Forecasting the Spreading of COVID-19 across Nine Countries from Europe, Asia, and the American Continents Using the ARIMA Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. ARIMA Models
2.3. Model Selection
3. Results and Discussion
Forecasting the Prevalence of COVID-19 Pandemic Using the ARIMA Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Lian, J.-S.; Hu, J.-H.; Gao, J.; Zheng, L.; Zhang, Y.-M.; Hao, S.-R.; Jia, H.-Y.; Cai, H.; Zhang, X.-L.; et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 2020, 69, 1002. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, X.; Zhang, Z.; Huang, S.; Zhang, Z.; Fang, Z.; Gu, Z.; Gao, L.; Shi, H.; Mai, L.; et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020, 69, 997. [Google Scholar] [CrossRef]
- Xu, X.-W.; Wu, X.-X.; Jiang, X.-G.; Xu, K.-J.; Ying, L.-J.; Ma, C.-L.; Li, S.-B.; Wang, H.-Y.; Zhang, S.; Gao, H.-N.; et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ 2020, 368, m606. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Kang, Z.; Gong, H.; Xu, D.; Wang, J.; Li, Z.; Li, Z.; Cui, X.; Xiao, J.; Zhan, J.; et al. Digestive system is a potential route of COVID-19: An analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut 2020, 69, 1010. [Google Scholar] [CrossRef]
- Ong, J.; Young, B.E.; Ong, S. COVID-19 in gastroenterology: A clinical perspective. Gut 2020, 69, 1144. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, P.; Shi, X.L.; Chu, Y.L.; Zhang, J.; Xia, J.; Gao, X.Z.; Qu, T.; Wang, M.Y. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut 2020, 69, 1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, W.; Feng, Z.; Rao, S.; Xiao, C.; Xue, X.; Lin, Z.; Zhang, Q.; Qi, W. Diarrhoea may be underestimated: A missing link in 2019 novel coronavirus. Gut 2020, 69, 1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Li, J.; Guo, S.; Xie, N.; Yao, L.; Cao, Y.; Day, S.W.; Howard, S.C.; Graff, J.C.; Gu, T.; et al. Real-time estimation and prediction of mortality caused by COVID-19 with patient information based algorithm. Sci. Total Environ. 2020, 727, 138394. [Google Scholar] [CrossRef]
- Kurbalija, V.; Radovanović, M.; Ivanović, M.; Schmidt, D.; von Trzebiatowski, G.L.; Burkhard, H.-D.; Hinrichs, C. Time-series analysis in the medical domain: A study of Tacrolimus administration and influence on kidney graft function. Comput. Biol. Med. 2014, 50, 19–31. [Google Scholar] [CrossRef]
- Nsoesie, E.; Beckman, R.; Shashaani, S.; Nagaraj, K.; Marathe, M. A Simulation Optimization Approach to Epidemic Forecasting. PLoS ONE 2013, 8, e67164. [Google Scholar] [CrossRef] [Green Version]
- Orbann, C.; Sattenspiel, L.; Miller, E.; Dimka, J. Defining epidemics in computer simulation models: How do definitions influence conclusions? Epidemics 2017, 19, 24–32. [Google Scholar] [CrossRef]
- Thomson, M.C.; Molesworth, A.M.; Djingarey, M.H.; Yameogo, K.R.; Belanger, F.; Cuevas, L.E. Potential of environmental models to predict meningitis epidemics in Africa. Trop. Med. Int. Health 2006, 11, 781–788. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Z.; Ji, Y.; Martinez, L.; Zia, U.H.; Javaid, A.; Lu, W.; Wang, J. Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. Infect. Drug Resist. 2019, 12, 2311–2322. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Li, J.; Yuan, Z.-A.; Hu, J.-Y.; Yu, Y.; Lu, Y.-H. The development of a combined mathematical model to forecast the incidence of hepatitis E in Shanghai, China. BMC Infect. Dis. 2013, 13, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Liu, Y.; Yang, M.; Zhang, T.; Young, A.; Li, X. Comparative Study of Four Time Series Methods in Forecasting Typhoid Fever Incidence in China. PLoS ONE 2013, 8, e63116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Shen, Z.; Jiang, Y. Comparison of ARIMA and GM(1,1) models for prediction of hepatitis B in China. PLoS ONE 2018, 13, e0201987. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Zheng, Y.; Wang, K.; Zhang, X.; Zheng, Y. Time Prediction Models for Echinococcosis Based on Gray System Theory and Epidemic Dynamics. Int. J. Environ. Res. Public Health 2017, 14, 262. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Liu, H.; Li, J.; Yin, X.; Duan, Y.; Wang, J. Relationship of meteorological factors and human brucellosis in Hebei province, China. Sci. Total Environ. 2020, 703, 135491. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.G. Time Series Analysis: Forecasting and Control, 5th Edition, by George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel and Greta M. Ljung, 2015. Published by John Wiley and Sons Inc., Hoboken, NJ USA, pp. 712, ISBN: 978-1-118-67502-1. J. Time Ser. Anal. 2016, 37. [Google Scholar] [CrossRef]
- Fanoodi, B.; Malmir, B.; Jahantigh, F.F. Reducing demand uncertainty in the platelet supply chain through artificial neural networks and ARIMA models. Comput. Biol. Med. 2019, 113, 103415. [Google Scholar] [CrossRef]
- Benvenuto, D.; Giovanetti, M.; Vassallo, L.; Angeletti, S.; Ciccozzi, M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Br. 2020, 29, 105340. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Zhang, B.; Liu, K. A comparative time series analysis and modeling of aerosols in the contiguous United States and China. Sci. Total Environ. 2019, 690, 799–811. [Google Scholar] [CrossRef]
- Elevli, S.; Uzgören, N.; Bingöl, D.; Elevli, B. Drinking water quality control: Control charts for turbidity and pH. J. Water Sanit. Hyg. Dev. 2016, 6, 511–518. [Google Scholar] [CrossRef]
- He, Z.; Tao, H. Epidemiology and ARIMA model of positive-rate of influenza viruses among children in Wuhan, China: A nine-year retrospective study. Int. J. Infect. Dis. 2018, 74, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, T.; Ghosh, I. Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis. Chaos Solitons Fractals 2020, 135, 109850. [Google Scholar] [CrossRef] [PubMed]
- Ahmar, A.S.; del Val, E.B. SutteARIMA: Short-term forecasting method, a case: Covid-19 and stock market in Spain. Sci. Total Environ. 2020, 729, 138883. [Google Scholar] [CrossRef] [PubMed]
- Chintalapudi, N.; Battineni, G.; Amenta, F. COVID-19 virus outbreak forecasting of registered and recovered cases after sixty day lockdown in Italy: A data driven model approach. J. Microbiol. Immunol. Infect. 2020, 53, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Kırbaş, İ.; Sözen, A.; Tuncer, A.D.; Kazancıoğlu, F. Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches. Chaos Solitons Fractals 2020, 110015. [Google Scholar] [CrossRef]
- Ceylan, Z. Estimation of COVID-19 prevalence in Italy, Spain, and France. Sci. Total Environ. 2020, 729, 138817. [Google Scholar] [CrossRef]
- Singh, R.K.; Rani, M.; Bhagavathula, A.S.; Sah, R.; Rodriguez-Morales, A.J.; Kalita, H.; Nanda, C.; Sharma, S.; Sharma, Y.D.; Rabaan, A.A.; et al. Prediction of the COVID-19 Pandemic for the Top 15 Affected Countries: Advanced Autoregressive Integrated Moving Average (ARIMA) Model. JMIR Public Health Surveill. 2020, 6, e19115. [Google Scholar] [CrossRef]
- Modeling and Forecasting for the number of cases of the COVID-19 pandemic with the Curve Estimation Models, the Box-Jenkins and Exponential Smoothing Methods. Eurasian J. Med. Oncol. 2020, 4, 160–165.
- Demongeot, J.; Flet-Berliac, Y.; Seligmann, H. Temperature Decreases Spread Parameters of the New Covid-19 Case Dynamics. Biology 2020, 9, 94. [Google Scholar] [CrossRef]
- Papastefanopoulos, V.; Linardatos, P.; Kotsiantis, S. COVID-19: A Comparison of Time Series Methods to Forecast Percentage of Active Cases per Population. Appl. Sci. 2020, 10, 3880. [Google Scholar] [CrossRef]
- López, L.; Rodó, X. The end of social confinement and COVID-19 re-emergence risk. Nat. Hum. Behav. 2020, 4, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. OpenSAFELY: Factors associated with COVID-19 death in 17 million patients. Nature 2020. [Google Scholar] [CrossRef] [PubMed]
- Miller, I.F.; Becker, A.D.; Grenfell, B.T.; Metcalf, C.J.E. Disease and healthcare burden of COVID-19 in the United States. Nat. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
(a) Prevalence | ||||||||
Continents | Country | Mean | SE Mean | St. Dev | Minimum | Maximum | Skewness | Kurtosis |
Central and Eastern Europe | Ukraine | 17,545.34 | 1424.02 | 15793.16 | 1 | 52,043 | 0.5836 | −0.8257 |
Romania | 13,958.65 | 837.07 | 9283.60 | 25 | 31,381 | −0.0447 | −1.1718 | |
Republic of Moldova | 6341.02 | 516.67 | 5730.20 | 3 | 18,666 | 0.6936 | −0.7263 | |
Serbia | 8159.77 | 468.22 | 5192.87 | 5 | 17,342 | −0.3619 | −1.1779 | |
Bulgaria | 2063.34 | 151.29 | 1677.90 | 4 | 6672 | 0.7943 | −0.0721 | |
Hungary | 2618.48 | 138.75 | 1538.90 | 12 | 4220 | −0.5892 | −1.2725 | |
South and North America, and South Asia | USA | 1,242,336.35 | 80,297.41 | 890,541.35 | 696 | 3,038,325 | 0.1309 | −1.1182 |
Brazil | 405,199.86 | 45,415.32 | 503,680.30 | 25 | 1,713,160 | 1.1576 | 0.0707 | |
India | 168,929.42 | 19,430.70 | 215,496.91 | 50 | 793,802 | 1.3365 | 0.7176 | |
(b) Incidence | ||||||||
Continents | Country | Mean | SE Mean | St. Dev | Minimum | Maximum | Skewness | Kurtosis |
Central and Eastern Europe | Ukraine | 423.10 | 25.90 | 287.33 | 0 | 1366 | 0.3931 | −0.0052 |
Romania | 255.00 | 11.65 | 129.25 | 6 | 614 | 0.2298 | −0.0560 | |
Republic of Moldova | 151.74 | 10.03 | 111.27 | 0 | 478 | 0.7573 | 0.1075 | |
Serbia | 140.98 | 10.22 | 113.38 | 0 | 445 | 0.8188 | −0.4346 | |
Bulgaria | 54.21 | 5.08 | 56.44 | 0 | 330 | 1.9756 | 4.8870 | |
Hungary | 34.23 | 3.09 | 34.36 | 0 | 210 | 1.6979 | 4.7398 | |
South and North America, and South Asia | USA | 24,697.99 | 1152.30 | 12,779.70 | 0 | 64,630 | 0.1378 | 0.8261 |
Brazil | 13,927.92 | 1307.41 | 14,499.97 | 0 | 54,771 | 0.8961 | −0.3030 | |
India | 6453.31 | 644.93 | 7152.72 | 0 | 26,506 | 1.1402 | 0.2809 |
Country | Model | RMSE | MAE | MAPE |
---|---|---|---|---|
Ukraine | (1, 1, 0) | 182.403 | 86.857 | 4.70244 |
(0, 2, 0) | 184.534 | 84.6694 | 4.75145 | |
(3, 2, 0) | 140.184 | 87.0874 | 4.86564 | |
(3, 0, 0) | 140.834 | 83.9104 | 5.02043 | |
(2, 2, 0) | 141.809 | 86.6818 | 5.08194 | |
Romania | (3, 2, 2) | 72.2811 | 54.8283 | 1.40016 |
(1, 2, 3) | 77.4246 | 57.1017 | 1.45906 | |
(2, 2, 3) | 74.5154 | 55.2809 | 1.48125 | |
(3, 2, 3) | 76.4564 | 56.4977 | 1.52647 | |
(2, 2, 2) | 78.7986 | 58.4657 | 1.53212 | |
Republic of Moldova | (3, 2, 2) | 61.1658 | 43.5817 | 2.76751 |
(3, 2, 1) | 60.7849 | 43.5131 | 2.77257 | |
(2, 2, 1) | 60.6597 | 43.5749 | 2.77809 | |
(3, 2, 3) | 61.6063 | 43.8593 | 2.84718 | |
(2, 2, 3) | 61.341 | 43.8542 | 2.85937 | |
Serbia | (3, 1, 1) | 43.0079 | 28.8086 | 2.16733 |
(2, 1, 3) | 43.0409 | 29.127 | 2.17147 | |
(1, 1, 3) | 42.8633 | 29.1174 | 2.17271 | |
(3, 1, 0) | 42.8659 | 28.847 | 2.17729 | |
(2, 1, 2) | 42.8686 | 29.1841 | 2.17814 | |
Bulgaria | (1, 0, 3) | 33.4732 | 23.1431 | 2.98154 |
(2, 0, 2) | 33.7635 | 23.0537 | 3.04647 | |
(3, 0, 0) | 33.5995 | 22.8279 | 3.08918 | |
(3, 2, 0) | 35.4064 | 23.7486 | 3.08997 | |
(2, 2, 2) | 78.7986 | 58.4657 | 1.53212 | |
Hungary | (1, 2, 0) | 23.0452 | 15.101 | 2.11239 |
(0, 2, 3) | 21.7985 | 13.6316 | 2.15973 | |
(3, 2, 0) | 22.6729 | 14.2714 | 2.16096 | |
(3, 0, 0) | 22.6563 | 14.488 | 2.16571 | |
(2, 2, 3) | 21.9873 | 13.6272 | 2.16876 | |
USA | (1, 1, 0) | 6539.46 | 4673.82 | 3.21569 |
(0, 2, 0) | 6541.2 | 4710.64 | 3.2431 | |
(3, 2, 1) | 5818.42 | 4379.88 | 3.29508 | |
(1, 2, 3) | 5868.51 | 4434.36 | 3.29553 | |
(2, 2, 3) | 5888.31 | 4430.09 | 3.29999 | |
Brazil | (0, 2, 1) | 6134.91 | 3838.17 | 4.10596 |
(2, 1, 0) | 6493.37 | 3521.69 | 4.14127 | |
(2, 2, 1) | 5454.19 | 3118.73 | 4.15452 | |
(1, 2, 0) | 6515.51 | 3598.89 | 4.16568 | |
(3, 2, 1) | 5457.52 | 3082.2 | 4.1698 | |
India | (0, 2, 0) | 642.607 | 416.132 | 2.78051 |
(1, 1, 0) | 574.812 | 376.235 | 2.7951 | |
(2, 1, 0) | 570.378 | 373.247 | 3.06874 | |
(1, 1, 2) | 524.071 | 358.294 | 3.19978 | |
(3, 0, 1) | 543.562 | 358.125 | 3.29689 |
Country and Best Model | Parameters | Estimate | Standard Error | t-Statistic | p-Value |
---|---|---|---|---|---|
Ukraine (1, 1, 0) | AR(1) | 0.943844 | 0.0325404 | 29.0053 | 0.000000 |
Romania (3, 2, 2) | AR(3) | −0.410628 | 0.103264 | −3.97648 | 0.000122 |
MA(2) | −0.758911 | 0.0916899 | −8.27702 | 0.000000 | |
Republic of Moldova (3, 2, 2) | AR(3) | −0.162489 | 10.6563 | −0.0152482 | 0.987860 |
MA(2) | 0.341459 | 26.5106 | 0.0128801 | 0.989746 | |
Serbia (3, 1, 1) | AR(3) | 0.241924 | 1.06252 | 0.227689 | 0.820282 |
MA(1) | −0.572339 | 2.98064 | −0.192018 | 0.848058 | |
Bulgaria (1, 0, 3) | AR(1) | 1.02769 | 0.00227845 | 451.048 | 0.000000 |
MA(3) | −0.267346 | 0.0937488 | −2.85172 | 0.005128 | |
Hungary | AR(1) | −0.401032 | 0.0836831 | −4.79227 | 0.000005 |
USA (1, 1, 0) | AR(1) | 0.99441 | 0.0217047 | 45.8154 | 0.000000 |
Brazil (0, 2, 1) | MA(1) | 0.758422 | 0.0565645 | 13.4081 | 0.000000 |
India (0, 2, 0) | no parameter (s) |
Ukraine ARIMA (1,1,0) | Romania ARIMA (3,2,2) | Republic of Moldova ARIMA (3,2,2) | |||||||||
Lower 95% | Upper 95% | Lower 95% | Upper 95% | Lower 95% | Upper 95% | ||||||
Period | Forecast | Limit | Limit | Period | Forecast | Limit | Limit | Period | Forecast | Limit | Limit |
11-7-20 | 52,816.0 | 52,454.9 | 53,177.1 | 11-7-20 | 31,838.2 | 31,694.9 | 31,981.5 | 11-7-20 | 18,836.6 | 18,715.5 | 18,957.8 |
12-7-20 | 53,545.6 | 52,756.2 | 54,335.0 | 12-7-20 | 32,261.6 | 32,023.7 | 32,499.5 | 12-7-20 | 19,037.2 | 18,806.5 | 19,268.0 |
13-7-20 | 54,234.2 | 52,941.6 | 55,526.9 | 13-7-20 | 32,719.8 | 32,386.2 | 33,053.5 | 13-7-20 | 19,259.3 | 18,940.0 | 19,578.5 |
14-7-20 | 54,884.2 | 53,031.4 | 56,736.9 | 14-7-20 | 33,267.3 | 32,849.6 | 33,685.1 | 14-7-20 | 19,478.9 | 19,081.4 | 19,876.5 |
15-7-20 | 55,497.6 | 53,040.6 | 57,954.7 | 15-7-20 | 33,872.9 | 33,362.9 | 34,383.0 | 15-7-20 | 19,691.4 | 19,211.9 | 20,170.8 |
16-7-20 | 56,076.7 | 52,980.2 | 59,173.1 | 16-7-20 | 34,469.6 | 33,845.7 | 35,093.5 | 16-7-20 | 19,901.5 | 19,332.3 | 20,470.6 |
17-7-20 | 56,623.2 | 52,859.4 | 60,386.9 | 17-7-20 | 35,003.7 | 34,237.5 | 35,769.8 | 17-7-20 | 20,113.1 | 19,448.2 | 20,778.0 |
18-7-20 | 57,139.0 | 52,685.5 | 61,592.4 | 18-7-20 | 35,477.4 | 34,549.7 | 36,405.1 | 18-7-20 | 20,326.1 | 19,561.3 | 21,090.8 |
19-7-20 | 57,625.8 | 52,464.9 | 62,786.7 | 19-7-20 | 35,938.6 | 34,844.5 | 37,032.8 | 19-7-20 | 20,539.0 | 19,670.8 | 21,407.3 |
20-7-20 | 58,085.3 | 52,202.9 | 63,967.7 | 20-7-20 | 36,438.8 | 35,182.0 | 37,695.7 | 20-7-20 | 20,751.6 | 19,775.9 | 21,727.3 |
21-7-20 | 58,519.0 | 51,904.2 | 65,133.8 | 21-7-20 | 36,992.8 | 35,575.4 | 38,410.2 | 21-7-20 | 20,964.0 | 19,876.7 | 22,051.2 |
22-7-20 | 58,928.3 | 51,573.0 | 66,283.7 | 22-7-20 | 37,572.2 | 35,988.4 | 39,156.0 | 22-7-20 | 21,176.4 | 19,973.7 | 22,379.1 |
23-7-20 | 59,314.7 | 51,212.8 | 67,416.6 | 23-7-20 | 38,132.9 | 36,369.6 | 39,896.1 | 23-7-20 | 21,389.0 | 20,067.1 | 22,710.8 |
24-7-20 | 59,679.3 | 50,826.8 | 68,531.9 | 24-7-20 | 38,650.7 | 36,693.2 | 40,608.1 | 24-7-20 | 21,601.5 | 20,156.8 | 23,046.2 |
Serbia ARIMA (3,1,1) | Bulgaria ARIMA (1,0,3) | Hungary ARIMA (1,2,0) | |||||||||
Lower 95% | Upper 95% | Lower 95% | Upper 95% | Lower 95% | Upper 95% | ||||||
Period | Forecast | Limit | Limit | Period | Forecast | Limit | Limit | Period | Forecast | Limit | Limit |
11-7-20 | 17,639.6 | 17,554.5 | 17,724.8 | 11-7-20 | 6931.5 | 6865.22 | 6997.79 | 11-7-20 | 4225.99 | 4180.36 | 4271.62 |
12-7-20 | 17,927.0 | 17,765.1 | 18,088.8 | 12-7-20 | 7179.18 | 7065.11 | 7293.25 | 12-7-20 | 4233.59 | 4147.54 | 4319.64 |
13-7-20 | 18,214.2 | 17,956.8 | 18,471.6 | 13-7-20 | 7405.16 | 7239.7 | 7570.63 | 13-7-20 | 4240.54 | 4102.74 | 4378.34 |
14-7-20 | 18,501.8 | 18,135.5 | 18,868.0 | 14-7-20 | 7610.22 | 7392.89 | 7827.55 | 14-7-20 | 4247.75 | 4051.78 | 4443.73 |
15-7-20 | 18,786.8 | 18,300.4 | 19,273.2 | 15-7-20 | 7820.95 | 7559.81 | 8082.1 | 15-7-20 | 4254.86 | 3993.94 | 4515.78 |
16-7-20 | 19,072.0 | 18,454.5 | 19,689.5 | 16-7-20 | 8037.53 | 7736.95 | 8338.1 | 16-7-20 | 4262.01 | 3930.38 | 4593.64 |
17-7-20 | 19,355.4 | 18,597.4 | 20,113.5 | 17-7-20 | 8260.09 | 7922.85 | 8597.34 | 17-7-20 | 4269.14 | 3861.35 | 4676.93 |
18-7-20 | 19,638.3 | 18,730.5 | 20,546.1 | 18-7-20 | 8488.83 | 8116.76 | 8860.89 | 18-7-20 | 4276.28 | 3787.29 | 4765.27 |
19-7-20 | 19,919.9 | 18,854.1 | 20,985.8 | 19-7-20 | 8723.89 | 8318.28 | 9129.5 | 19-7-20 | 4283.42 | 3708.46 | 4858.38 |
20-7-20 | 20,200.7 | 18,968.8 | 21,432.6 | 20-7-20 | 8965.47 | 8527.2 | 9403.73 | 20-7-20 | 4290.56 | 3625.12 | 4955.99 |
21-7-20 | 20,480.4 | 19,075.0 | 21,885.8 | 21-7-20 | 9213.73 | 8743.44 | 9684.02 | 21-7-20 | 4297.69 | 3537.49 | 5057.89 |
22-7-20 | 20,759.2 | 19,173.2 | 22,345.2 | 22-7-20 | 9468.87 | 8966.96 | 9970.78 | 22-7-20 | 4304.83 | 3445.76 | 5163.91 |
23-7-20 | 21,036.9 | 19,263.5 | 22,810.3 | 23-7-20 | 9731.07 | 9197.81 | 10,264.3 | 23-7-20 | 4311.97 | 3350.08 | 5273.86 |
24-7-20 | 21,313.7 | 19,346.4 | 23,281.0 | 24-7-20 | 10,000.5 | 9436.04 | 10,565.0 | 24-7-20 | 4319.11 | 3250.6 | 5387.62 |
USA ARIMA (1,1,0) | Brazil ARIMA (0,2,1) | India ARIMA (0,2,0) | |||||||||
Lower 95% | Upper 95% | Lower 95% | Upper 95% | Lower 95% | Upper 95% | ||||||
Period | Forecast | Limit | Limit | Period | Forecast | Limit | Limit | Period | Forecast | Limit | Limit |
11-7-20 | 3.10259 × 106 | 3.08965 × 106 | 3.11554 × 106 | 11-7-20 | 1.75087 × 106 | 1.73873 × 106 | 1.76302 × 106 | 11-7-20 | 820,308 | 819,036 | 821,580 |
12-7-20 | 3.1665 × 106 | 3.13762 × 106 | 3.19539 × 106 | 12-7-20 | 1.78858 × 106 | 1.76922 × 106 | 1.80795 × 106 | 12-7-20 | 846,814 | 843,969 | 849,659 |
13-7-20 | 3.23006 × 106 | 3.18183 × 106 | 3.27828 × 106 | 13-7-20 | 1.8263 × 106 | 1.79985 × 106 | 1.85275 × 106 | 13-7-20 | 873,320 | 868,560 | 878,080 |
14-7-20 | 3.29325 × 106 | 3.2228 × 106 | 3.3637 × 106 | 14-7-20 | 1.86401 × 106 | 1.83027 × 106 | 1.89775 × 106 | 14-7-20 | 899,826 | 892,858 | 906,794 |
15-7-20 | 3.3561 × 106 | 3.26091 × 106 | 3.45129 × 106 | 15-7-20 | 1.90172 × 106 | 1.86038 × 106 | 1.94306 × 106 | 15-7-20 | 926,332 | 916,897 | 935,767 |
16-7-20 | 3.41859 × 106 | 3.2964 × 106 | 3.54077 × 106 | 16-7-20 | 1.93943 × 106 | 1.89016 × 106 | 1.98871 × 106 | 16-7-20 | 952,838 | 940,702 | 964,974 |
17-7-20 | 3.48073 × 106 | 3.3295 × 106 | 3.63196 × 106 | 17-7-20 | 1.97714 × 106 | 1.91958 × 106 | 2.03471 × 106 | 17-7-20 | 979,344 | 964,291 | 994,397 |
18-7-20 | 3.54253 × 106 | 3.36035 × 106 | 3.7247 × 106 | 18-7-20 | 2.01486 × 106 | 1.94866 × 106 | 2.08105 × 106 | 18-7-20 | 1.00585 × 106 | 987,679 | 1.02402 × 106 |
19-7-20 | 3.60398 × 106 | 3.3891 × 106 | 3.81885 × 106 | 19-7-20 | 2.05257 × 106 | 1.9774 × 106 | 2.12774 × 106 | 19-7-20 | 1.03236 × 106 | 1.01088 × 106 | 1.05383 × 106 |
20-7-20 | 3.66508 × 106 | 3.41586 × 106 | 3.91431 × 106 | 20-7-20 | 2.09028 × 106 | 2.0058 × 106 | 2.17476 × 106 | 20-7-20 | 1.05886 × 106 | 1.0339 × 106 | 1.08382 × 106 |
21-7-20 | 3.72585 × 106 | 3.44073 × 106 | 4.01097 × 106 | 21-7-20 | 2.12799 × 106 | 2.03387 × 106 | 2.22211 × 106 | 21-7-20 | 1.08537 × 106 | 1.05675 × 106 | 1.11399 × 106 |
22-7-20 | 3.78627 × 106 | 3.46379 × 106 | 4.10876 × 106 | 22-7-20 | 2.16571 × 106 | 2.06163 × 106 | 2.26978 × 106 | 22-7-20 | 1.11187 × 106 | 1.07944 × 106 | 1.14431 × 106 |
23-7-20 | 3.84636 × 106 | 3.48513 × 106 | 4.2076 × 106 | 23-7-20 | 2.20342 × 106 | 2.08907 × 106 | 2.31776 × 106 | 23-7-20 | 1.13838 × 106 | 1.10197 × 106 | 1.17479 × 106 |
24-7-20 | 3.90611 × 106 | 3.5048 × 106 | 4.30743 × 106 | 24-7-20 | 2.24113 × 106 | 2.11621 × 106 | 2.36605 × 106 | 24-7-20 | 1.16489 × 106 | 1.12435 × 106 | 1.20542 × 106 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilie, O.-D.; Cojocariu, R.-O.; Ciobica, A.; Timofte, S.-I.; Mavroudis, I.; Doroftei, B. Forecasting the Spreading of COVID-19 across Nine Countries from Europe, Asia, and the American Continents Using the ARIMA Models. Microorganisms 2020, 8, 1158. https://doi.org/10.3390/microorganisms8081158
Ilie O-D, Cojocariu R-O, Ciobica A, Timofte S-I, Mavroudis I, Doroftei B. Forecasting the Spreading of COVID-19 across Nine Countries from Europe, Asia, and the American Continents Using the ARIMA Models. Microorganisms. 2020; 8(8):1158. https://doi.org/10.3390/microorganisms8081158
Chicago/Turabian StyleIlie, Ovidiu-Dumitru, Roxana-Oana Cojocariu, Alin Ciobica, Sergiu-Ioan Timofte, Ioannis Mavroudis, and Bogdan Doroftei. 2020. "Forecasting the Spreading of COVID-19 across Nine Countries from Europe, Asia, and the American Continents Using the ARIMA Models" Microorganisms 8, no. 8: 1158. https://doi.org/10.3390/microorganisms8081158
APA StyleIlie, O. -D., Cojocariu, R. -O., Ciobica, A., Timofte, S. -I., Mavroudis, I., & Doroftei, B. (2020). Forecasting the Spreading of COVID-19 across Nine Countries from Europe, Asia, and the American Continents Using the ARIMA Models. Microorganisms, 8(8), 1158. https://doi.org/10.3390/microorganisms8081158