 5 | 7.5 | 32 | 91.4 | |||||
rdxA gene (MTZ) | |||||||||
Resistant | 59 | 64.1 | 0 | 0.0 | <0.001 | 64.1 | 100.0 | 0.641 (0.226;0.739) | 0.304 (0.073;0.535) |
Susceptible | 33 | 35.9 | 10 | 100.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tshibangu-Kabamba, E.; Ngoma-Kisoko, P.d.J.; Tuan, V.P.; Matsumoto, T.; Akada, J.; Kido, Y.; Tshimpi-Wola, A.; Tshiamala-Kashala, P.; Ahuka-Mundeke, S.; Mumba Ngoy, D.; et al. Next-Generation Sequencing of the Whole Bacterial Genome for Tracking Molecular Insight into the Broad-Spectrum Antimicrobial Resistance of Helicobacter pylori Clinical Isolates from the Democratic Republic of Congo. Microorganisms 2020, 8, 887. https://doi.org/10.3390/microorganisms8060887
Tshibangu-Kabamba E, Ngoma-Kisoko PdJ, Tuan VP, Matsumoto T, Akada J, Kido Y, Tshimpi-Wola A, Tshiamala-Kashala P, Ahuka-Mundeke S, Mumba Ngoy D, et al. Next-Generation Sequencing of the Whole Bacterial Genome for Tracking Molecular Insight into the Broad-Spectrum Antimicrobial Resistance of Helicobacter pylori Clinical Isolates from the Democratic Republic of Congo. Microorganisms. 2020; 8(6):887. https://doi.org/10.3390/microorganisms8060887
Chicago/Turabian StyleTshibangu-Kabamba, Evariste, Patrick de Jesus Ngoma-Kisoko, Vo Phuoc Tuan, Takashi Matsumoto, Junko Akada, Yasutoshi Kido, Antoine Tshimpi-Wola, Pascal Tshiamala-Kashala, Steve Ahuka-Mundeke, Dieudonné Mumba Ngoy, and et al. 2020. "Next-Generation Sequencing of the Whole Bacterial Genome for Tracking Molecular Insight into the Broad-Spectrum Antimicrobial Resistance of Helicobacter pylori Clinical Isolates from the Democratic Republic of Congo" Microorganisms 8, no. 6: 887. https://doi.org/10.3390/microorganisms8060887
APA StyleTshibangu-Kabamba, E., Ngoma-Kisoko, P. d. J., Tuan, V. P., Matsumoto, T., Akada, J., Kido, Y., Tshimpi-Wola, A., Tshiamala-Kashala, P., Ahuka-Mundeke, S., Mumba Ngoy, D., Disashi-Tumba, G., & Yamaoka, Y. (2020). Next-Generation Sequencing of the Whole Bacterial Genome for Tracking Molecular Insight into the Broad-Spectrum Antimicrobial Resistance of Helicobacter pylori Clinical Isolates from the Democratic Republic of Congo. Microorganisms, 8(6), 887. https://doi.org/10.3390/microorganisms8060887