Calcineurin Inhibitor-Based Immunosuppression and COVID-19: Results from a Multidisciplinary Cohort of Patients in Northern Italy
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Cohort
3.2. COVID-19 Patient Characteristics and Outcomes
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Wunderink, R.G. MERS, SARS and other coronaviruses as causes of pneumonia. Respirol. Carlton Vic. 2018, 23, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Morales, A.J.; Cardona-Ospina, J.A.; Gutiérrez-Ocampo, E.; Villamizar-Peña, R.; Holguin-Rivera, Y.; Escalera-Antezana, J.P.; Alvarado-Arnez, L.E.; Bonilla-Aldana, D.K.; Franco-Paredes, C.; Henao-Martinez, A.F.; et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis. 2020, 34, 101623. [Google Scholar] [CrossRef] [PubMed]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- EpiCentro. Coronavirus|Istituto Superiore di Sanità [Internet]. [citato 1 maggio 2020]. Available online: https://www.epicentro.iss.it/coronavirus/ (accessed on 1 June 2020).
- Zhu, L.; Xu, X.; Ma, K.E.; Yang, J.; Guan, H.; Chen, S.; Chen, Z.; Chen, G. Successful recovery of COVID-19 pneumonia in a renal transplant recipient with long-term immunosuppression. Am. J. Transplant. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Antiga, L. Coronaviruses and immunosuppressed patients. The facts during the third epidemic. Liver Transplant 2020. [Google Scholar] [CrossRef] [PubMed]
- Monti, S.; Balduzzi, S.; Delvino, P.; Bellis, E.; Quadrelli, V.S.; Montecucco, C. Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies. Ann. Rheum. Dis. 2020, 79, 667–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arpali, E.; Akyollu, B.; Yelken, B.; Tekin, S.; Turkmen, A.; Kocak, B. Case Report: A Kidney Transplant Patient with Mild COVID-19. Transpl. Infect. Dis. 2020, 2020, e13296. [Google Scholar] [CrossRef]
- Hsu, J.J.; Gaynor, P.; Kamath, M.; Fan, A.; Al-Saffar, F.; Cruz, D.; Nsair, A. COVID-19 in a High-Risk Dual Heart and Kidney Transplant Recipient. Am. J. Transplant. 2020, 20, 1911–1915. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Yuan, Q.; Xia, Q.X.; Zeng, X.P.; Peng, J.T.; Liu, J.; Xiao, X.Y.; Jiang, G.S.; Xiao, H.Y.; et al. Identification of Kidney Transplant Recipients with Coronavirus Disease 2019. Eur Urol. 2020, 77, 742–747. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, D.S.; Yoon, Y.K.; Sohn, J.W.; Kim, M.J. Two distinct cases with COVID-19 in kidney transplant recipients. Am. J. Transplant. 2020, 48, 2442–2449. [Google Scholar] [CrossRef] [PubMed]
- Akalin, E.; Azzi, Y.; Bartash, R.; Seethamraju, H.; Parides, M.; Hemmige, V.; Ross, M.; Forest, S.; Goldstein, Y.D.; Ajaimy, M.; et al. Covid-19 and Kidney Transplantation. N. Engl. J. Med. 2020, 382, 2475–2477. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ruiz, M.; Andrés, A.; Loinaz, C.; Delgado, J.F.; López-Medrano, F.; San Juan, R.; González, E.; Polanco, N.; Folgueira, M.D.; Lalueza, A.; et al. COVID-19 in solid organ transplant recipients: A single-center case series from Spain. Am. J. Transplant. 2020. [Google Scholar] [CrossRef] [PubMed]
- Gandolfini, I.; Delsante, M.; Fiaccadori, E.; Zaza, G.; Manenti, L.; Degli Antoni, A.; Peruzzi, L.; Riella, L.V.; Cravedi, P.; Maggiore, U. COVID-19 in kidney transplant recipients. Am. J. Transplant. 2020. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Ren, F.; Wang, Q.; Luo, L.; Zhou, J.; Huang, D.; Pan, Z.; Tang, L. Clinical features of thirty-two patients with anti-melanoma differentiation-associated gene 5 antibodies. Clin. Exp. Rheumatol. 2019, 37, 803–807. [Google Scholar] [PubMed]
- Guillen, E.; Pineiro, G.J.; Revuelta, I.; Rodriguez, D.; Bodro, M.; Moreno, A.; Campistol, J.M.; Diekmann, F.; Ventura-Aguiar, P. Case report of COVID-19 in a kidney transplant recipient: Does immunosuppression alter the clinical presentation? Am. J. Transplant. 2020, 20, 1875–1878. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.R.; Mohan, S.; Cohen, D.J.; Husain, S.A.; Dube, G.K.; Ratner, L.E.; Arcasoy, S.; Aversa, M.M.; Benvenuto, L.J.; Dadhania, D.M.; et al. COVID-19 in Solid Organ Transplant Recipients: Initial Report from the US Epicenter. Am. J. Transplant. 2020, 20, 1800–1808. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Kuypers, D.R.J. Intrapatient Variability of Tacrolimus Exposure in Solid Organ Transplantation: A Novel Marker for Clinical Outcome. Clin. Pharmacol. Ther. 2020, 107, 347–358. [Google Scholar] [CrossRef]
- Cavagna, L.; Caporali, R.; Abdì-Alì, L.; Dore, R.; Meloni, F.; Montecucco, C. Cyclosporine in anti-Jo1-positive patients with corticosteroid-refractory interstitial lung disease. J. Rheumatol. 2013, 40, 484–492. [Google Scholar] [CrossRef]
- Pfefferle, S.; Schöpf, J.; Kögl, M.; Friedel, C.C.; Müller, M.A.; Carbajo-Lozoya, J.; Stellberger, T.; von Dall’Armi, E.; Herzog, P.; Kallies, S.; et al. The SARS-coronavirus-host interactome: Identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog. 2011, 7, e1002331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma-Lauer, Y.; Zheng, Y.; Malešević, M.; von Brunn, B.; Fischer, G.; von Brunn, A. Influences of cyclosporin A and non-immunosuppressive derivatives on cellular cyclophilins and viral nucleocapsid protein during human coronavirus 229E replication. Antiviral Res. 2020, 173, 104620. [Google Scholar] [CrossRef] [PubMed]
- Carbajo-Lozoya, J.; Müller, M.A.; Kallies, S.; Thiel, V.; Drosten, C.; von Brunn, A. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506. Virus Res. 2012, 165, 112–117. [Google Scholar] [CrossRef] [PubMed]
- De Wilde, A.H.; Zevenhoven-Dobbe, J.C.; van der Meer, Y.; Thiel, V.; Narayanan, K.; Makino, S.; Snijder, E.J.; van Hemert, M.J. Cyclosporin A inhibits the replication of diverse coronaviruses. J. Gen. Virol. 2011, 92, 2542–2548. [Google Scholar] [CrossRef]
- Rizzardi, G.P.; Harari, A.; Capiluppi, B.; Tambussi, G.; Ellefsen, K.; Ciuffreda, D.; Champagne, P.; Bart, P.A.; Chave, J.P.; Lazzarin, A.; et al. Treatment of primary HIV-1 infection with cyclosporin A coupled with highly active antiretroviral therapy. J. Clin. Investig. 2002, 109, 681–688. [Google Scholar] [CrossRef]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveill 2020, 25, 2000045. [Google Scholar] [CrossRef] [Green Version]
- Testa, S.; Prandoni, P.; Paoletti, O.; Morandini, R.; Tala, M.; Dellanoce, C.; Giorgi-Pierfranceschi, M.; Betti, M.; Battista Danzi, G.; Pan, A.; et al. Direct oral anticoagulant plasma levels striking increase in severe COVID-19 respiratory syndrome patients treated with antiviral agents. The Cremona experience. J. Thromb. Haemost. 2020, 18, 1320–1323. [Google Scholar] [CrossRef] [PubMed]
- Sarzi-Puttini, P.; Giorgi, V.; Sirotti, S.; Marotto, D.; Ardizzone, S.; Rizzardini, G.; Antinori, S.; Galli, M. COVID-19, cytokines and immunosuppression: What can we learn from severe acute respiratory syndrome? Clin. Exp. Rheumatol. 2020, 38, 337–342. [Google Scholar] [PubMed]
Patients (%) | Median Age in Years (IQR) | Median Follow-Up in Months (IQR) | Males (% by Group) | Cys (% by Group) | TAC (% by Group) | CNIs and Other ISTs (% by Group) | COVID-19 (%) | Median Age in Years (IQR) | Median Follow-Up in Months (IQR) | Males (% by Group) | Cys (% by Group) | TAC (% by Group) | CNIs and Other ISTs (% by Group) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMDs | 53 (14) | 61 (48-69) | 41 (17–81) | 15 (28) | 53 (100) | 0 (0) | 30 (57) | 0 (0) | - | - | - | - | - | - |
Lung Tx | 91 (24) | 58 (48-64) | 116 (46–187) | 54 (59) | 11 (12) | 80 (88) | 91 (100) | 3 (21) | 65 (62–75) | 60 (1–266) | 2 (67) | 1 (33) | 2 (67) | 3 (100) |
Heart Tx | 100 (26) | 63 (53-72.5) | 144 (72–228) | 61 (61) | 63 (63) | 37 (37) | 78 (78) | 5 (36) | 63 (53–67) | 60 (48–144) | 3 (60) | 2 (40) | 3 (21) | 3 (60) |
Kidney Tx | 140 (36) | 55 (48-62.5) | 62.5 (32.5–116.5) | 90 (64) | 43 (31) | 97 (69) | 139 (99) | 6 (43) | 57.5 (51–64) | 95 (46–159) | 5 (83) | 3 (50) | 3 (21) | 5 (83) |
Overall | 384 (100) | 58 (49-66) | 83.5 (39–156) | 220 (57) | 170 (44) | 214 (56) | 338 (88) | 14 (100) | 60.5 (46–159) | 62.5 (53–67) | 10 (71) | 6 (43) | 8 (57) | 11 (79) |
Symptoms | COVID-19, Number of Patients (%) |
---|---|
Fever | 12 (86) |
Fatigue | 10 (71) |
Cough | 9 (64) |
Rhinorrhea | 5 (35) |
Headache | 8 (57) |
Diarrhea | 10 (71) |
Nausea | 8 (57) |
Sore throat | 4 (28) |
Ageusia | 4 (28) |
Arthromyalgias | 4 (28) |
Dyspnea | 3 (21) |
Anosmia | 5 (36) |
Conjunctivitis | 2 (14) |
Condition (Number, % of Overall) | Median Time from Symptom Onset in Days (IQR) | Hospitalization (% of the Group) | Clinical/Radiological Lung Involvement (% of the Group) | ARDS (% of the Group) | Full Recovery (% of the Group) | Improved (% of the Group) | Stable (% of the Group) | Worsened (% of the Group) | Death (% of the Group) |
---|---|---|---|---|---|---|---|---|---|
RMDs (0, 0) | - | - | - | - | - | - | - | - | - |
Lung Tx (3, 21) | 15 (10-18) | 2 (67) | 2 (67) | 0 (0) | 3 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Heart Tx (5, 36) | 12 (10-15) | 5 (100) | 2(40) | 0 (0) | 3 (60) | 0 (0) | 0 (0) | 0 (0) | 2 (40) |
Kidney Tx (6, 43) | 12.5 (10-15) | 5 (80) | 5 (83) | 0 (0) | 5 (80) | 1 (20) | 0 (0) | 0 (0) | 0 (0) |
Overall (14, 100) | 13.5 (10-15) | 12 (86) | 9 (64) | 0 (0) | 11 (79) | 1 (7) | 0 (0) | 0 (0) | 2 (14) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavagna, L.; Seminari, E.; Zanframundo, G.; Gregorini, M.; Di Matteo, A.; Rampino, T.; Montecucco, C.; Pelenghi, S.; Cattadori, B.; Pattonieri, E.F.; et al. Calcineurin Inhibitor-Based Immunosuppression and COVID-19: Results from a Multidisciplinary Cohort of Patients in Northern Italy. Microorganisms 2020, 8, 977. https://doi.org/10.3390/microorganisms8070977
Cavagna L, Seminari E, Zanframundo G, Gregorini M, Di Matteo A, Rampino T, Montecucco C, Pelenghi S, Cattadori B, Pattonieri EF, et al. Calcineurin Inhibitor-Based Immunosuppression and COVID-19: Results from a Multidisciplinary Cohort of Patients in Northern Italy. Microorganisms. 2020; 8(7):977. https://doi.org/10.3390/microorganisms8070977
Chicago/Turabian StyleCavagna, Lorenzo, Elena Seminari, Giovanni Zanframundo, Marilena Gregorini, Angela Di Matteo, Teresa Rampino, Carlomaurizio Montecucco, Stefano Pelenghi, Barbara Cattadori, Eleonora Francesca Pattonieri, and et al. 2020. "Calcineurin Inhibitor-Based Immunosuppression and COVID-19: Results from a Multidisciplinary Cohort of Patients in Northern Italy" Microorganisms 8, no. 7: 977. https://doi.org/10.3390/microorganisms8070977
APA StyleCavagna, L., Seminari, E., Zanframundo, G., Gregorini, M., Di Matteo, A., Rampino, T., Montecucco, C., Pelenghi, S., Cattadori, B., Pattonieri, E. F., Vitulo, P., Bertani, A., Sambataro, G., Vancheri, C., Biglia, A., Bozzalla-Cassione, E., Bonetto, V., Monti, M. C., Ticozzelli, E., ... Meloni, F. (2020). Calcineurin Inhibitor-Based Immunosuppression and COVID-19: Results from a Multidisciplinary Cohort of Patients in Northern Italy. Microorganisms, 8(7), 977. https://doi.org/10.3390/microorganisms8070977