Water-Transmitted Fungi Are Involved in Degradation of Concrete Drinking Water Storage Tanks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Drinking Water and Materials in Contact with Drinking Water, and Cultivation of Fungal Strains
2.2. Extraction of Genomic DNA and Identification of Fungi
2.3. Fungal Growth under Oligotrophic Conditions and Their Biodegradation Potential
3. Results
3.1. Fungi Are Present at Every Stage of Drinking Water Preparation
3.2. Number and Diversity of Fungi Inside Two Water Storage Tanks
3.3. Oligotrophic and Aerophilic Conditions Promote Fungal Growth
3.4. Two-Thirds of Water-Related Strains Produce Acidic Metabolites
3.5. Water-Borne Fungi and Possible Effect on Human Health
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gray, F.N. Pathogen control in drinking water. In Microbiology of Waterborne Diseases, 2nd ed.; Percival, L.S., Yates, V.M., Eds.; Elsevier: Oxford, UK, 2014; pp. 537–570. [Google Scholar]
- Percival, L.S.; Yates, V.M.; Williams, W.D.; Chalmers, R.M.; Gray, F.N. Microbiology of Waterborne Diseases, 2nd ed.; Elsevier: Oxford, UK, 2014. [Google Scholar]
- Handmer, J.; Honda, Y.; Kundzewicz, Z.W.; Arnell, N.; Benito, G.; Benito, G.; Hatfield, J.; Mohamed, I.F.; Peduzzi, P.; Wu, S.; et al. Changes in impacts of climate extremes: Human systems and ecosystems. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups 1 and 2 of the Intergovernmental Panel on Climate Change (IPCC); Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 231–290. [Google Scholar]
- Novak Babič, M.; Gunde-Cimerman, N.; Vargha, M.; Tischner, Z.; Magyar, D.; Veríssimo, C.; Sabino, R.; Viegas, C.; Meyer, W.; Brandão, J. Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. Int. J. Environ. Res. Public Health 2017, 14, 636. [Google Scholar] [CrossRef] [Green Version]
- EEC. Council directive 98/83/EC on the quality of water intended for human consumption. Off. J. Eur. Communities 1998, 330, 32–54. [Google Scholar]
- Novak Babič, M.; Brandão, J.; Gunde-Cimerman, N. Integrating Fungi in the Drinking Water Regulation and in Guidelines for Materials in Contact with Drinking Water. Is there Room for Change? In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Friedman, D.Z.P.; Schwartz, I.S. Emerging Fungal Infections: New Patients, New Patterns, and New Pathogens. J. Fungi 2019, 5, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DEFRA (Department for Environment, Food & Rural Affairs). A Review of Fungi in Drinking Water and the Implications for Human Health, 1st ed.; BIO Intelligence Service: Paris, France, 2011; p. 107.
- Novak Babič, M.; Zupančič, J.; Brandão, J.; Gunde-Cimerman, N. Opportunistic water-borne human pathogenic filamentous fungi unreported from food. Microorganisms 2018, 6, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 4MS. Acceptance of Metallic Materials Used for Products in Contact with Drinking Water, 1st ed.; 4MS Joint Management Comitee, Germany, France; The Netherlands and United Kingdom: Berlin, Germany, 2011. [Google Scholar]
- NLZOH; ZAG; NIJZ. Priporočila za Ocenjevanje Primernosti Materialov in Proizvodov, ki Prihajajo v Stik s Pitno Vodo in So del Vodovodnega Omrežja in Interne Vodovodne Napeljave (P-MPPV), 1st ed.; Nacionalni Laboratorij za Zdravje, Okolje in Hrano: Maribor, Slovenia; Zavod za Gradbeništvo Slovenije: Ljubljana, Slovenia; Nacionalni Inštitut za Javno Zdravje: Ljubljana, Slovenia, 2016. [Google Scholar]
- Douterelo, I.; Jackson, M.; Solomon, C.; Boxall, J. Microbial analysis of in situ biofilm formation in drinking water distribution systems: Implications for monitoring and control of drinking water quality. Appl. Microbiol. Biotechnol. 2016, 100, 3301–3311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Liu, Y.; Lu, Q.; Chen, G.; Wang, G. Assessing comprehensive performance of biofilm formation and water quality in drinking water distribution systems. Water Sci. Technol. 2017, 17, 267–278. [Google Scholar] [CrossRef]
- WHO. Guidelines for Indoor Air Quality: Dampness and Mould, 1st ed.; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2009. [Google Scholar]
- Andersen, B.; Frisvad, J.C.; Søndergaard, I.; Rasmussen, I.S.; Larsen, L.S. Associations between fungal species and water-damaged building materials. Appl. Environ. Microbiol. 2011, 77, 4180–4188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurtado-McCormick, S.; Sánchez, L.; Martínez, J.; Calderón, C.; Calvo, D.; Narváez, D.; Lemus, M.; Groot, H.; Rodríguez Susa, M. Fungi in biofilms of a drinking water network: Occurrence, diversity and mycotoxins approach. Water Supply 2016, 16, 905–914. [Google Scholar] [CrossRef]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef] [Green Version]
- Dighton, J.; White, J. The Fungal Community: Its Organization and Role in the Ecosystem, 4th ed.; CRC Press, Taylor & Francis Group: Florida, FL, USA, 2017. [Google Scholar]
- Bertron, A. Understanding interactions between cementitious materials and microorganisms: A key to sustainable and safe concrete structures in various contexts. Mater. Struct. 2014, 47, 1787–1806. [Google Scholar] [CrossRef] [Green Version]
- Van den Ende, A.H.G.; de Hoog, G.S. Variability and molecular diagnostics of the neurotropic species Cladophialophora bantiana. Stud. Mycol. 1999, 43, 151–162. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Glass, N.; Donaldson, G. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Boekhout, T.; Kurtzman, C.P. Principles and methods used in yeast classification, and an overview of currently accepted yeast genera. In Nonconventional Yeasts in Biotechnology; Wolf, K., Ed.; Springer: Berlin, Germany, 1996; pp. 1–81. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evolut. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Albertano, P.; Urzì, C. Structural interactions among epi-lithic cyanobacteria and heterotrophic microorganisms in Romanhypogea. Microb. Ecol. 1999, 38, 244–252. [Google Scholar] [CrossRef]
- Borrego, S.; Guiamet, P.; Gómez de Saravia, S.; Battistoni, P.; Garcia, M.; Lavin, P.; Perdomo, I. The quality of air at archives and the biodeterioration of photographs. Int. Biodeterior. Biodegrad. 2010, 64, 139–145. [Google Scholar] [CrossRef]
- Hajna, N.Z.; Bosák, P.; Pruner, P.; Mihevc, A.; Hercman, H.; Horáček, I. Karst sediments in Slovenia: Plio-Quaternary multi-proxy records. Quat. Int. 2020, 546, 4–19. [Google Scholar] [CrossRef]
- Government of the Republic of Slovenia. Načrt Upravljanja Voda na Vodnem Območju Donave za Obdobje 2016–2021, 1st ed.; Vlada RS: Ljubljana, Slovenia, 2016; p. 295.
- NLZOH. Monitoring Pitne Vode 2017—Letno Poročilo o Kakovosti Pitne Vode v Letu 2017; Nacionalni Laboratorij za Zdravje, Okolje in Hrano: Maribor, Slovenija; Ministrstvo za Zdravje: Ljubljana, Slovenija, 2017; p. 59.
- NFA. Livsmedelsverkets Föreskrifter om Dricksvatten, SLVFS 2001:30, 1st ed.; National Food Administration: Uppsala, Sweden, 2001.
- Douterelo, I.; Fish, K.E.; Boxall, J.B. Succession of bacterial and fungal communities within biofilms of a chlorinated drinking water distribution system. Water Res. 2018, 141, 74–85. [Google Scholar] [CrossRef]
- Théraud, M.; Bédouin, Y.; Guiguen, C.; Gangneux, J.P. Efficacy of antiseptics and disinfectants on clinical and environmental yeast isolates in planktonic and biofilm conditions. J. Med. Microbiol. 2004, 53, 1013–1018. [Google Scholar] [CrossRef] [Green Version]
- Sisti, M.; Brandi, G.; De Santi, M.; Rinaldi, L.; Schiavano, G.F. Disinfection efficacy of chlorine and peracetic acid alone or in combination against Aspergillus spp. and Candida albicans in drinking water. J. Water Health 2012, 10, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.J.; Marques, R.; Marques, M.; Benoliel, M.J.; Barreto Crespo, M.T. Free chlorine inactivation of fungi in drinking water sources. Water Res. 2013, 47, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.J.; Fernandes, D.; Carvalho, G.; Benoliel, M.J.; San Romão, M.V.; Crespo, M.B. Assessment of the presence and dynamics of fungi in drinking water sources using cultural and molecular methods. Water Res. 2010, 44, 4850–4859. [Google Scholar] [CrossRef] [PubMed]
- Novak Babič, M.; Zalar, P.; Ženko, B.; Džeroski, S.; Gunde-Cimerman, N. Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances. Fungal Ecol. 2016, 20, 30–39. [Google Scholar] [CrossRef]
- Araujo, R.; Gonçalves Rodrigues, A.; Pina-Vaz, C. Susceptibility pattern among pathogenic species of Aspergillus to physical and chemical treatments. Med. Mycol. 2006, 44, 439–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattei, A.S.; Madrid, I.M.; Santin, R.; Schuch, L.F.; Meireles, M.C. In vitro activity of disinfectants against Aspergillus spp. Braz. J. Microbiol. 2013, 44, 481–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabińska-Łoniewska, A.; Konillowicz-Kowalska, T.; Wardzynska, G.; Boryn, K. Occurrence of fungi in water distribution system. Pol. J. Environ. Stud. 2007, 16, 539–547. [Google Scholar]
- Urooj, S.; Mirani, Z.A.; Naz, S. Impact of Seasonal Variations on Bacterial, Yeast and Mold’s Count in Drinking Water Collected from Karachi Pakistan. PSM Microbiol. 2018, 3, 37–42. [Google Scholar]
- Walker, G.M.; White, N.A. Introduction to Fungal Physiology. In Fungi: Biology and Applications, 3rd ed.; Kavanagh, K., Ed.; John Wiley & Sons, Inc.: New Jersey, NJ, USA, 2017; pp. 1–35. [Google Scholar]
- Luo, J.; Chen, X.; Crump, J.; Zhou, H.; Davies, G.D.; Zhou, G.; Zhang, N.; Jin, C. Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete. Constr. Build. Mater. 2018, 164, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Menon, R.R.; Luo, J.; Chen, X.; Zhou, H.; Liu, Z.; Zhou, G.; Zhang, N.; Jin, C. Screening of fungi for potential application of self-healing concrete. Sci. Rep. 2019, 9, 2075. [Google Scholar] [CrossRef]
- Shinkafi, S.A.; Haruna, I. Microorganisms associated with deteriorated desurface painted concrete buildings within Sokoto, Nigeria. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 314–324. [Google Scholar]
- WHO. Guidelines for Drinking Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- de Hoog, G.S.; Guarro, J.; Gené, J.; Ahmed, S.; Al-Hatmi, A.M.S.; Figueras, M.J.; Vitale, R.G. Atlas of Clinical Fungi; Westerdijk Fungal Biodiversity Institute: Utrecht, The Netherlands, 2019. [Google Scholar]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mata, A.T.; Ferreira, J.P.; Oliveira, B.R.; Batoréu, M.C.; Crespo, M.B.; Pereira, V.J.; Bronze, M.R. Bottled water: Analysis of mycotoxins by LC–MS/MS. Food Chem. 2015, 176, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Novak Babič, M.; Gostinčar, C.; Gunde-Cimerman, N. Microorganisms populating the water-related indoor biome. Appl. Microbiol. Biotechnol. 2020, 104, 6443–6462. [Google Scholar] [CrossRef]
Sample Number | Description | Total Number of Fungal Colonies | Number of Colonies per Species | Genus | Species | EXF- No * |
---|---|---|---|---|---|---|
Sample -1 | Water from retention pool after ultrafiltration | 146 CFU/L | 143 +CFU/L | Exophiala | cancerae | 14903 |
3 CFU/L | Paraphoma | radicina | 14904 | |||
Sample-2 | Chlorinated drinking water entering iron-ductile pipe leading toward water storage tanks | 350 CFU/L | 80 CFU/L | Acremonium | charticola | 14755 |
160 CFU/L | Acremonium | sclerotigenum | 14749, 14750, 14751, 14791 | |||
100 CFU/L | Cladosporium | sphaerospermum | 14744 | |||
10 CFU/L | Scopulariopsis | brumptii | 14743 | |||
Sample-3a (water storage tank 1) and 3b (water storage tank 2) | Chlorinated drinking water entering water storage tanks | estimated as > 627 CFU/L | 5 CFU/L | Acremonium | sclerotigenum | 14916 |
30 CFU/L | Bjerkandera | adusta | 14740 | |||
10 CFU/L | Cladosporium | allicinum | 14572 | |||
7 CFU/L | Cladosporium | cladosporioides | 14917 | |||
20 CFU/L | Cladosporium | halotolerans | 14567 | |||
70 CFU/L | Cladosporium | pseudocladosporioides | 14566, 14575 | |||
10 CFU/L | Cladosporium | sphaerospermum | 14573 | |||
10 CFU/L | Epicoccum | nigrum | 14736 | |||
10 CFU/L | Filobasidium | uniguttulatum | 14741 | |||
> 330 CFU/L | Gloeotinia | sp. | 14568, 14738, 14739 | |||
20 CFU/L | Moesziomyces | aphidis | 14742 | |||
30 CFU/L | Neopyrenochaeta | fragariae | 14737, 14754 | |||
35 CFU/L | Penicillium | brevicompactum | 14918 | |||
10 CFU/L | Penicillium | glabrum | 14569, 14570 | |||
20 CFU/L | Penicillium | verhagenii | 14571 | |||
10 CFU/L | Rhodotorula | mucilaginosa | 14574 | |||
Sample-4a (water storage tank 1) and 4b (water storage tank 2) | Dry concrete ceiling inside water storage tanks | > 330 CFU/cm2 | 90 CFU/cm2 | Akanthomyces | muscarius | 14589 |
> 330 CFU/cm2 | Aspergillus | protuberus | 14928, 14929 | |||
> 330 CFU/cm2 | Cladosporium | sphaerospermum | 14927 | |||
> 330 CFU/cm2 | Musicillium | elettariae | 14931 | |||
> 330 CFU/cm2 | Sarocladium | kiliense | 14930 | |||
Sample-5a (water storage tank 1) and 5b (water storage tank 2) | Dry concrete wall inside water storage tanks | 11 CFU/cm2 | 5 CFU/cm2 | Furcasterigmium | furcatum | 14586, 14587 |
6 CFU/cm2 | Sarocladium | kiliense | 14585 | |||
Sample-6a (water storage tank 1) and 6b (water storage tank 2) | Humid concrete wall inside water storage tanks | > 330 CFU/cm2 | > 330 CFU/cm2 | Furcasterigmium | furcatum | 14926 |
Sample-7a (water storage tank 1) and 7b (water storage tank 2) | Wet concrete wall inside water storage tanks | 94 CFU/cm2 | 56 CFU/cm2 | Furcasterigmium | furcatum | 14583, 14584 |
34 CFU/cm2 | Musicillium | elettariae | 14922 | |||
4 CFU/cm2 | Sarocladium | kiliense | 14582 | |||
Sample-8a (water storage tank 1) and 8b (water storage tank 2) | Wet concrete bottom inside water storage tanks | 9 CFU/cm2 | 4 CFU/cm2 | Acremonium | camptosporum | 14923 |
3 CFU/cm2 | Cladosporium | pseudocladosporioides | 14924 | |||
2 CFU/cm2 | Trametes | versicolor | 14925 | |||
Sample-9a (water storage tank 1) and 9b (water storage tank 2) | Metal pipe for water exit at the bottom of the water storage tanks | 124 CFU/cm2 | 23 CFU/cm2 | Cadophora | malorum | 14934 |
1 CFU/cm2 | Emericellopsis | sp. | 14936 | |||
9 CFU/cm2 | Paraphoma | radicina | 14933 | |||
58 CFU/cm2 | Sarocladium | kiliense | 14935 | |||
33 CFU/cm2 | Stereum | armeniacum | 14932 | |||
Sample-10a (water storage tank 1) and 10b (water storage tank 2) | Chlorinated drinking water exiting water storage tanks | 226 CFU/L | 10 CFU/L | Cladosporium | allicinum | 14578 |
10 CFU/L | Cladosporium | halotolerans | 14577 | |||
30 CFU/L | Cladosporium | perangustum | 14579 | |||
153 CFU/L | Gloeotinia | sp. | 14576, 14580, 14920 | |||
3 CFU/L | Keissleriella | caudata | 14921 | |||
10 CFU/L | Penicillium | bialowiezense | 14581 | |||
10 CFU/L | Penicillium | brevicompactum | 14919 | |||
Sample-11 | Chlorinated drinking water at the first standard monitoring sampling point | 73 CFU/L | 30 CFU/L | Cadophora | malorum | 14747 |
13 CFU/L | Cladosporium | allicinum | 14746 | |||
20 CFU/L | Cladosporium | pseudocladosporioides | 14745 | |||
10 CFU/L | Neopyrenochaeta | acicola | 14748 | |||
Sample-12 | Chlorinated drinking water at the last standard monitoring sampling point (after 30 km of flow) | 73 CFU/L | 60 CFU/L | Aaosphaeria | arxii | 14906, 14907 |
10 CFU/L | Cystobasidium | lysinophilum | 14905 | |||
3 CFU/L | Exophiala | equina | 14908 |
Genus | Species | EXF-No. | GenBank No. | Growth after 1 Month | Growth after 3 Months | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.01 x YNB | 2% WA | CaCO3 Medium | pH Medium | Xypex Medium | |||||||
15 °C | 37 °C | 15 °C | 15 °C | Dissolution | pH Change | Position of Mycelium | 15 °C | ||||
Aaosphaeria | arxii | 14906 | MT178773 (ITS) | +++ | - | +++ | +++ | - | ↓ 0.41 | throughout | - |
Acremonium | camptosporum | 14923 | MT178774 (ITS) | +++ | - | ++ | +++ | - | ↓ 0.15 | top to middle | - |
Acremonium | charticola | 14755 | MT178775 (ITS) | ++ | - | +++ | ++ | - | ↓ 0.24 | throughout | + |
Acremonium | sclerotigenum | 14916 | MT178776 (ITS) | +++ | +++ | +++ | +++ | - | ↓ 0.22 | throughout | + |
14749 | MT178777 (ITS) | +++ | +++ | +++ | +++ | - | ↓ 0.25 | throughout | -/+ | ||
Akanthomyces | muscarius | 14589 | MT178778 (ITS) | +++ | + | +++ | +++ | +++ | ↓ 0.40 | top to middle | -/+ |
Aspergillus | protuberus | 14928 | MT178779 (ITS) | +++ | - | +++ | +++ | - | ↑ 0.36 | top to middle | - |
Bjerkandera | adusta | 14740 | MT178780 (ITS) | +++ | -/+ | +++ | ++ | - | ↓ 0.15 | bottom to middle | + |
Cadophora | malorum | 14747 | MT178781 (ITS) | +++ | -/+ | +++ | +++ | - | ↓ 0.29 | top to middle | - |
14934 | MT178782 (ITS) | +++ | - | +++ | +++ | - | ↓ 0.33 | top to middle | + | ||
Cladosporium | allicinum | 14578 | MT239332 (act) | +++ | - | +++ | +++ | - | ↓ 0.05 | top to middle | + |
14746 | MT239333 (act) | +++ | - | +++ | + | - | ↓ 0.12 | bottom to middle | + | ||
14572 | MT239331 (act) | +++ | - | +++ | +++ | - | ↑ 0.04 | top | + | ||
Cladosporium | cladosporioides | 14917 | MT239339 (act) | +++ | - | +++ | +++ | - | ↓ 0.07 | top to middle | - |
Cladosporium | halotolerans | 14567 | MT239334 (act) | +++ | - | +++ | +++ | - | ↑ 0.12 | throughout | + |
14577 | MT239335 (act) | +++ | - | +++ | +++ | - | ↑ 0.07 | throughout | + | ||
Cladosporium | perangustum | 14579 | MT239330 (act) | +++ | - | +++ | +++ | - | ↓ 0.34 | top to middle | + |
Cladosporium | pseudocladosporioides | 14566 | MT239336 (act) | +++ | - | +++ | +++ | - | ↑ 0.41 | top | + |
14745 | MT239337 (act) | +++ | - | +++ | +++ | - | ↓ 0.04 | top | + | ||
14924 | MT239338 (act) | +++ | - | +++ | +++ | - | ↑ 0.28 | top | + | ||
Cladosporium | sphaerospermum | 14573 | MT239340 (act) | +++ | - | +++ | +++ | - | ↓ 0.21 | top to middle | + |
14744 | MT239341 (act) | +++ | - | +++ | +++ | - | ↓ 0.04 | top to middle | - | ||
14927 | MT239342 (act) | +++ | - | +++ | +++ | - | ↓ 0.07 | top to middle | + | ||
Cystobasidium | lysinophilum | 14905 | MT154654 (LSU) | +++ | -/+ | ++ | + | - | ↑ 0.11 | bottom | - |
Emericellopsis | sp. | 14936 | MT178783 (ITS) | +++ | - | +++ | ++ | - | ↓ 0.19 | top to middle | + |
Epicoccum | nigrum | 14736 | MT178784 (ITS) | +++ | - | +++ | +++ | - | ↑ 0.05 | bottom | + |
Exophiala | cancerae | 14903 | MT178785 (ITS) | +++ | - | +++ | +++ | - | ↑ 0.05 | throughout | + |
Exophiala | equina | 14908 | MT178786 (ITS) | +++ | - | +++ | +++ | - | ↑ 0.07 | throughout | + |
Filobasidium | uniguttulatum | 14741 | MT154655 (LSU) | +++ | + | ++ | ++ | - | ↓ 0.03 | bottom | -/+ |
Furcasterigmium | furcatum | 14583 | MT178787 (ITS) | +++ | ++ | +++ | +++ | - | ↓ 0.14 | throughout | - |
14926 | MT178788 (ITS) | +++ | ++ | +++ | +++ | - | ↓ 0.11 | throughout | - | ||
Gloeotinia | sp. | 14920 | MT178789 (ITS) | +++ | - | +++ | +++ | + | ↓ 0.50 | throughout | - |
Keissleriella | caudata | 14921 | MT178792 (ITS) | +++ | - | +++ | +++ | - | ↑ 0.12 | top to middle | - |
Moesziomyces | aphidis | 14742 | MT154656 (LSU) | ++ | +++ | ++ | + | - | ↓ 0.13 | bottom | - |
Musicillium | elettariae | 14922 | MT178793 (ITS) | +++ | -/+ | +++ | +++ | - | ↓ 0.21 | throughout | -/+ |
14931 | MT178794 (ITS) | +++ | -/+ | +++ | +++ | - | ↓ 0.11 | throughout | -/+ | ||
Neopyrenochaeta | acicola | 14748 | MT178795 (ITS) | +++ | - | +++ | +++ | - | ↑ 0.36 | bottom to middle | - |
Neopyrenochaeta | fragariae | 14737 | MT178797 (ITS) | ++ | - | + | +++ | +++ | ↓ 0.44 | top | - |
14754 | MT178796 (ITS) | +++ | - | ++ | +++ | - | ↑ 0.18 | bottom to middle | - | ||
Paraphoma | radicina | 14933 | MT178799 (ITS) | +++ | - | +++ | +++ | - | ↓ 0.03 | top | - |
14904 | MT178798 (ITS) | +++ | - | ++ | +++ | - | ↓ 0.17 | top | - | ||
Penicillium | bialowiezense | 14581 | MT162690 (benA) | +++ | - | +++ | +++ | +++ | ↓ 2.71 | top to middle | - |
Penicillium | brevicompactum | 14918 | MT162691 (benA) | +++ | - | +++ | +++ | +++ | ↓ 2.24 | top | -/+ |
14919 | MT162692 (benA) | +++ | - | +++ | +++ | +++ | ↓ 1.66 | top | - | ||
Penicillium | glabrum | 14569 | MT162693 (benA) | +++ | - | +++ | +++ | +++ | ↓ 2.18 | top to middle | - |
Penicillium | verhagenii | 14571 | MT162694 (benA) | +++ | - | +++ | ++ | - | ↓ 0.33 | top to middle | + |
Sarocladium | kiliense | 14582 | MT178800 (ITS) | +++ | ++ | +++ | +++ | - | ↑ 0.02 | throughout | - |
14930 | MT178801 (ITS) | +++ | ++ | +++ | +++ | - | ↑ 0.10 | throughout | - | ||
14935 | MT178802 (ITS) | +++ | ++ | +++ | +++ | - | ↑ 0.05 | throughout | - | ||
Scopulariopsis | brumptii | 14743 | MT178803 (ITS) | +++ | - | +++ | ++ | - | ↑ 0.14 | throughout | + |
Stereum | armeniacum | 14932 | MT178804 (ITS) | +++ | -/+ | ++ | - | - | ↓ 0.79 | top | -/+ |
Trametes | versicolor | 14925 | MT178805 (ITS) | +++ | - | +++ | +++ | ++ | ↓ 1.34 | bottom to middle | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novak Babič, M.; Gunde-Cimerman, N. Water-Transmitted Fungi Are Involved in Degradation of Concrete Drinking Water Storage Tanks. Microorganisms 2021, 9, 160. https://doi.org/10.3390/microorganisms9010160
Novak Babič M, Gunde-Cimerman N. Water-Transmitted Fungi Are Involved in Degradation of Concrete Drinking Water Storage Tanks. Microorganisms. 2021; 9(1):160. https://doi.org/10.3390/microorganisms9010160
Chicago/Turabian StyleNovak Babič, Monika, and Nina Gunde-Cimerman. 2021. "Water-Transmitted Fungi Are Involved in Degradation of Concrete Drinking Water Storage Tanks" Microorganisms 9, no. 1: 160. https://doi.org/10.3390/microorganisms9010160
APA StyleNovak Babič, M., & Gunde-Cimerman, N. (2021). Water-Transmitted Fungi Are Involved in Degradation of Concrete Drinking Water Storage Tanks. Microorganisms, 9(1), 160. https://doi.org/10.3390/microorganisms9010160