Mycoplasmas–Host Interaction: Mechanisms of Inflammation and Association with Cellular Transformation
Abstract
:1. Mycoplasmas: Classification, Morphology, Genome Structure, and Organization
2. Mycoplasmas and Inflammation
2.1. Mycoplasmas Causing Diseases in Humans
2.2. Mycoplasmas Causing Diseases in Animals
Mycoplasma Types | Diseases and Proposed Mechanism(s) of Inflammation |
---|---|
Human-Associated Mycoplasmas | |
Mycoplasmas (general) | Respiratory diseases [55], Urogenital diseases [104], Rheumatoid Arthritis [52], Fibromyalgia [105,106], and Neurological diseases [107,108]. Mycoplasma proteins bind to pattern-recognition receptors (PRRs)—Toll-like receptors (TLRs) and NOD-like (nucleotide-binding and oligomerization domain) receptors [32,34,36,37]. |
Mycoplasma genitalium | Urogenital infections [47]. Adhesion to epithelial cells promotes acute inflammation via triggering of innate immune sensors expressed on the cells’ surface. Activation of pro-inflammatory signals ultimately results in recruitment of leucocytes to the infection site. The recombinant C-terminal portion of the immunogenic protein MG309 (rMG309c) activates NF-κB via TLR2/6 in genital epithelial cells (EC), which in turn secreted proinflammatory cytokines, including interleukin-6 (IL-6) and IL-8 [109,110]. |
Mycoplasma pneumoniae | Respiratory diseases [55]. Different adhesins and accessory adhesion proteins mediates the crucial initial step of cytoadherence to respiratory tract epithelium, Subsequently, several mechanisms, namely intracellular localization, direct cytotoxicity and toll-like receptors (TLRs)-mediated activation of the inflammatory cascade cause tissue injury mediated by such cytokines. Infection is associated with acute exacerbation of COPD [91,92], and COPD patients also have significantly higher levels of circulating functional T-regulatory cells (Tregs), myeloid-derived suppressor (MDSC) cells and exhausted programmed Death (PD) 1 + cells, which contribute to effector T-cell dysfunction and reduce their ability to fight infections [86,87]. In infected mice is observed a dysregulated Mycoplasma pneumoniae-derived immune response in lung [81,88,89,90]. Mycoplasma pneumoniae also is responsible for Community-Acquired Respiratory Distress Syndrome toxin (CARDS toxin), which activates adenosine diphosphate (ADP) ribosylation and inflammasome, causing airway inflammation. [111]. Inflammatory mediators, namely interleukin IL-6, IL-8, IL-18, interferon (INF)-g, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β 1 are increased in serum of CNS [54]. |
Mycoplasma hominis | Urogenital infections (pelvic inflammatory diseases and bacterial vaginosis) [112,113,114,115,116,117]. |
Mycoplasma penetrans | Urogenital infections [116], Autoimmune disorders: Immunoglobulin A nephropathy [118]. Secreted P40 mediates (partly) cytotoxicity upon infection of Mycoplasma penetrans in vitro, by inducing physiological modifications resembling apoptosis [119]. |
Mycoplasma salivarium | Septic arthritis [120,121], periodontal disease [122,123,124]. Cell membranes of Mycoplasma salivarium promote expression of IL-6 and IL-8 in human fibroblasts through stimulation of protein kinase C (PKC) in Gin-1 cells, a human gingival fibroblast cell line [125]. |
Mycoplasma fermentans | Urogenital diseases [104], Rheumatoid Arthritis [52]. Mycoplasma fermentans increases the secretion of macrophage-activating lipopeptide-2 (MALP-2) [38,39,78], TNF-α (tumor necrosis factor-α), IL-6 (interleukin 6), MIP-1β (macrophage inflammatory protein-1β), GRO-α (growth-regulated oncogene-α), MCP-1 (monocyte chemoattractant protein-1), MIP-1α (macrophage inflammatory protein-1α) [39,42,79], CXCL13 (chemokine CXCL13), CXL14 (chemokine CXL14), RANTES (Regulated-on-Activation-Normal-T-cell-Expressed-and-Secreted chemokine) [43], MCP-1 (monocyte chemoattractant protein-1), MIP-1α (macrophage inflammatory protein-1α) [42]. Mycoplasma fermentans infection of monocyte/macrophages increases also MMP-12 levels, a metalloproteinase which is both a pro-inflammatory molecule and also necessary for the cleavage of Monocyte Chemoattractant Protein-1 (MCP-1) into its active form [80] |
Animal-Associated Mycoplasmas | |
Mycoplasma mycoides | In bovine hosts, it is observed: increased production of TNF-α in alveolar macrophages (cattle) [96]; induction of morphological changes in mononuclear cells [95]; induction of ROS [97]. |
Mycoplasma capricolum | Contagious caprine pleuropneumonia (CCPP) is associated with increased IL-17 and neutrophil accumulation, leading to lung injury [99] |
Mycoplasma agalactiae | Infection of HeLa cells lead to morphological changes including membrane blebbing, which together with increased caspase-3 cleavage activity indicated an apoptosis-like phenomenon [100]. An in vitro model consisting of inflammatory cells of mammary tissues from goats infected with Mycoplasma agalactiae demonstrated an association with Mycoplasma antigen(s) and production of IL-10, IFN-γ, IL-4, and TNF-α [101] |
Mycoplasma gallisepticum | MALP-2 from some strains of Mycoplasma gallisepticum induces the expression of TNF-α, IL-6, and MIP-1β in chickens [43]. Interestingly, it was observed a differential role of TLR2-2 and TLR6 in Mycoplasma gallisepticum-infected DF-1 cells and chicken embryos [103]. |
3. Mycoplasmas and Cancer
Mycoplasma Types | Cancer(s) and Proposed Mechanisms of Cellular Transformation |
---|---|
Mycoplasma fermentans and Mycoplasma penetrans | Increased expression of BMP2 upon infection [136]. Mycoplasma fermentans and Mycoplasma penetrans infection induced malignant transformation of 32D cells (including autonomous growth in IL-3-conditions). After a few weeks, the presence of Mycoplasmas was no longer needed for autonomous growth of the cells. Transformed 32D cells were able to form tumors when injected into nude mice. Karyotyping analysis showed chromosomal abnormalities, including trisomy 19 associated with malignant transformation [154,155,156]. Several mechanisms account for their potential cell-transforming effect: induction of genetic instability, alterations in metabolism, changes in the expression of many genes, in particular growth factors, tumor suppressors and oncogenes [164] |
Mycoplasma genitalium | Infection promoted a malignant phenotype in benign human prostate cells (BPH-1), as assessed by in vitro and in vivo assays showing anchorage-independent growth, greater percentage of migrating cells with increased invasive capacity, generation of xenograft tumors in athymic mice and accumulation of chromosomal aberrations and polysomy [137]. |
Mycoplasma hominis | Infection promoted a malignant phenotype in benign human prostate cells (BPH-1), similar to Mycoplasma genitalium [137]. Higher titers of antibodies against Mycoplasma hominis were observed in prostate cancer positive patients, together with higher average PSA levels [139]. Infection promoted expression of BMP2, similar to Mycoplasma penetrans and Mycoplasma fermentans [136]. |
Mycoplasma hyorhinis | p37 seems to be the major determinant involved in events potentially leading to cell transformation: (1) it induces the expression of genes implicated in inflammation and cancer progression in fibroblasts, indicating that cancer associated fibroblasts may facilitate growth, invasion and metastasis by regulating tumor associated inflammation [160]; (2) when added to human gastric carcinoma cells (AGS) increased the migration in a transwell (Matrigel) assay, by promoting phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase and the activity of matrix metalloproteinase-2 (MMP-2) [161]; (3) it induces significant nuclear enlargement, indicating the generation of active, anaplastic cells and promoted the migratory capacity of both PC-3 and DU145 cells [162,163]; and (4) microarray analysis of p37-treated cells identified eight gene expression clusters classified into three groups, with cell cycle, signal transduction and metabolic factors among the most represented genes [163]. |
Mycoplasma penetrans | Infection in vivo is associated with lower expression of p53 and p21 and higher H-ras expression in gastric mucosa. Moreover, expression of NF-κB p65 subunit increased together with TNF-α expression are observed, and Bax expression was lower while Bcl-2 expression was higher. These data indicate that persistent infection is associated with aberrant expression of multiple proto-oncogenes in gastric mucosa of immunodeficient mice suggesting its potential influence on malignant transformation. [164]. |
Mycoplasma salivarium | Possible role in oral cancer [123,165]. |
Mycoplasma fermentans | Mycoplasma fermentans reduced activity and expression of Topo I [166]. Reduction of p53 activity [167,168], reduction of PARP-1 activity [168,169] |
Mycoplasma arginini | infection in vivo resulted in suppression of p53, activation of NF-kB and increased Ras mutagenic effects, similar to Mycoplasma penetrans [167]. |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Razin, S.; Yogev, D.; Naot, Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 1998, 62, 1094–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razin, S. Peculiar properties of mycoplasmas: The smallest self-replicating prokaryotes. FEMS Microbiol. Lett. 1992, 100, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Kornspan, J.D.; Rottem, S. The phospholipid profile of mycoplasmas. J. Lipids 2012, 2012, 640762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dybvig, K.; Voelker, L.L. Molecular biology of mycoplasmas. Annu. Rev. Microbiol. 1996, 50, 25–57. [Google Scholar] [CrossRef]
- Paessler, M.; Levinson, A.; Patel, J.B.; Schuster, M.; Minda, M.; Nachamkin, I. Disseminated Mycoplasma orale infection in a patient with common variable immunodeficiency syndrome. Diagn. Microbiol. Infect. Dis. 2002, 44, 201–204. [Google Scholar] [CrossRef]
- Lo, S.C.; Hayes, M.M.; Wang, R.Y.H.; Pierce, P.F.; Kotani, H.; Shih, J.W.K. Newly discovered mycoplasma isolated from patients infected with HIV. Lancet 1991, 338, 1415–1418. [Google Scholar] [CrossRef]
- Lo, S.C.; Hayes, M.M.; Kotani, H.; Pierce, P.F.; Wear, D.J.; Newton, P.B., 3rd; Tully, J.G.; Shih, J.W. Adhesion onto and invasion into mammalian cells by mycoplasma penetrans: A newly isolated mycoplasma from patients with AIDS. Mod. Pathol. 1993, 6, 276–280. [Google Scholar]
- Yavlovich, A.; Katzenell, A.; Tarshis, M.; Higazi, A.A.; Rottem, S. Mycoplasma fermentans binds to and invades HeLa cells: Involvement of plasminogen and urokinase. Infect. Immun. 2004, 72, 5004–5011. [Google Scholar] [CrossRef] [Green Version]
- Yavlovich, A.; Tarshis, M.; Rottem, S. Internalization and intracellular survival of Mycoplasma pneumoniae by non-phagocytic cells. FEMS Microbiol. Lett. 2004, 233, 241–246. [Google Scholar] [CrossRef]
- Baseman, J.B.; Tully, J.G. Mycoplasmas: Sophisticated, reemerging, and burdened by their notoriety. Emerg. Infect. Dis. 1997, 3, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Hentges, D.J. Anaerobes: General Characteristics. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Yamaguchi, M.; Kikuchi, A.; Ohkusu, K.; Akashi, M.; Sasahara, J.; Takakuwa, K.; Tanaka, K. Abscess formation due to Mycoplasma hominis infection after cesarean section. J. Obstet. Gynaecol. Res. 2009, 35, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Mori, N.; Takigawa, A.; Kagawa, N.; Kenri, T.; Yoshida, S.; Shibayama, K.; Aoki, Y. Pelvic abscess due to Mycoplasma hominis following caesarean section. JMM Case Rep. 2016, 3, e005059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koshiba, H.; Koshiba, A.; Daimon, Y.; Noguchi, T.; Iwasaku, K.; Kitawaki, J. Hematoma and abscess formation caused by Mycoplasma hominis following cesarean section. Int. J. Womens Health 2011, 3, 15–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, K.J.; Prince, S.; Makeham, T. Mycoplasma hominis-Associated Parapharyngeal Abscess following Acute Epstein-Barr Virus Infection in a Previously Immunocompetent Adult. J. Clin. Microbiol. 2009, 47, 3050–3052. [Google Scholar] [CrossRef] [Green Version]
- Parsonson, F. Mycoplasma hominis infection following neurosurgical intervention in a patient with spinal cord compression. JMM Case Rep. 2016, 3. [Google Scholar] [CrossRef]
- Garner, C.; Hubbold, L.; Chakraborti, P. Mycoplasma detection in cell cultures: A comparison of four methods. Br. J. Biomed. Sci. 2000, 57, 295–301. [Google Scholar] [PubMed]
- Jaffe, J.D.; Berg, H.C.; Church, G.M. Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics 2004, 4, 59–77. [Google Scholar] [CrossRef]
- Catrein, I.; Herrmann, R. The proteome of Mycoplasma pneumoniae, a supposedly “simple” cell. Proteomics 2011, 11, 3614–3632. [Google Scholar] [CrossRef]
- Regula, J.T.; Boguth, G.; Gorg, A.; Hegermann, J.; Mayer, F.; Frank, R.; Herrmann, R. Defining the mycoplasma ‘cytoskeleton’: The protein composition of the Triton X-100 insoluble fraction of the bacterium Mycoplasma pneumoniae determined by 2-D gel electrophoresis and mass spectrometry. Microbiology 2001, 147, 1045–1057. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, S.; Schneider, T.; Gerstein, M.; Regan, L. Proteomics of Mycoplasma genitalium: Identification and characterization of unannotated and atypical proteins in a small model genome. Nucleic. Acids Res. 2000, 28, 3075–3082. [Google Scholar] [CrossRef] [Green Version]
- Parraga-Nino, N.; Colome-Calls, N.; Canals, F.; Querol, E.; Ferrer-Navarro, M. A comprehensive proteome of Mycoplasma genitalium. J. Proteome Res. 2012, 11, 3305–3316. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Lin, I.H.; Chung, W.J.; Hu, W.S.; Ng, W.V.; Lu, C.Y.; Huang, T.Y.; Shu, H.W.; Hsiao, K.J.; Tsai, S.F.; et al. Proteomics characterization of cytoplasmic and lipid-associated membrane proteins of human pathogen Mycoplasma fermentans M64. PLoS ONE 2012, 7, e35304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedetti, F.; Krishnan, S.; Cocchi, F.; Tettelin, H.; Gallo, R.C.; Zella, D.; Curreli, S. Proteome analysis of Mycoplasma fermentans cultured under aerobic and anaerobic conditions. Transl. Med. Commun. 2019, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, J.D.; Stange-Thomann, N.; Smith, C.; DeCaprio, D.; Fisher, S.; Butler, J.; Calvo, S.; Elkins, T.; FitzGerald, M.G.; Hafez, N.; et al. The complete genome and proteome of Mycoplasma mobile. Genome Res. 2004, 14, 1447–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paes, J.A.; Machado, L.; Dos Anjos Leal, F.M.; De Moraes, S.N.; Moura, H.; Barr, J.R.; Ferreira, H.B. Comparative proteomics of two Mycoplasma hyopneumoniae strains and Mycoplasma flocculare identified potential porcine enzootic pneumonia determinants. Virulence 2018, 9, 1230–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, P.M.; Klein, C.S.; Zaha, A.; Ferreira, H.B. Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae. Proteome Sci. 2009, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Rottem, S. Interaction of mycoplasmas with host cells. Physiol. Rev. 2003, 83, 417–432. [Google Scholar] [CrossRef] [Green Version]
- Rawadi, G.; Roman-Roman, S. Mycoplasma membrane lipoproteins induced proinflammatory cytokines by a mechanism distinct from that of lipopolysaccharide. Infect. Immun. 1996, 64, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Seya, T.; Matsumoto, M. A lipoprotein family from Mycoplasma fermentans confers host immune activation through Toll-like receptor 2. Int. J. Biochem. Cell Biol. 2002, 34, 901–906. [Google Scholar] [CrossRef]
- Javed, M.A.; Frasca, S., Jr.; Rood, D.; Cecchini, K.; Gladd, M.; Geary, S.J.; Silbart, L.K. Correlates of immune protection in chickens vaccinated with Mycoplasma gallisepticum strain GT5 following challenge with pathogenic M. gallisepticum strain R(low). Infect. Immun. 2005, 73, 5410–5419. [Google Scholar] [CrossRef] [Green Version]
- Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011, 30, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Loveless, R.W.; Griffiths, S.; Fryer, P.R.; Blauth, C.; Feizi, T. Immunoelectron microscopic studies reveal differences in distribution of sialo-oligosaccharide receptors for Mycoplasma pneumoniae on the epithelium of human and hamster bronchi. Infect. Immun. 1992, 60, 4015–4023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 2007, 449, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Yerneni, L.K. Semi-automated relative quantification of cell culture contamination with mycoplasma by Photoshop-based image analysis on immunofluorescence preparations. Biol. J. Int. Assoc. Biol. Stand. 2009, 37, 55–60. [Google Scholar] [CrossRef]
- Peltier, M.R.; Freeman, A.J.; Mu, H.H.; Cole, B.C. Characterization of the macrophage-stimulating activity from Ureaplasma urealyticum. Am. J. Reprod. Immunol. 2007, 57, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Takeuchi, O.; Akira, S. Recognition of lipopeptides by Toll-like receptors. J. Endotoxin Res. 2002, 8, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Okusawa, T.; Fujita, M.; Nakamura, J.; Into, T.; Yasuda, M.; Yoshimura, A.; Hara, Y.; Hasebe, A.; Golenbock, D.T.; Morita, M.; et al. Relationship between structures and biological activities of mycoplasmal diacylated lipopeptides and their recognition by toll-like receptors 2 and 6. Infect. Immun. 2004, 72, 1657–1665. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Kida, Y.; Kuwano, K. Triacylated lipoproteins derived from Mycoplasma pneumoniae activate nuclear factor-kappaB through toll-like receptors 1 and 2. Immunology 2007, 121, 473–483. [Google Scholar] [CrossRef]
- Borchsenius, S.N.; Daks, A.; Fedorova, O.; Chernova, O.; Barlev, N.A. Effects of mycoplasma infection on the host organism response via p53/NF-κB signaling. J. Cell. Physiol. 2019, 234, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Ben-Neriah, Y.; Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 2011, 12, 715–723. [Google Scholar] [CrossRef]
- Kaufmann, A.; Mühlradt, P.F.; Gemsa, D.; Sprenger, H. Induction of cytokines and chemokines in human monocytes by Mycoplasma fermentans-derived lipoprotein MALP-2. Infect. Immun. 1999, 67, 6303–6308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, J.; Frasca, S., Jr.; Cecchini, K.; Rood, D.; Nyaoke, A.C.; Geary, S.J.; Silbart, L.K. Chemokine and cytokine gene expression profiles in chickens inoculated with Mycoplasma gallisepticum strains Rlow or GT5. Vaccine 2007, 25, 8611–8621. [Google Scholar] [CrossRef] [PubMed]
- Deiters, U.; Mühlradt, P.F. Mycoplasmal lipopeptide MALP-2 induces the chemoattractant proteins macrophage inflammatory protein 1alpha (MIP-1alpha), monocyte chemoattractant protein 1, and MIP-2 and promotes leukocyte infiltration in mice. Infect. Immun. 1999, 67, 3390–3398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, T.; Kida, Y.; Kuwano, K. A triacylated lipoprotein from Mycoplasma genitalium activates NF-kappaB through Toll-like receptor 1 (TLR1) and TLR2. Infect. Immun. 2008, 76, 3672–3678. [Google Scholar] [CrossRef] [Green Version]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [Green Version]
- McGowin, C.L.; Totten, P.A. The Unique Microbiology and Molecular Pathogenesis of Mycoplasma genitalium. J. Infect. Dis. 2017, 216, S382–S388. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Kida, Y.; Sakamoto, Y.; Kuwano, K. Mpn491, a secreted nuclease of Mycoplasma pneumoniae, plays a critical role in evading killing by neutrophil extracellular traps. Cell. Microbiol. 2017, 19. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Xu, X.; Wang, Y.; Shen, X.; Chen, Z.; Yang, J. Mycoplasma pneumoniae Infection Induces Reactive Oxygen Species and DNA Damage in A549 Human Lung Carcinoma Cells. Infect. Immun. 2008, 76, 4405. [Google Scholar] [CrossRef] [Green Version]
- Combaz-Söhnchen, N.; Kuhn, A. A Systematic Review of Mycoplasma and Ureaplasma in Urogynaecology. Geburtshilfe Frauenheilkd. 2017, 77, 1299–1303. [Google Scholar] [CrossRef] [Green Version]
- Kawahito, Y.; Ichinose, S.; Sano, H.; Tsubouchi, Y.; Kohno, M.; Yoshikawa, T.; Tokunaga, D.; Hojo, T.; Harasawa, R.; Nakano, T.; et al. Mycoplasma fermentans glycolipid-antigen as a pathogen of rheumatoid arthritis. Biochem. Biophys. Res. Commun. 2008, 369, 561–566. [Google Scholar] [CrossRef]
- Gilroy, C.B.; Keat, A.; Taylor-Robinson, D. The prevalence of Mycoplasma fermentans in patients with inflammatory arthritides. Rheumatology 2001, 40, 1355–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narita, M. Pathogenesis of neurologic manifestations of Mycoplasma pneumoniae infection. Pediatr. Neurol. 2009, 41, 159–166. [Google Scholar] [CrossRef] [PubMed]
- D’Alonzo, R.; Mencaroni, E.; Di Genova, L.; Laino, D.; Principi, N.; Esposito, S. Pathogenesis and Treatment of Neurologic Diseases Associated With Mycoplasma pneumoniae Infection. Front. Microbiol. 2018, 9, 2751. [Google Scholar] [CrossRef] [PubMed]
- Yanez, A.; Martinez-Ramos, A.; Calixto, T.; Gonzalez-Matus, F.J.; Rivera-Tapia, J.A.; Giono, S.; Gil, C.; Cedillo, L. Animal model of Mycoplasma fermentans respiratory infection. BMC Res. Notes 2013, 6, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, J.S. Mycoplasma genitalium: The aetiological agent of urethritis and other sexually transmitted diseases. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 1–11. [Google Scholar] [CrossRef]
- Nassar, F.A.; Abu-Elamreen, F.H.; Shubair, M.E.; Sharif, F.A. Detection of Chlamydia trachomatis and Mycoplasma hominis, genitalium and Ureaplasma urealyticum by polymerase chain reaction in patients with sterile pyuria. Adv. Med. Sci. 2008, 53, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, A.C. The occurrence of mycoplasmas in the urinary tract of patients with chronic pyelonephritis. Acta Pathol. Microbiol. Scand. Sect. B Microbiol. 1975, 83, 10–16. [Google Scholar] [CrossRef]
- Thomsen, A.C. Occurrence of mycoplasmas in urinary tracts of patients with acute pyelonephritis. J. Clin. Microbiol. 1978, 8, 84–88. [Google Scholar]
- Bump, R.C.; Copeland, W.E., Jr. Urethral isolation of the genital mycoplasmas and Chlamydia trachomatis in women with chronic urologic complaints. Am. J. Obstet. Gynecol. 1985, 152, 38–41. [Google Scholar] [CrossRef]
- Moi, H.; Reinton, N.; Randjelovic, I.; Reponen, E.J.; Syvertsen, L.; Moghaddam, A. Urethral inflammatory response to ureaplasma is significantly lower than to Mycoplasma genitalium and Chlamydia trachomatis. Int. J. STD AIDS 2017, 28, 773–780. [Google Scholar] [CrossRef]
- Falk, L.; Fredlund, H.; Jensen, J.S. Signs and symptoms of urethritis and cervicitis among women with or without Mycoplasma genitalium or Chlamydia trachomatis infection. Sex. Transm. Infect. 2005, 81, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, J.D.; Jensen, J.S. Mycoplasma genitalium as a sexually transmitted infection: Implications for screening, testing, and treatment. Sex. Transm. Infect. 2006, 82, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Narita, M. Classification of Extrapulmonary Manifestations Due to Mycoplasma pneumoniae Infection on the Basis of Possible Pathogenesis. Front. Microbiol. 2016, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Lind, K.; Zoffmann, H.; Larsen, S.O.; Jessen, O. Mycoplasma pneumoniae infection associated with affection of the central nervous system. Acta Med. Scand. 1979, 205, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Pönkä, A. Central nervous system manifestations associated with serologically verified Mycoplasma pneumoniae infection. Scand. J. Infect. Dis. 1980, 12, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Yiş, U.; Kurul, S.H.; Cakmakçi, H.; Dirik, E. Mycoplasma pneumoniae: Nervous system complications in childhood and review of the literature. Eur. J. Pediatr. 2008, 167, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.C.; Hacohen, Y.; Tantsis, E.; Prelog, K.; Merheb, V.; Kesson, A.; Barnes, E.; Gill, D.; Webster, R.; Menezes, M.; et al. Infectious and autoantibody-associated encephalitis: Clinical features and long-term outcome. Pediatrics 2015, 135, e974–e984. [Google Scholar] [CrossRef] [Green Version]
- Kammer, J.; Ziesing, S.; Davila, L.A.; Bültmann, E.; Illsinger, S.; Das, A.M.; Haffner, D.; Hartmann, H. Neurological Manifestations of Mycoplasma pneumoniae Infection in Hospitalized Children and Their Long-Term Follow-Up. Neuropediatrics 2016, 47, 308–317. [Google Scholar] [CrossRef]
- Waites, K.B.; Talkington, D.F. Mycoplasma pneumoniae and its role as a human pathogen. Clin. Microbiol. Rev. 2004, 17, 697–728. [Google Scholar] [CrossRef] [Green Version]
- Narita, M. Pathogenesis of extrapulmonary manifestations of Mycoplasma pneumoniae infection with special reference to pneumonia. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2010, 16, 162–169. [Google Scholar] [CrossRef]
- de Groot, R.C.A.; Meyer Sauteur, P.M.; Unger, W.W.J.; van Rossum, A.M.C. Things that could be Mycoplasma pneumoniae. J. Infect. 2017, 74 (Suppl. 1), S95–S100. [Google Scholar] [CrossRef]
- Narita, M.; Itakura, O.; Matsuzono, Y.; Togashi, T. Analysis of mycoplasmal central nervous system involvement by polymerase chain reaction. Pediatr. Infect. Dis. J. 1995, 14, 236–237. [Google Scholar] [CrossRef] [PubMed]
- Socan, M.; Ravnik, I.; Bencina, D.; Dovc, P.; Zakotnik, B.; Jazbec, J. Neurological symptoms in patients whose cerebrospinal fluid is culture- and/or polymerase chain reaction-positive for Mycoplasma pneumoniae. Clin. Infect. Dis. 2001, 32, E31–E35. [Google Scholar] [CrossRef] [PubMed]
- Narita, M.; Tanaka, H.; Togashi, T.; Abe, S. Cytokines involved in CNS manifestations caused by Mycoplasma pneumoniae. Pediatr. Neurol. 2005, 33, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, A.; Montagnier, L. Aids-Associated Mycoplasmas. Annu. Rev. Microbiol. 1994, 48, 687–712. [Google Scholar] [CrossRef]
- You, X.X.; Zeng, Y.H.; Wu, Y.M. Interactions between mycoplasma lipid-associated membrane proteins and the host cells. J. Zhejiang Univ. Sci. B 2006, 7, 342–350. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, O.; Kaufmann, A.; Grote, K.; Kawai, T.; Hoshino, K.; Morr, M.; Mühlradt, P.F.; Akira, S. Cutting edge: Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 2000, 164, 554–557. [Google Scholar] [CrossRef] [Green Version]
- Yong, Y.; Liu, S.; Hua, G.; Jia, R.; Zhao, Y.; Sun, X.; Liao, M.; Ju, X. Identification and functional characterization of Toll-like receptor 2-1 in geese. BMC Vet. Res. 2015, 11, 108. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, F.; Davinelli, S.; Krishnan, S.; Gallo, R.C.; Scapagnini, G.; Zella, D.; Curreli, S. Sulfur compounds block MCP-1 production by Mycoplasma fermentans-infected macrophages through NF-κB inhibition. J. Transl. Med. 2014, 12, 145. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Kida, Y.; Kuwano, K. Mycoplasma pneumoniae-derived lipopeptides induce acute inflammatory responses in the lungs of mice. Infect. Immun. 2008, 76, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Tuder, R.M.; Petrache, I. Pathogenesis of chronic obstructive pulmonary disease. J. Clin. Investig. 2012, 122, 2749–2755. [Google Scholar] [CrossRef] [PubMed]
- Chatila, W.M.; Thomashow, B.M.; Minai, O.A.; Criner, G.J.; Make, B.J. Comorbidities in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2008, 5, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, E.P.; Denisenko, Y.K.; Vitkina, T.I.; Lobanova, E.G.; Novgorodtseva, T.P.; Antonyuk, M.V.; Gvozdenko, T.A.; Knyshova, V.V.; Nazarenko, A.V. The Mechanisms of the Regulation of Immune Response in Patients with Comorbidity of Chronic Obstructive Pulmonary Disease and Asthma. Can. Respir. J. 2016, 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- de Vries, R.; Dagelet, Y.W.F.; Spoor, P.; Snoey, E.; Jak, P.M.C.; Brinkman, P.; Dijkers, E.; Bootsma, S.K.; Elskamp, F.; de Jongh, F.H.C.; et al. Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label. Eur. Respir. J. 2018, 51, 1701817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, T.A.; Panzica, L.; Kalathil, S.G.; Thanavala, Y. Immune Dysfunction in Patients with Chronic Obstructive Pulmonary Disease. Ann. Am. Thorac. Soc. 2015, 12 (Suppl. 2), S169–S175. [Google Scholar] [CrossRef]
- Kalathil, S.G.; Lugade, A.A.; Pradhan, V.; Miller, A.; Parameswaran, G.I.; Sethi, S.; Thanavala, Y. T-regulatory cells and programmed death 1+ T cells contribute to effector T-cell dysfunction in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2014, 190, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Pezzuto, A.; Stellato, M.; Catania, G.; Mazzara, C.; Tonini, S.; Caricato, M.; Crucitti, P.; Tonini, G. Short-term benefit of smoking cessation along with glycopirronium on lung function and respiratory symptoms in mild COPD patients: A retrospective study. J. Breath Res. 2018, 12, 046007. [Google Scholar] [CrossRef]
- Varma-Basil, M.; Dwivedi, S.K.; Kumar, K.; Pathak, R.; Rastogi, R.; Thukral, S.S.; Shariff, M.; Vijayan, V.K.; Chhabra, S.K.; Chaudhary, R. Role of Mycoplasma pneumoniae infection in acute exacerbations of chronic obstructive pulmonary disease. J. Med. Microbiol. 2009, 58, 322–326. [Google Scholar] [CrossRef]
- Beasley, V.; Joshi, P.V.; Singanayagam, A.; Molyneaux, P.L.; Johnston, S.L.; Mallia, P. Lung microbiology and exacerbations in COPD. Int. J. Chron. Obstet. Pulmon. Dis. 2012, 7, 555–569. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, D.; Lieberman, D.; Ben-Yaakov, M.; Shmarkov, O.; Gelfer, Y.; Varshavsky, R.; Ohana, B.; Lazarovich, Z.; Boldur, I. Serological evidence of Mycoplasma pneumoniae infection in acute exacerbation of COPD. Diagn. Microbiol. Infect. Dis. 2002, 44, 1–6. [Google Scholar] [CrossRef]
- Diederen, B.M.W.; van der Valk, P.D.L.P.M.; Kluytmans, J.A.W.J.; Peeters, M.F.; Hendrix, R. The role of atypical respiratory pathogens in exacerbations of chronic obstructive pulmonary disease. Eur. Respir. J. 2007, 30, 240. [Google Scholar] [CrossRef] [PubMed]
- Pilo, P.; Frey, J.; Vilei, E.M. Molecular mechanisms of pathogenicity of Mycoplasma mycoides subsp. mycoides SC. Vet. J. 2007, 174, 513–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dedieu, L.; Balcer-Rodrigues, V.; Yaya, A.; Hamadou, B.; Cisse, O.; Diallo, M.; Niang, M. Gamma interferon-producing CD4 T-cells correlate with resistance to Mycoplasma mycoides subsp. mycoides S.C. infection in cattle. Vet. Immunol. Immunopathol. 2005, 107, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Dedieu, L.; Chapey, E.; Balcer-Rodrigues, V. Mycoplasma mycoides ssp. mycoides Biotype Small Colony-Secreted Components Induce Apoptotic Cell Death in Bovine Leucocytes. Scand. J. Immunol. 2005, 62, 528–538. [Google Scholar] [CrossRef]
- Jungi, T.W.; Krampe, M.; Sileghem, M.; Griot, C.; Nicolet, J. Differential and strain-specific triggering of bovine alveolar macrophage effector functions by mycoplasmas. Microb. Pathog. 1996, 21, 487–498. [Google Scholar] [CrossRef]
- Di Teodoro, G.; Marruchella, G.; Mosca, F.; Di Provvido, A.; Sacchini, F.; Tiscar, P.G.; Scacchia, M. Polymorphonuclear cells and reactive oxygen species in contagious bovine pleuropneumonia: New insight from in vitro investigations. Vet. Immunol. Immunopathol. 2018, 201, 16–19. [Google Scholar] [CrossRef]
- Darzi, M.M.; Sood, N.; Gupta, P.P.; Banga, H.S. The pathogenicity and pathogenesis of Mycoplasma capricolum subsp. capripneumoniae (F38) in the caprine mammary gland. Vet. Res. Commun. 1998, 22, 155–165. [Google Scholar] [CrossRef]
- Ma, W.T.; Gu, K.; Yang, R.; Tang, X.D.; Qi, Y.X.; Liu, M.J.; Chen, D.K. Interleukin-17 mediates lung injury by promoting neutrophil accumulation during the development of contagious caprine pleuropneumonia. Vet. Microbiol. 2020, 243, 108651. [Google Scholar] [CrossRef]
- Hegde, S.; Hegde, S.M.; Rosengarten, R.; Chopra-Dewasthaly, R. Mycoplasma agalactiae Induces Cytopathic Effects in Infected Cells Cultured In Vitro. PLoS ONE 2016, 11, e0163603. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, F.; Castro, P. Differential cytokine expression in natural and experimental mastitis induced by Mycoplasma agalactiae in dairy goats. Reprod. Domest. Anim. 2015, 50, 159–163. [Google Scholar] [CrossRef]
- Marinaro, M.; Greco, G.; Tarsitano, E.; Ventrella, G.; Camero, M.; Corrente, M.; Rezza, G.; Buonavoglia, D. Changes in peripheral blood leucocytes of sheep experimentally infected with Mycoplasma agalactiae. Vet. Microbiol. 2015, 175, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Zhao, C.; Hu, Q.; Sun, J.; Peng, X. Roles of Toll-like receptors 2 and 6 in the inflammatory response to Mycoplasma gallisepticum infection in DF-1 cells and in chicken embryos. Dev. Comp. Immunol. 2016, 59, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Robinson, D.; Furr, P.M. Models of infection due to mycoplasmas, including Mycoplasma fermentans, in the genital tract and other sites in mice. Clin. Infect. Dis. 1993, 17 (Suppl. 1), S280–S282. [Google Scholar] [CrossRef] [PubMed]
- Buskila, D. Fibromyalgia, chronic fatigue syndrome, and myofascial pain syndrome. Curr. Opin. Rheumatol. 2001, 13, 117–127. [Google Scholar] [CrossRef]
- Nasralla, M.; Haier, J.; Nicolson, G.L. Multiple mycoplasmal infections detected in blood of patients with chronic fatigue syndrome and/or fibromyalgia syndrome. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 1999, 18, 859–865. [Google Scholar] [CrossRef]
- Brenner, T.; Yamin, A.; Abramsky, O.; Gallily, R. Stimulation of tumor necrosis factor-α production by mycoplasmas and inhibition by dexamethasone in cultured astrocytes. Brain Res. 1993, 608, 273–279. [Google Scholar] [CrossRef]
- Podbielska, M.; Dasgupta, S.; Levery, S.B.; Tourtellotte, W.W.; Annuk, H.; Moran, A.P.; Hogan, E.L. Novel myelin penta- and hexa-acetyl-galactosyl-ceramides: Structural characterization and immunoreactivity in cerebrospinal fluid. J. Lipid Res. 2010, 51, 1394–1406. [Google Scholar] [CrossRef] [Green Version]
- McGowin, C.L.; Ma, L.; Martin, D.H.; Pyles, R.B. Mycoplasma genitalium-encoded MG309 activates NF-kappaB via Toll-like receptors 2 and 6 to elicit proinflammatory cytokine secretion from human genital epithelial cells. Infect. Immun. 2009, 77, 1175–1181. [Google Scholar] [CrossRef] [Green Version]
- McGowin, C.L.; Popov, V.L.; Pyles, R.B. Intracellular Mycoplasma genitalium infection of human vaginal and cervical epithelial cells elicits distinct patterns of inflammatory cytokine secretion and provides a possible survival niche against macrophage-mediated killing. BMC Microbiol. 2009, 9, 139. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, R.; Ghosh, A.; Chandolia, A. Pathogenesis of Mycoplasma pneumoniae: An update. Indian J. Med. Microbiol. 2016, 34, 7–16. [Google Scholar] [CrossRef]
- Boujemaa, S.; Ben Allaya, A.; Mlik, B.; Mardassi, H.; Ben Abdelmoumen Mardassi, B. Phylogenetics of Mycoplasma hominis clinical strains associated with gynecological infections or infertility as disclosed by an expanded multilocus sequence typing scheme. Sci. Rep. 2018, 8, 14854. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.H.; Mirsalehian, A.; Sadighi Gilani, M.A.; Bahador, A.; Talebi, M. Asymptomatic Infection With Mycoplasma hominis Negatively Affects Semen Parameters and Leads to Male Infertility as Confirmed by Improved Semen Parameters After Antibiotic Treatment. Urology 2017, 100, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Vallely, L.M.; Egli-Gany, D.; Pomat, W.; Homer, C.S.; Guy, R.; Wand, H.; Silver, B.; Rumbold, A.R.; Kaldor, J.M.; Low, N.; et al. Adverse pregnancy and neonatal outcomes associated with Neisseria gonorrhoeae, Mycoplasma genitalium, M. hominis, Ureaplasma urealyticum and U. parvum: A systematic review and meta-analysis protocol. BMJ Open 2018, 8, e024175. [Google Scholar] [CrossRef] [Green Version]
- Capoccia, R.; Greub, G.; Baud, D. Ureaplasma urealyticum, Mycoplasma hominis and adverse pregnancy outcomes. Curr. Opin. Infect. Dis. 2013, 26, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Ljubin-Sternak, S.; Meštrović, T. Chlamydia trachomatis and Genital Mycoplasmas: Pathogens with an Impact on Human Reproductive Health. J. Pathog. 2014, 2014, 183167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, C.; Watt, A.P.; McKenna, J.P.; Coyle, P.V. Mycoplasma hominis and Gardnerella vaginalis display a significant synergistic relationship in bacterial vaginosis. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 481–487. [Google Scholar] [CrossRef]
- Jiang, X.; Lv, Y.Q.; Zhang, J.N.; Shi, Y.L.; Xu, F.F. Mycoplasma penetrans infection is a potential cause of immunoglobulin A nephropathy: A new animal model. J. Nephrol. 2013, 26, 470–475. [Google Scholar] [CrossRef]
- Bendjennat, M.; Blanchard, A.; Loutfi, M.; Montagnier, L.; Bahraoui, E. Role of Mycoplasma penetrans endonuclease P40 as a potential pathogenic determinant. Infect. Immun. 1999, 67, 4456–4462. [Google Scholar] [CrossRef] [Green Version]
- Grisold, A.; Hoenigl, M.; Leitner, E.; Jakse, K.; Feierl, G.; Raggam, R.; Marth, E. Submasseteric Abscess Caused by Mycoplasma salivarium Infection. J. Clin. Microbiol. 2008, 46, 3860–3862. [Google Scholar] [CrossRef] [Green Version]
- Büchsel, M.; Pletschen, L.; Fleiner, M.; Häcker, G.; Serr, A. A case of septic arthritis caused by a Mycoplasma salivarium strain resistant towards Ciprofloxacin and Clarithromycin in a patient with chronic lymphatic leukemia. Diagn. Microbiol. Infect. Dis. 2016, 86, 115–117. [Google Scholar] [CrossRef]
- Sugiyama, M.; Saeki, A.; Hasebe, A.; Kamesaki, R.; Yoshida, Y.; Kitagawa, Y.; Suzuki, T.; Ken-Ichiro, S. Activation of inflammasomes in dendritic cells and macrophages by Mycoplasma salivarium. Mol. Oral Microbiol. 2015, 31, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Henrich, B.; Rumming, M.; Sczyrba, A.; Velleuer, E.; Dietrich, R.; Gerlach, W.; Gombert, M.; Rahn, S.; Stoye, J.; Borkhardt, A.; et al. Mycoplasma salivarium as a Dominant Coloniser of Fanconi Anaemia Associated Oral Carcinoma. PLoS ONE 2014, 9, e92297. [Google Scholar] [CrossRef] [PubMed]
- Kornspan, D.; Ginsburg, I.; Rottem, S. The oxidant scavenging capacity of the oral Mycoplasma salivarium. Arch. Oral Biol. 2013, 58, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Shibata, K.; Hasebe, A.; Sasaki, T.; Watanabe, T. Mycoplasma salivarium induces interleukin-6 and interleukin-8 in human gingival fibroblasts. FEMS Immunol. Med Microbiol. 1997, 19, 275–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, J.R.; Marshall, B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1983, 321, 1273–1275. [Google Scholar]
- Goodrich, J.K.; Davenport, E.R.; Clark, A.G.; Ley, R.E. The Relationship Between the Human Genome and Microbiome Comes into View. Annu. Rev. Genet. 2017, 51, 413–433. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N.; et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017, 170, 548–563. [Google Scholar] [CrossRef] [Green Version]
- Bullman, S.; Pedamallu, C.S.; Sicinska, E.; Clancy, T.E.; Zhang, X.; Cai, D.; Neuberg, D.; Huang, K.; Guevara, F.; Nelson, T.; et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 2017, 358, 1443–1448. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Sinha, R.; Pei, Z.; Dominianni, C.; Wu, J.; Shi, J.; Goedert, J.J.; Hayes, R.B.; Yang, L. Human Gut Microbiome and Risk for Colorectal Cancer. J. Natl. Cancer Inst. 2013, 105, 1907–1911. [Google Scholar] [CrossRef] [Green Version]
- Eklöf, V.; Löfgren-Burström, A.; Zingmark, C.; Edin, S.; Larsson, P.; Karling, P.; Alexeyev, O.; Rutegård, J.; Wikberg, M.L.; Palmqvist, R. Cancer-associated fecal microbial markers in colorectal cancer detection. Int. J. Cancer 2017, 141, 2528–2536. [Google Scholar] [CrossRef]
- Li, Y.Y.; Ge, Q.X.; Cao, J.; Zhou, Y.J.; Du, Y.L.; Shen, B.; Wan, Y.J.; Nie, Y.Q. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients. World J. Gastroenterol. 2016, 22, 3227–3233. [Google Scholar] [CrossRef] [PubMed]
- Shang, F.M.; Liu, H.L. Fusobacterium nucleatum and colorectal cancer: A review. World J. Gastrointest. Oncol. 2018, 10, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Baruk, I. Fusobacterium nucleatum-The Cause of Human Colorectal Cancer. J. Biosci. Med. 2018, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, J.G.; Easterbrook, P.J.; Clarke, J.; Gilroy, C.B.; Taylor-Robinson, D. An association of disseminated Mycoplasma fermentans in HIV-1 positive patients with non-Hodgkin’s lymphoma. Int. J. STD AIDS 2001, 12, 499–504. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, S.; Langenfeld, J.; Lo, S.-C.; Rogers, M.B. Mycoplasma infection transforms normal lung cells and induces bone morphogenetic protein 2 expression by post-transcriptional mechanisms. J. Cell. Biochem. 2008, 104, 580–594. [Google Scholar] [CrossRef] [PubMed]
- Namiki, K.; Goodison, S.; Porvasnik, S.; Allan, R.W.; Iczkowski, K.A.; Urbanek, C.; Reyes, L.; Sakamoto, N.; Rosser, C.J. Persistent Exposure to Mycoplasma Induces Malignant Transformation of Human Prostate Cells. PLoS ONE 2009, 4, e6872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Tsai, S.; Lo, S.-C. Alteration of gene expression profiles during mycoplasma-induced malignant cell transformation. BMC Cancer 2006, 6, 116. [Google Scholar] [CrossRef]
- Barykova, Y.A.; Logunov, D.Y.; Shmarov, M.M.; Vinarov, A.Z.; Fiev, D.N.; Vinarova, N.A.; Rakovskaya, I.V.; Baker, P.S.; Shyshynova, I.; Stephenson, A.J.; et al. Association of Mycoplasma hominis infection with prostate cancer. Oncotarget 2011, 2, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Uronis, J.M.; Muhlbauer, M.; Herfarth, H.H.; Rubinas, T.C.; Jones, G.S.; Jobin, C. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS ONE 2009, 4, e6026. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kundu, P.; Seow, S.W.; de Matos, C.T.; Aronsson, L.; Chin, K.C.; Karre, K.; Pettersson, S.; Greicius, G. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 2012, 33, 1231–1238. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.H.; Parsonnet, J. Role of Bacteria in Oncogenesis. Clin. Microbiol. Rev. 2010, 23, 837–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, S.; Fang, L.; Lee, M.H. Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol. Rep. 2018, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature 2000, 408, 307–310. [Google Scholar] [CrossRef]
- Vousden, K.H.; Lane, D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 2007, 8, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Gudkov, A.V.; Komarova, E.A. p53 and the Carcinogenicity of Chronic Inflammation. Cold Spring Harb. Perspect. Med. 2016, 6, a026161. [Google Scholar] [CrossRef] [Green Version]
- Gurova, K.V.; Hill, J.E.; Guo, C.; Prokvolit, A.; Burdelya, L.G.; Samoylova, E.; Khodyakova, A.V.; Ganapathi, R.; Ganapathi, M.; Tararova, N.D.; et al. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kappaB-dependent mechanism of p53 suppression in tumors. Proc. Natl. Acad. Sci. USA 2005, 102, 17448–17453. [Google Scholar] [CrossRef] [Green Version]
- Vousden, K.H.; Lu, X. Live or let die: The cell’s response to p53. Nat. Rev. Cancer 2002, 2, 594–604. [Google Scholar] [CrossRef] [Green Version]
- Toledo, F.; Wahl, G.M. Regulating the p53 pathway: In vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 2006, 6, 909–923. [Google Scholar] [CrossRef]
- Marine, J.-C.W.; Dyer, M.A.; Jochemsen, A.G. MDMX: From bench to bedside. J. Cell Sci. 2007, 120, 371. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Yang, Y.; Zhang, G.; Wang, C.; Wang, D.; Wu, M.; Mei, Y. Regulation of the Mdm2–p53 pathway by the ubiquitin E3 ligase MARCH7. EMBO Rep. 2018, 19, 305–319. [Google Scholar] [CrossRef]
- Carr, M.I.; Jones, S.N. Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis. Transl. Cancer Res. 2016, 5, 707–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, K.D.; Galbraith, M.D.; Andrysik, Z.; Espinosa, J.M. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2018, 25, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, S.; Wear, D.J.; Shih, J.W.; Lo, S.C. Mycoplasmas and oncogenesis: Persistent infection and multistage malignant transformation. Proc. Natl. Acad. Sci. USA 1995, 92, 10197–10201. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.H.; Tsai, S.; Rodriguez, J.; Lo, S.C. Mycoplasmal infections prevent apoptosis and induce malignant transformation of interleukin-3-dependent 32D hematopoietic cells. Mol. Cell. Biol. 1999, 19, 7995–8002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimolai, N. Do mycoplasmas cause human cancer? Can. J. Microbiol. 2001, 47, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Shih, J.W.; Wear, D.J.; Tsai, S.; Lo, S.C. High-level expression of H-ras and c-myc oncogenes in mycoplasma-mediated malignant cell transformation. Proc. Soc. Exp. Biol. Med. 1997, 214, 359–366. [Google Scholar] [CrossRef]
- Davis, H.; Raja, E.; Miyazono, K.; Tsubakihara, Y.; Moustakas, A. Mechanisms of action of bone morphogenetic proteins in cancer. Cytokine Growth Factor Rev. 2016, 27, 81–92. [Google Scholar] [CrossRef]
- Wu, G.; Huang, F.; Chen, Y.; Zhuang, Y.; Huang, Y.; Xie, Y. High Levels of BMP2 Promote Liver Cancer Growth via the Activation of Myeloid-Derived Suppressor Cells. Front. Oncol. 2020, 10, 10. [Google Scholar] [CrossRef]
- Gomersall, A.C.; Phan, H.A.; Iacuone, S.; Li, S.F.; Parish, R.W. The Mycoplasma hyorhinis p37 Protein Rapidly Induces Genes in Fibroblasts Associated with Inflammation and Cancer. PLoS ONE 2015, 10, e0140753. [Google Scholar] [CrossRef] [Green Version]
- Gong, M.; Meng, L.; Jiang, B.; Zhang, J.; Yang, H.; Wu, J.; Shou, C. p37 from Mycoplasma hyorhinis promotes cancer cell invasiveness and metastasis through activation of MMP-2 and followed by phosphorylation of EGFR. Mol. Cancer 2008, 7, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Ketcham, C.M.; Anai, S.; Reutzel, R.; Sheng, S.; Schuster, S.M.; Brenes, R.B.; Agbandje-McKenna, M.; McKenna, R.; Rosser, C.J.; Boehlein, S.K. p37 Induces tumor invasiveness. Mol. Cancer 2005, 4, 1031–1038. [Google Scholar] [CrossRef] [Green Version]
- Goodison, S.; Nakamura, K.; Iczkowski, K.A.; Anai, S.; Boehlein, S.K.; Rosser, C.J. Exogenous mycoplasmal p37 protein alters gene expression, growth and morphology of prostate cancer cells. Cytogenet. Genome Res. 2007, 118, 204–213. [Google Scholar] [CrossRef]
- Cao, S.; Shen, D.; Wang, Y.; Li, L.; Zhou, L.; Wang, Y. Potential malignant transformation in the gastric mucosa of immunodeficient mice with persistent Mycoplasma penetrans infection. PLoS ONE 2017, 12, e0180514. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.; Rao, R.S.; Raj, A.T. Role of Mycoplasma in the Initiation and Progression of Oral Cancer. J. Int. Oral Health 2015, 7, i–ii. [Google Scholar]
- Afriat, R.; Horowitz, S.; Priel, E. Mycoplasma fermentans inhibits the activity of cellular DNA topoisomerase I by activation of PARP1 and alters the efficacy of its anti-cancer inhibitor. PLoS ONE 2013, 8, e72377. [Google Scholar] [CrossRef]
- Logunov, D.Y.; Scheblyakov, D.V.; Zubkova, O.V.; Shmarov, M.M.; Rakovskaya, I.V.; Gurova, K.V.; Tararova, N.D.; Burdelya, L.G.; Naroditsky, B.S.; Ginzburg, A.L.; et al. Mycoplasma infection suppresses p53, activates NF-κB and cooperates with oncogenic Ras in rodent fibroblast transformation. Oncogene 2008, 27, 4521–4531. [Google Scholar] [CrossRef] [Green Version]
- Zella, D.; Curreli, S.; Benedetti, F.; Krishnan, S.; Cocchi, F.; Latinovic, O.S.; Denaro, F.; Romerio, F.; Djavani, M.; Charurat, M.E.; et al. Mycoplasma promotes malignant transformation in vivo, and its DnaK, a bacterial chaperone protein, has broad oncogenic properties. Proc. Natl. Acad. Sci. USA 2018, 115, E12005–E12014. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, F.; Cocchi, F.; Latinovic, O.S.; Curreli, S.; Krishnan, S.; Munawwar, A.; Gallo, R.C.; Zella, D. Role of Mycoplasma Chaperone DnaK in Cellular Transformation. Int. J. Mol. Sci. 2020, 21, 1311. [Google Scholar] [CrossRef] [Green Version]
- Kirchgessner, C.U.; Patil, C.K.; Evans, J.W.; Cuomo, C.A.; Fried, L.M.; Carter, T.; Oettinger, M.A.; Brown, J.M. DNA-Dependent Kinase (p350) as a Candidate Gene for the Murine SCID Defect. Science 1995, 267, 1178–1183. [Google Scholar] [CrossRef]
- Gurley, K.E.; Vo, K.; Kemp, C.J. DNA Double-Strand Breaks, p53, and Apoptosis during Lymphomagenesis in scid/scid Mice. Cancer Res. 1998, 58, 3111–3115. [Google Scholar]
- Bosma, G.C.; Custer, R.P.; Bosma, M.J. A severe combined immunodeficiency mutation in the mouse. Nature 1983, 301, 527. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Luo, K.; Zhang, L.; Cheville, J.C.; Lou, Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 2010, 140, 384–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godon, C.; Cordelieres, F.P.; Biard, D.; Giocanti, N.; Megnin-Chanet, F.; Hall, J.; Favaudon, V. PARP inhibition versus PARP-1 silencing: Different outcomes in terms of single-strand break repair and radiation susceptibility. Nucleic. Acids Res. 2008, 36, 4454–4464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langelier, M.-F.; Planck, J.L.; Roy, S.; Pascal, J.M. Structural Basis for DNA Damage–Dependent Poly(ADP-ribosyl)ation by Human PARP-1. Science 2012, 336, 728–732. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, V.; Dantzer, F.; Ame, J.C.; de Murcia, G. Poly(ADP-ribose): Novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 2006, 7, 517–528. [Google Scholar] [CrossRef]
- Schultz, N.; Lopez, E.; Saleh-Gohari, N.; Helleday, T. Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic. Acids Res. 2003, 31, 4959–4964. [Google Scholar] [CrossRef]
- Ji, Y.; Karbaschi, M.; Cooke, M.S. Mycoplasma infection of cultured cells induces oxidative stress and attenuates cellular base excision repair activity. Mutat. Res. 2019, 845, 403054. [Google Scholar] [CrossRef]
- Wachsman, J.T. DNA methylation and the association between genetic and epigenetic changes: Relation to carcinogenesis. Mutat. Res. 1997, 375, 1–8. [Google Scholar] [CrossRef]
- Chernov, A.V.; Reyes, L.; Xu, Z.; Gonzalez, B.; Golovko, G.; Peterson, S.; Perucho, M.; Fofanov, Y.; Strongin, A.Y. Mycoplasma CG- and GATC-specific DNA methyltransferases selectively and efficiently methylate the host genome and alter the epigenetic landscape in human cells. Epigenetics 2015, 10, 303–318. [Google Scholar] [CrossRef]
- Yang, H.; Qu, L.; Ma, H.; Chen, L.; Liu, W.; Liu, C.; Meng, L.; Wu, J.; Shou, C. Mycoplasma hyorhinis infection in gastric carcinoma and its effects on the malignant phenotypes of gastric cancer cells. BMC Gastroenterol. 2010, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wear, D.J.; Lo, S. Mycoplasmal infections alter gene expression in cultured human prostatic and cervical epithelial cells. FEMS Immunol. Med. Microbiol. 2000, 27, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Lee, H.M.; Kim, W.T.; Kim, M.K.; Chang, H.J.; Lee, H.R.; Joh, J.W.; Kim, D.S.; Ryu, C.J. Detection of mycoplasma infection in circulating tumor cells in patients with hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 2014, 446, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Adebamowo, S.N.; Ma, B.; Zella, D.; Famooto, A.; Ravel, J.; Adebamowo, C.; ACCME Research Group. Mycoplasma hominis and Mycoplasma genitalium in the Vaginal Microbiota and Persistent High-Risk Human Papillomavirus Infection. Front. Public Health 2017, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedetti, F.; Curreli, S.; Zella, D. Mycoplasmas–Host Interaction: Mechanisms of Inflammation and Association with Cellular Transformation. Microorganisms 2020, 8, 1351. https://doi.org/10.3390/microorganisms8091351
Benedetti F, Curreli S, Zella D. Mycoplasmas–Host Interaction: Mechanisms of Inflammation and Association with Cellular Transformation. Microorganisms. 2020; 8(9):1351. https://doi.org/10.3390/microorganisms8091351
Chicago/Turabian StyleBenedetti, Francesca, Sabrina Curreli, and Davide Zella. 2020. "Mycoplasmas–Host Interaction: Mechanisms of Inflammation and Association with Cellular Transformation" Microorganisms 8, no. 9: 1351. https://doi.org/10.3390/microorganisms8091351
APA StyleBenedetti, F., Curreli, S., & Zella, D. (2020). Mycoplasmas–Host Interaction: Mechanisms of Inflammation and Association with Cellular Transformation. Microorganisms, 8(9), 1351. https://doi.org/10.3390/microorganisms8091351