Do Metabolomics and Taxonomic Barcode Markers Tell the Same Story about the Evolution of Saccharomyces sensu stricto Complex in Fermentative Environments?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultures and Growth Conditions
2.2. FTIR-Based Bioassay
2.3. Spectra Pre-Processing
2.4. Untargeted Metabolomics Profile Determination of Yeast Cells by LC-MS Analysis
2.5. Data Analysis
2.5.1. Phylogenetic Analysis
2.5.2. Correlation between Genetic Markers and Metabolomic Data
2.5.3. HCA and Pathway Analyses of LC-MS Data
3. Results
3.1. Phylogenetic Predictability: Correlation between DNA-Based and Phenotypic Markers
3.2. Stress Predictivity
3.2.1. Mortality Analysis
3.2.2. Correlation between Molecular Markers and FTIR Metabolomic Fingerprints of Cells under Short-Term Ethanol Stress
3.3. Phenotype Analysis in Response to Short-Term Ethanol Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guilliermond, A. Les Levures; Octave Doin et fils: Paris, France, 1912; Volume 9. [Google Scholar]
- Kurtzman, C.P.; Robnett, C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef]
- Lodder, J.; Kreger-van Rij, N.J.W. The yeasts—A taxonomic study. Mycology 1952, 64, 233. [Google Scholar]
- Rosini, G.; Federici, F.; Vaughan, A.E.; Martini, A. Systematics of the species of the yeast genus Saccharomyces associated with the fermentation industry. Appl. Microbiol. Biotechnol. 1982, 15, 188–193. [Google Scholar] [CrossRef]
- Sipiczki, M. Taxonomy and phylogenesis. In Molecular Biology of the Fission Yeast; Elsevier: Amsterdam, The Netherlands, 1989; pp. 431–452. [Google Scholar]
- Blaxter, M.L. The promise of a DNA taxonomy. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Bolchacova, E.; Voigt, K.; Crous, P.W.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [Green Version]
- Wijayawardene, N.N.; Hyde, K.D.; Rajeshkumar, K.C.; Hawksworth, D.L.; Madrid, H.; Kirk, P.M.; Braun, U.; Singh, R.V.; Crous, P.W.; Kukwa, M. Notes for genera: Ascomycota. Fungal Divers. 2017, 86, 1–594. [Google Scholar]
- Li, G.J.; Hyde, K.D.; Zhao, R.L.; Hongsanan, S.; Abdel-Aziz, F.A.; Abdel-Wahab, M.A.; Alvarado, P.; Alves-Silva, G.; Ammirati, J.F.; Ariyawansa, H.A. Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016, 78, 1–237. [Google Scholar] [CrossRef]
- Ariyawansa, H.A.; Hyde, K.D.; Jayasiri, S.C.; Buyck, B.; Chethana, K.T.; Dai, D.Q.; Dai, Y.C.; Daranagama, D.A.; Jayawardena, R.S.; Lücking, R. Fungal diversity notes 111-252-taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2015, 75, 27–274. [Google Scholar] [CrossRef]
- Binati, R.L.; Junior, W.J.L.; Luzzini, G.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. Int. J. Food Microbiol. 2020, 318, 108470. [Google Scholar] [CrossRef] [PubMed]
- Ohta, E.; Nakayama, Y.; Mukai, Y.; Bamba, T.; Fukusaki, E. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2016, 121, 399–405. [Google Scholar] [CrossRef]
- Paulo, J.A.; O’Connell, J.D.; Everley, R.A.; O’Brien, J.; Gygi, M.A.; Gygi, S.P. Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 S. cerevisiae proteins across 10 carbon sources. J. Proteom. 2016, 148, 85–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitener, M.E.B.; Stanstrup, J.; Panzeri, V.; Carlin, S.; Divol, B.; Du Toit, M.; Vrhovsek, U. Untangling the wine metabolome by combining untargeted SPME–GCxGC-TOF-MS and sensory analysis to profile Sauvignon blanc co-fermented with seven different yeasts. Metabolomics 2016, 12, 53. [Google Scholar] [CrossRef]
- Mendez, K.M.; Broadhurst, D.I.; Reinke, S.N. The application of artificial neural networks in metabolomics: A historical perspective. Metabolomics 2019, 15, 142. [Google Scholar] [CrossRef] [PubMed]
- Damiani, G.; Grossi, E.; McCormick, T.; Cameron, M.; Cooper, K. From Heat-Maps to Artificial Neural Networks: Multi-bioinformatics identify distinct subsets (endotypes) of psoriasis based on the metabolome of their uninvolved skin. J. Investig. Dermatol. 2019, 139, S152. [Google Scholar] [CrossRef] [Green Version]
- Samaraweera, M.A.; Hall, L.M.; Hill, D.W.; Grant, D.F. Evaluation of an artificial neural network retention index model for chemical structure identification in nontargeted metabolomics. Anal. Chem. 2018, 90, 12752–12760. [Google Scholar] [CrossRef]
- Corte, L.; Rellini, P.; Roscini, L.; Fatichenti, F.; Cardinali, G. Development of a novel, FTIR (Fourier Transform InfraRed spectroscopy) based, yeast bioassay for toxicity testing and stress response study. Anal. Chim. Acta 2010, 659, 258–265. [Google Scholar] [CrossRef]
- Kurtzman, C.; Fell, J.W.; Boekhout, T. The Yeasts: A Taxonomic Study; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Sharma, R.; Polkade, A.V.; Shouche, Y.S. ‘Species concept’ in microbial taxonomy and systematics. Curr. Sci. 2015, 108, 1804–1814. [Google Scholar]
- Martini, A.V. Saccharomyces paradoxus comb. nov., a Newly Separated Species of the Saccharomyces sensu stricto Complex Based upon nDNA/nDNA Homologies. Syst. Appl. Microbiol. 1989, 12, 179–182. [Google Scholar] [CrossRef]
- Cardinali, G.; Martini, A. Electrophoretic karyotypes of authentic strains of the sensu stricto group of the genus Saccharomyces. Int. J. Syst. Bacteriol. 1994, 44, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Goberna, M.; Verdu, M. Predicting microbial traits with phylogenies. ISME J. 2016, 10, 959–967. [Google Scholar] [CrossRef]
- Essendoubi, M.; Toubas, D.; Bouzaggou, M.; Pinon, J.-M.; Manfait, M.; Sockalingum, G.D. Rapid identification of Candida species by FT-IR microspectroscopy. Biochim. Biophys. Acta Gen. Subj. 2005, 1724, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Gaona, M.; Marcu, A.; Pon, A.; Guo, A.C.; Sajed, T.; Wishart, N.A.; Karu, N.; Feunang, Y.D.; Arndt, D.; Wishart, D.S. YMDB 2.0: A significantly expanded version of the yeast metabolome database. Nucleic Acids Res. 2016, 45, D440–D445. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. On the maximum-likelihood method for molecular phylogeny. J. Mol. Evol. 1991, 32, 443–445. [Google Scholar]
- Delcher, A.L.; Phillippy, A.; Carlton, J.; Salzberg, S.L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 2002, 30, 2478–2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delcher, A.L.; Kasif, S.; Fleischmann, R.D.; Peterson, J.; White, O.; Salzberg, S.L. Alignment of whole genomes. Nucleic Acids Res. 1999, 27, 2369–2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Antonielli, L.; Robert, V.; Corte, L.; Roscini, L.; Fatichenti, A.B.F.; Cardinali, G. Searching for Related Descriptors Among Different Datasets: A New Strategy Implemented by the R Package’Dadi’. Open Appl. Inform. J. 2010, 4, 15–27. [Google Scholar]
- Helm, D.; Labischinski, H.; Schallehn, G.; Naumann, D. Classification and identification of bacteria by Fourier-transform infrared spectroscopy. Microbiology 1991, 137, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Naumann, D.; Helm, D.; Labischinski, H. Microbiological characterizations by FT-IR spectroscopy. Nature 1991, 351, 81–82. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef] [PubMed]
- Fernández, E.; Moreno, F.; Rodicio, R. The ICL1 gene from Saccharomyces cerevisiae. Eur. J. Biochem. 1992, 204, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Schöler, A.; Schüller, H.J. A carbon source-responsive promoter element necessary for activation of the isocitrate lyase gene ICL1 is common to genes of the gluconeogenic pathway in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 1994, 14, 3613–3622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweizer, M.; Roberts, L.M.; Höltke, H.-J.; Takabayashi, K.; Höllerer, E.; Hoffmann, B.; Müller, G.; Köttig, H.; Schweizer, E. The pentafunctional FAS1 gene of yeast: Its nucleotide sequence and order of the catalytic domains. Mol. Genet. Genom. 1986, 203, 479–486. [Google Scholar] [CrossRef]
- Yoo, H.-S.; Genbauffe, F.S.; Cooper, T.G. Identification of the ureidoglycolate hydrolase gene in the DAL gene cluster of Saccharomyces cerevisiae. Mol. Cell. Biol. 1985, 5, 2279–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtzman, C.P. Identification of food and beverage spoilage yeasts from DNA sequence analyses. Int. J. Food Microbiol. 2015, 213, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Naseeb, S.; James, S.A.; Alsammar, H.; Michaels, C.J.; Gini, B.; Nueno-Palop, C.; Bond, C.J.; McGhie, H.; Roberts, I.N.; Delneri, D. Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur. Int. J. Syst. Evol. Microbiol. 2017, 67, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.; Samson, F.; Navarro, D.; Casaregola, S. YeastIP: A database for identification and phylogeny of Saccharomycotina yeasts. FEMS Yeast Res. 2013, 13, 117–125. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. 1990, 18, 315–322. [Google Scholar]
- Helm, D.; Naumann, D. Identification of some bacterial cell components by FT-IR spectroscopy. FEMS Microbiol. Lett. 1995, 126, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Corte, L.; di Cagno, R.; Groenewald, M.; Roscini, L.; Colabella, C.; Gobbetti, M.; Cardinali, G. Phenotypic and molecular diversity of Meyerozyma guilliermondii strains isolated from food and other environmental niches, hints for an incipient speciation. Food Microbiol. 2015, 48, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Colabella, C.; Corte, L.; Roscini, L.; Shapaval, V.; Kohler, A.; Tafintseva, V.; Tascini, C.; Cardinali, G. Merging FT-IR and NGS for simultaneous phenotypic and genotypic identification of pathogenic Candida species. PLoS ONE 2017, 12, e0188104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belloch, C.; Orlic, S.; Barrio, E.; Querol, A. Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int. J. Food Microbiol. 2008, 122, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Borneman, A.R.; Pretorius, I.S. Genomic insights into the Saccharomyces sensu stricto complex. Genetics 2015, 199, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Sicard, D.; Legras, J.-L. Bread, beer and wine: Yeast domestication in the Saccharomyces sensu stricto complex. Comptes Rendus Biol. 2011, 334, 229–236. [Google Scholar] [CrossRef]
- Favaro, L.; Corte, L.; Roscini, L.; Cagnin, L.; Tiecco, M.; Colabella, C.; Berti, A.; Basaglia, M.; Cardinali, G.; Casella, S. A novel FTIR-based approach to evaluate the interactions between lignocellulosic inhibitory compounds and their effect on yeast metabolism. RSC Adv. 2016, 6, 47981–47989. [Google Scholar] [CrossRef]
- Mata-Miranda, M.M.; Guerrero-Ruiz, M.; Gonzalez-Fuentes, J.R.; Hernandez-Toscano, C.M.; Garcia-Andino, J.R.; Sanchez-Brito, M.; Vazquez-Zapien, G.J. Characterization of the Biological Fingerprint and Identification of Associated Parameters in Stress Fractures by FTIR Spectroscopy. BioMed Res. Int. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Da Cunha, B.R.; Fonseca, L.P.; Calado, C.R.C. A phenotypic screening bioassay for Escherichia coli stress and antibiotic responses based on Fourier-transform infrared (FTIR) spectroscopy and multivariate analysis. J. Appl. Microbiol. 2019, 127, 1776–1789. [Google Scholar] [CrossRef]
- Corte, L.; Roscini, L.; Pierantoni, D.C.; Pellegrino, R.M.; Emiliani, C.; Basaglia, M.; Favaro, L.; Casella, S.; Cardinali, G. Delta-Integration of Single Gene Shapes the Whole Metabolomic Short-Term Response to Ethanol of Recombinant Saccharomyces cerevisiae Strains. Metabolites 2020, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Goud, B.S.; Ulaganathan, K. RNA-seq analysis of transcriptomes for assessing stress tolerance of S. cerevisiae strain, NCIM3186. bioRxiv 2019, 609370. [Google Scholar] [CrossRef]
- Park, H.; Hwang, Y.-S. Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae. J. Microbiol. 2008, 46, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Diniz, R.H.S.; Villada, J.C.; Alvim, M.C.T.; Vidigal, P.M.P.; Vieira, N.M.; Lamas-Maceiras, M.; Cerdán, M.E.; González-Siso, M.-I.; Lahtvee, P.-J.; da Silveira, W.B. Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress. Appl. Microbiol. Biotechnol. 2017, 101, 6969–6980. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Jiang, R. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7. Biotechnol. Biofuels 2017, 10, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, J.C.; de Oliveira, F.S.L.; Rasmussen, T.G.; Thykær, J.; Workman, C.T.; Basso, T.O. Industrial antifoam agents impair ethanol fermentation and induce stress responses in yeast cells. Appl. Microbiol. Biotechnol. 2017, 101, 8237–8248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Li, P.; Zhang, L.; Li, S. Understanding the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation based on integration of RNA-Seq and metabolite data. Appl. Microbiol. Biotechnol. 2019, 103, 2715–2729. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.; Benítez, T. Yeast cell viability under conditions of high temperature and ethanol concentrations depends on the mitochondrial genome. Curr. Genet. 1988, 13, 461–469. [Google Scholar] [CrossRef]
- Kaino, T.; Takagi, H. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl. Microbiol. Biotechnol. 2008, 79, 273–283. [Google Scholar] [CrossRef]
- Du, X.; Takagi, H. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl. Microbiol. Biotechnol. 2007, 75, 1343–1351. [Google Scholar] [CrossRef]
- Dumond, H.; Danielou, N.; Pinto, M.; Bolotin-Fukuhara, M. A large-scale study of Yap1p-dependent genes in normal aerobic and H2O2-stress conditions: The role of Yap1p in cell proliferation control in yeast. Mol. Microbiol. 2000, 36, 830–845. [Google Scholar] [CrossRef]
- Cheng, Y.; Du, Z.; Zhu, H.; Guo, X.; He, X. Protective effects of arginine on Saccharomyces cerevisiae against ethanol stress. Sci. Rep. 2016, 6, 31311. [Google Scholar] [CrossRef] [Green Version]
- Lourenco, A.B.; Roque, F.C.; Teixeira, M.C.; Ascenso, J.R.; Sá-Correia, I. Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells. PLoS ONE 2013, 8, e55439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, C.M. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbiol. 2001, 39, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Saharan, R.K.; Kanwal, S.; Sharma, S.C. Role of glutathione in ethanol stress tolerance in yeast Pachysolen tannophilus. Biochem. Biophys. Res. Commun. 2010, 397, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Stephen, D.W.; Jamieson, D.J. Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 1996, 141, 207–212. [Google Scholar] [CrossRef]
Marker | Sequence ID | ||||
---|---|---|---|---|---|
Name | Acronym | CBS 380T S. bayanus | CBS 432T S. paradoxus | CBS 1171T S. cerevisiae | CBS 1538T S. pastorianus |
Actin | ACT1 | GCA_001515405.2 | GCA_002079055.1 | AF527913 | GCA_001515465.2 |
Allantoicase | DAL2 | GCA_001515405.2 | GCA_002079055.1 | S000001468 | GCA_001515465.2 |
Beta subunit of fatty acid synthetase | FAS1 | GCA_001515405.2 | GCA_002079055.1 | S000001665 | GCA_001515465.2 |
Isocitrate lyase | ICL1 | GCA_001515405.2 | GCA_002079055.1 | S000000867 | GCA_001515465.2 |
Internal Transcribed Spacer | ITS | AY046152 | AY046148 | AY046146 | AY046151 |
D1/D2 domain of rDNA Large Subunit (26S) | LSU D1/D2 | U94931 | U68555 | U44806 | AY048172 |
Mitochondrial subunit II of Cytochrome c oxidase | mtCOXII | GCA_001515405.2 | GCA_002079055.1 | GCA_000146045.2 | GCA_001515465.2 |
Mitochondrial small ribosomal subunit | mtSSU | GCA_001515405.2 | GCA_002079055.1 | GCA_000146045.2 | GCA_001515465.2 |
RNA polymerase II largest subunit | RPB1 | GCA_001515405.2 | GCA_002079055.1 | AF527884 | GCA_001515465.2 |
RNA polymerase II second largest subunit | RPB2 | AY552472 | AY552468 | AY497600 | GCA_001515465.2 |
rDNA Small Subunit (18S) | SSU | GCA_001515405.2 | GCA_002079055.1 | GCA_000146045.2 | GCA_001515465.2 |
Translation Elongation Factor 1 alpha | TEF1-α | AF402012 | AF402007 | AF402004 | AF402013 |
Concatenated ITS-LSU D1/D2 | ITS-LSU | AY046152-U94931 | AY046148-U68555 | AY046146-U44806 | AY046151-AY048172 |
Ethanol% (v/v) | Mortality (%) | |||
---|---|---|---|---|
CBS 380T S. bayanus | CBS 432T S. paradoxus | CBS 1171T S. cerevisiae | CBS 1538T S. pastorianus | |
0 | 0 | 0 | 0 | 0 |
8 | 40.6 | 12.3 | 0.0 | 0.0 |
12 | 97.2 | 12.5 | 10.8 | 3.7 |
16 | 100.0 | 13.3 | 20.3 | 9.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roscini, L.; Conti, A.; Casagrande Pierantoni, D.; Robert, V.; Corte, L.; Cardinali, G. Do Metabolomics and Taxonomic Barcode Markers Tell the Same Story about the Evolution of Saccharomyces sensu stricto Complex in Fermentative Environments? Microorganisms 2020, 8, 1242. https://doi.org/10.3390/microorganisms8081242
Roscini L, Conti A, Casagrande Pierantoni D, Robert V, Corte L, Cardinali G. Do Metabolomics and Taxonomic Barcode Markers Tell the Same Story about the Evolution of Saccharomyces sensu stricto Complex in Fermentative Environments? Microorganisms. 2020; 8(8):1242. https://doi.org/10.3390/microorganisms8081242
Chicago/Turabian StyleRoscini, Luca, Angela Conti, Debora Casagrande Pierantoni, Vincent Robert, Laura Corte, and Gianluigi Cardinali. 2020. "Do Metabolomics and Taxonomic Barcode Markers Tell the Same Story about the Evolution of Saccharomyces sensu stricto Complex in Fermentative Environments?" Microorganisms 8, no. 8: 1242. https://doi.org/10.3390/microorganisms8081242
APA StyleRoscini, L., Conti, A., Casagrande Pierantoni, D., Robert, V., Corte, L., & Cardinali, G. (2020). Do Metabolomics and Taxonomic Barcode Markers Tell the Same Story about the Evolution of Saccharomyces sensu stricto Complex in Fermentative Environments? Microorganisms, 8(8), 1242. https://doi.org/10.3390/microorganisms8081242