A Cross-Sectional Study of the Gut Microbiota Composition in Moscow Long-Livers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment of Study Participants
2.2. Sample Collection and Gut Microbiota Analysis
2.3. Bioinformatics Analysis
3. Results
3.1. Comparison of the Microbiota Composition in Long-Livers and Conditionally Healthy Elderly
3.2. Comparison of the Gut Microbiota of Long-Livers from Russia, Japan and Italy
3.3. Correlation between Gut Microbiota and Health Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Seidel, J.; Valenzano, D.R. The role of the gut microbiome during host ageing. F1000Res 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Robertson, R.C.; Manges, A.R.; Finlay, B.B.; Prendergast, A.J. The human microbiome and child growth—First 1000 days and beyond. Trends Microbiol. 2019, 27, 131–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ticinesi, A.; Nouvenne, A.; Cerundolo, N.; Catania, P.; Prati, B.; Tana, C.; Meschi, T. Gut microbiota, muscle mass and function in aging: A focus on physical frailty and sarcopenia. Nutrients 2019, 11, 1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Thevaranjan, N.; Puchta, A.; Schulz, C.; Naidoo, A.; Szamosi, J.C.; Verschoor, C.P.; Loukov, D.; Schenck, L.P.; Jury, J.; Foley, K.P.; et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 2017, 21, 455–466.e454. [Google Scholar] [CrossRef]
- Bruno, G.; Gagliardi, A.; Oliva, A.; Trancassini, M.; Macone, A.; Cicerone, C.; D’Abramo, A.; Iebba, V.; Auria, S.; Bonfiglio, G.; et al. Fecal microbial transplantation impact on gut microbiota composition and metabolome, microbial translocation and t-lymphocyte immune activation in recurrent clostridium difficile infection patients. New Microbiol. 2019, 42, 221–224. [Google Scholar]
- Wu, L.; Zeng, T.; Zinellu, A.; Rubino, S.; Kelvin, D.J.; Carru, C. A cross-sectional study of compositional and functional profiles of gut microbiota in sardinian centenarians. mSystems 2019, 4, e00325-19. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.S.; Choi, C.W.; Shin, H.; Jin, S.P.; Bae, J.S.; Han, M.; Seo, E.Y.; Chun, J.; Chung, J.H. Comparison of the gut microbiota of centenarians in longevity villages of south korea with those of other age groups. J. Microbiol. Biotechnol. 2019, 29, 429–440. [Google Scholar] [CrossRef]
- Kashtanova, D.A.; Tkacheva, O.N.; Doudinskaya, E.N.; Strazhesko, I.D.; Kotovskaya, Y.V.; Popenko, A.S.; Tyakht, A.V.; Alexeev, D.G. Gut microbiota in patients with different metabolic statuses: Moscow study. Microorganisms 2018, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Efimova, D.; Tyakht, A.; Popenko, A.; Vasilyev, A.; Altukhov, I.; Dovidchenko, N.; Odintsova, V.; Klimenko, N.; Loshkarev, R.; Pashkova, M.; et al. Knomics-biota—a system for exploratory analysis of human gut microbiota data. BioData Min. 2018, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. Qiime allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16s rrna gene database and workbench compatible with arb. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, R.; Vrbanac, A.; Taylor, B.C.; Aksenov, A.; Callewaert, C.; Debelius, J.; Gonzalez, A.; Kosciolek, T.; McCall, L.I.; McDonald, D.; et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 2018, 16, 410–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. Dada2: High-resolution sample inference from illumina amplicon data. Nat. Methods. 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolyen, E.; Rideout, J.R.; Chase, J.; Pitman, T.A.; Shiffer, A.; Mercurio, W.; Dillon, M.R.; Caporaso, J.G. An introduction to applied bioinformatics: A free, open, and interactive text. J. Open Source Educ. 2018, 1, 27. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Franceschi, C.; Rampelli, S.; Severgnini, M.; Ostan, R.; Turroni, S.; Consolandi, C.; Quercia, S.; Scurti, M.; Monti, D.; et al. Gut microbiota and extreme longevity. Curr. Biol. 2016, 26, 1480–1485. [Google Scholar] [CrossRef] [Green Version]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.Z.; Abe, F.; Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef] [Green Version]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Pinto, J.; Egozcue, J.J.; Pawlowsky-Glahn, V.; Paredes, R.; Noguera-Julian, M.; Calle, M.L. Balances: A new perspective for microbiome analysis. mSystems 2018, 3, e00053-18. [Google Scholar] [CrossRef] [Green Version]
- Nagpal, R.; Mainali, R.; Ahmadi, S.; Wang, S.; Singh, R.; Kavanagh, K.; Kitzman, D.W.; Kushugulova, A.; Marotta, F.; Yadav, H. Gut microbiome and aging: Physiological and mechanistic insights. Nutr. Healthy Aging 2018, 4, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Chelakkot, C.; Choi, Y.; Kim, D.K.; Park, H.T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M.S.; Jee, Y.K.; Gho, Y.S.; et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 2018, 50, e450. [Google Scholar] [CrossRef]
- Aoyagi, T.; Hamai, T.; Hori, T.; Sato, Y.; Kobayashi, M.; Sato, Y.; Inaba, T.; Ogata, A.; Habe, H.; Sakata, T. Hydraulic retention time and ph affect the performance and microbial communities of passive bioreactors for treatment of acid mine drainage. AMB Express 2017, 7, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, I.; Lattimer, J.M.; Hubach, K.L.; Case, J.A.; Yang, J.; Weber, C.G.; Louk, J.A.; Rose, D.J.; Kyureghian, G.; Peterson, D.A.; et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013, 7, 269–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Aimmo, M.R.; Mattarelli, P.; Biavati, B.; Carlsson, N.G.; Andlid, T. The potential of bifidobacteria as a source of natural folate. J. Appl. Microbiol. 2012, 112, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Dudeja, P.K.; Kode, A.; Alnounou, M.; Tyagi, S.; Torania, S.; Subramanian, V.S.; Said, H.M. Mechanism of folate transport across the human colonic basolateral membrane. Am. J. Physiol. Gastrointest Liver Physiol. 2001, 281, G54–G60. [Google Scholar] [CrossRef]
- Verhoog, S.; Taneri, P.E.; Roa Diaz, Z.M.; Marques-Vidal, P.; Troup, J.P.; Bally, L.; Franco, O.H.; Glisic, M.; Muka, T. Dietary factors and modulation of bacteria strains of akkermansia muciniphila and faecalibacterium prausnitzii: A systematic review. Nutrients 2019, 11, 1565. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wu, X.; Hu, X.; Wang, T.; Liang, S.; Duan, Y.; Jin, F.; Qin, B. Structural changes of gut microbiota in parkinson’s disease and its correlation with clinical features. Sci. China Life Sci. 2017, 60, 1223–1233. [Google Scholar] [CrossRef]
- Lin, A.; Zheng, W.; He, Y.; Tang, W.; Wei, X.; He, R.; Huang, W.; Su, Y.; Huang, Y.; Zhou, H.; et al. Gut microbiota in patients with parkinson’s disease in southern china. Parkinsonism Relat. Disord. 2018, 53, 82–88. [Google Scholar] [CrossRef]
Taxon | Taxa Level | LDA Score | p-Value | Adjusted p-Value | Group with Higher Abundance |
---|---|---|---|---|---|
f__Ruminococcaceae | family | 4.6572 | 0.001 | 0.006 | LL |
f__Christensenellaceae | family | 4.2216 | 0.001 | 0.006 | LL |
f__Lactobacillaceae | family | 3.7116 | 0.001 | 0.006 | LL |
g__u(f__Ruminococcaceae) | genus | 4.3331 | 0.006 | 0.030 | LL |
g__u(f__Christensenellaceae) | genus | 4.2426 | 0.001 | 0.007 | LL |
g__Roseburia | genus | 4.0216 | <0.0001 | <0.0001 | LL |
g__Lactobacillus | genus | 3.9426 | <0.0001 | <0.0001 | LL |
c__Betaproteobacteria | class | 3.5691 | <0.0001 | 0.003 | HE |
o__Burkholderiales | order | 3.5490 | <0.0001 | 0.003 | HE |
f__u(o__Clostridiales) | family | 4.5760 | <0.0001 | <0.0001 | HE |
f__Veillonellaceae | family | 3.7684 | 0.002 | 0.008 | HE |
f__(Mogibacteriaceae) | family | 3.5914 | 0.001 | 0.006 | HE |
f__Alcaligenaceae | family | 3.5608 | 0.001 | 0.006 | HE |
f__Peptococcaceae | family | 3.3366 | 0.004 | 0.015 | HE |
f__Peptostreptococcaceae | family | 3.1999 | 0.011 | 0.037 | HE |
g__u(o__Clostridiales) | genus | 4.5985 | <0.0001 | <0.0001 | HE |
g__Dorea | genus | 4.2574 | <0.0001 | 0.001 | HE |
g__Sutterella | genus | 4.0443 | 0.001 | 0.007 | HE |
g__u(f__Peptostreptococcaceae) | genus | 4.0241 | 0.004 | 0.021 | HE |
g__(Ruminococcus) (Lachnospiraceae) | genus | 3.9725 | 0.001 | 0.008 | HE |
g__Dialister | genus | 3.7867 | <0.0001 | 0.004 | HE |
Taxon | More Presented in | p-Value | Adj. p-Value | LDA Score |
---|---|---|---|---|
g__u(f__Enterobacteriaceae) | Japanese LL | 0.004 | 0.018 | 4.461 |
g__Enterococcus | Japanese LL | <0.0001 | 0.004 | 4.321 |
g__Parabacteroides | Japanese LL | 0.003 | 0.013 | 4.128 |
g__u(f__Rikenellaceae) | Japanese LL | 0.006 | 0.023 | 3.913 |
g__Butyricimonas | Japanese LL | 0.017 | 0.047 | 3.887 |
g__Granulicatella | Japanese LL | 0.005 | 0.021 | 3.835 |
g__Fusobacterium | Japanese LL | <0.0001 | 0.001 | 3.827 |
g__u(f__Peptostreptococcaceae) | Japanese LL | 0.001 | 0.004 | 3.747 |
g__Desulfovibrio | Japanese LL | <0.0001 | 0.001 | 3.744 |
g__Sutterella | Japanese LL | 0.009 | 0.031 | 3.670 |
g__u(f__Ruminococcaceae) | Russian LL | <0.0001 | 0.001 | 4.591 |
g__u(f__Lachnospiraceae) | Russian LL | 0.006 | 0.023 | 4.508 |
g__Akkermansia | Russian LL | 0.011 | 0.033 | 4.291 |
g__Coprococcus | Russian LL | 0.001 | 0.006 | 4.274 |
g__Dorea | Russian LL | <0.0001 | 0.001 | 4.033 |
g__Methanobrevibacter | Russian LL | <0.0001 | 0.000 | 3.863 |
g__Roseburia | Russian LL | <0.0001 | 0.003 | 3.787 |
g__u(f__Coriobacteriaceae) | Russian LL | 0.011 | 0.033 | 3.536 |
Table. | More Presented in | p-Value | Adjusted p-Value | LDA Score |
---|---|---|---|---|
g__Coprococcus | Russian LL | 0.006 | 0.042 | 4.195 |
g__Dorea | Russian LL | 0.000 | 0.000 | 4.003 |
g__Roseburia | Russian LL | 0.004 | 0.033 | 3.467 |
g__Eggerthella | Italian LL | 0.000 | 0.000 | 3.446 |
g__u(f__Coriobacteriaceae) | Italian LL | 0.007 | 0.044 | 3.415 |
g__Coprobacillus | Italian LL | 0.000 | 0.000 | 3.362 |
g__u(c__Gemm-1) | Italian LL | 0.000 | 0.000 | 3.251 |
g__Desulfovibrio | Italian LL | 0.008 | 0.046 | 3.218 |
g__Nesterenkonia | Italian LL | 0.000 | 0.000 | 3.215 |
g__Actinomyces | Italian LL | 0.002 | 0.017 | 3.192 |
Factor | Median | IQR |
---|---|---|
Body mass index, kg/m2 | 25.10 | 5.66 |
Local frailty scale (0–7) | 3.00 | 1.25 |
Systolic blood pressure, mmHg | 155.00 | 32.50 |
Diastolic blood pressure, mmHg | 78.00 | 9.00 |
Heart rate, per minute | 69.00 | 9.00 |
Geriatric depression scale | 6.00 | 7.25 |
IADL | 16.00 | 9.25 |
MNA | 22.75 | 7.00 |
Maximum carotid stenosis, % | 50.00 | 7.50 |
Carotid IMT, mm | 1.31 | 0.25 |
Femoral IMT, mm | 2.09 | 0.85 |
Glycated hemoglobin, % | 5.79 | 0.50 |
Protein, g/L | 67.40 | 2.85 |
Creatinine, mg/dL | 89.40 | 22.23 |
Mg, mmol/L | 0.88 | 0.11 |
Fe, μmol/L | 12.90 | 5.40 |
C-reactive protein, mg/L | 2.06 | 3.91 |
Folic acid, nmol/L | 3.50 | 1.91 |
Ionized calcium, mmol/L | 1.05 | 0.05 |
Vitamin B12, pg/mL | 261.00 | 125.00 |
NT-proBNP (n terminal fragment in the prohormone of brain natriuretic peptide), pg/mL | 976.30 | 1793.88 |
Triglycerides, mmol/L | 1.04 | 0.34 |
High density lipoproteins, mmol/L | 1.43 | 0.48 |
Low density lipoproteins, mmol/L | 3.55 | 1.18 |
Atherogenic index | 2.89 | 1.31 |
Grip strength, kg | 17.00 | 6.38 |
Montreal Cognitive Assessment | 11.50 | 18.00 |
MMSE | 23.00 | 25.00 |
Factor | Association Direction | Bacteria | R2 | p-Value for the Appropriate Balance | Adjusted p-Value for the Appropriate Balance |
---|---|---|---|---|---|
Femoral arteries IMT | + | Bifidobacterium | 0.5425 | 0.0003 | 0.0086 |
- | Coprococcus | ||||
Carotid arteries IMT | + | Faecalibacterium | 0.3868 | 0.0044 | 0.0876 |
- | Coprococcus | ||||
Folic acid | + | Bifidobacterium | 0.6486 | 0.0001 | 0.0028 |
- | Coriobacteriaceae | ||||
MNA | + | Faecalibacterium | 0.4941 | 0.0003 | 0.0086 |
- | Coriobacteriaceae_u | ||||
Diastolic blood pressure | + | Akkermansia | 0.5218 | 0.0004 | 0.0108 |
- | Blautia * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashtanova, D.A.; Klimenko, N.S.; Strazhesko, I.D.; Starikova, E.V.; Glushchenko, O.E.; Gudkov, D.A.; Tkacheva, O.N. A Cross-Sectional Study of the Gut Microbiota Composition in Moscow Long-Livers. Microorganisms 2020, 8, 1162. https://doi.org/10.3390/microorganisms8081162
Kashtanova DA, Klimenko NS, Strazhesko ID, Starikova EV, Glushchenko OE, Gudkov DA, Tkacheva ON. A Cross-Sectional Study of the Gut Microbiota Composition in Moscow Long-Livers. Microorganisms. 2020; 8(8):1162. https://doi.org/10.3390/microorganisms8081162
Chicago/Turabian StyleKashtanova, Daria A., Nataliya S. Klimenko, Irina D. Strazhesko, Elizaveta V. Starikova, Oksana E. Glushchenko, Denis A. Gudkov, and Olga N. Tkacheva. 2020. "A Cross-Sectional Study of the Gut Microbiota Composition in Moscow Long-Livers" Microorganisms 8, no. 8: 1162. https://doi.org/10.3390/microorganisms8081162
APA StyleKashtanova, D. A., Klimenko, N. S., Strazhesko, I. D., Starikova, E. V., Glushchenko, O. E., Gudkov, D. A., & Tkacheva, O. N. (2020). A Cross-Sectional Study of the Gut Microbiota Composition in Moscow Long-Livers. Microorganisms, 8(8), 1162. https://doi.org/10.3390/microorganisms8081162