The Effect of Migratory Beekeeping on the Infestation Rate of Parasites in Honey Bee (Apis mellifera) Colonies and on Their Genetic Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Experimental Design
2.3. Sampling Dates and Collection
2.4. Varroa Destructor Detection
2.5. Extraction and Purification of DNA and RNA
2.6. Nosema spp. Detection
2.7. Quantification of DWV
2.8. Number of Combs
2.9. Statistical Analysis
2.10. Sampling for Genetic Diversity and Patrilineal Composition of the Colonies
2.11. Microsatellite Amplification and Detection
2.12. Microsatellite Data Analysis
3. Results
3.1. Parasite and Pathogen Assays
3.1.1. Varroa Destructor
3.1.2. Nosema spp.
3.1.3. DWV Loads
3.1.4. Brood Combs
3.1.5. Correlation Analysis
3.1.6. PCA Analysis
3.2. Genetic Diversity and Patrilineal Composition of the Colonies
3.2.1. Genetic Diversity
3.2.2. Patriline Analysis, Queen Replacement, and Drifting Workers
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klein, A.M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 2009, 103, 1579–1588. [Google Scholar] [CrossRef] [PubMed]
- Hung, K.L.J.; Kingston, J.M.; Albrecht, M.; Holway, D.A.; Kohn, J.R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B 2018, 285, 2017–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO Food and Agriculture Organization of the United Nations. Faostat. 2009. Available online: http://faostat.fao.org (accessed on 20 October 2020).
- Lautenbach, S.; Seppelt, R.; Liebscher, J.; Dormann, C.F. Spatial and Temporal Trends of Global Pollination Benefit. PLoS ONE 2012, 7, e35954. [Google Scholar] [CrossRef] [Green Version]
- VanEngelsdorp, D.; Underwood, R.; Caron, D.; Hayes, J., Jr. An estimate of managed colony losses in the winter of 2006–2007: A report commissioned by the Apiary Inspectors of America. Am. Bee J. 2007, 147, 599–603. [Google Scholar]
- VanEngelsdorp, D.; Hayes, J., Jr.; Underwood, R.M.; Pettis, J. A Survey of Honey Bee Colony Losses in the U.S., Fall 2007 to Spring 2008. PLoS ONE 2008, 3, e4071. [Google Scholar] [CrossRef]
- Lee, K.V.; Steinhauer, N.; Rennich, K.; Wilson, M.E.; Tarpy, D.R.; Caron, D.M.; Rose, R.; Delaplane, K.S.; Baylis, K.; Lengerich, E.J.; et al. A national survey of managed honey bee 2013 2014 annual colony losses in the USA. Apidologie 2015, 46, 292–305. [Google Scholar] [CrossRef] [Green Version]
- COLOSS. Welcome, organisational matters, update on colony losses during the last winter, general information on findings and applications. In Proceedings of the 4th COLOSS Conference, Zagreb, Croatia, 3–4 March 2009; Available online: http://www.coloss.org (accessed on 20 October 2020).
- Oldroyd, B.P. What’s killing American honey bees? PLoS Biol. 2007, 5, e168. [Google Scholar] [CrossRef] [Green Version]
- Higes, M.; Martín-Hernández, R.; Martínez-Salvador, A.; Garrido-Bailón, E.; González-Porto, A.V.; Meana, A.; Bernal, J.L.; Noza, M.J.; Bernal, J. A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environ. Microbiol. 2010, 2, 243–250. [Google Scholar] [CrossRef]
- VanEngelsdorp, D.; Meixner, M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 2010, 103, 80–95. [Google Scholar] [CrossRef]
- Dainat, B.; Evans, J.D.; Chen, Y.P.; Gauthier, L.; Neumann, P. Predictive Markers of Honey Bee Colony Collapse. PLoS ONE 2012, 7, e32151. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Imperatriz-Fonseca, V.L.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; et al. Safeguarding pollinators and their values to human well-being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Sammataro, D.; Gerson, U.; Needham, G. Parasitic mites of honey bees: Life history, implications, and impact. Annu. Rev. Entomol. 2000, 45, 519–548. [Google Scholar] [CrossRef]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef] [PubMed]
- Tentcheva, D.; Gauthier, L.; Zappulla, N.; Dainat, B.; Cousserans, F.; Colin, M.E.; Bergoin, M. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl. Environ. Microbiol. 2004, 70, 7185–7191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.P.; Siede, R. Honey bee viruses. Adv. Virus Res. 2007, 70, 33–80. [Google Scholar] [CrossRef] [Green Version]
- Mondet, F.; de Miranda, J.R.; Kretzschmar, A.; Le Conte, Y.; Mercer, A.R. On the Front Line: Quantitative Virus Dynamics in Honeybee (Apis mellifera L.) Colonies along a New Expansion Front of the Parasite Varroa destructor. PLoS Pathog. 2014, 10, e1004323. [Google Scholar] [CrossRef] [Green Version]
- De Miranda, J.R.; Genersch, E. Deformed wing virus. J. Invertebr. Pathol. 2010, 103, S48–S61. [Google Scholar] [CrossRef]
- Klee, J.; Besana, A.M.; Genersch, E.; Gisder, S.; Nanetti, A.; Tam, D.Q.; Chinh, T.X.; Puerta, F.; Ruz, J.M.; Kryger, P.; et al. Widespread dispersal of the Microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 2007, 96, 1–10. [Google Scholar] [CrossRef]
- Paxton, R.; Klee, J.; Korpela, S.; Fries, I. Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 2007, 38, 558–565. [Google Scholar] [CrossRef]
- Higes, M.; Martín-Hernández, R.; Botías, C.; Bailón, E.G.; González-Porto, A.V.; Barrios, L.; Del Nozal, M.J.; Bernal, J.L.; Jiménez, J.J.; Palencia, P.G.; et al. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol. 2008, 10, 2659–2669. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Huang, Z.Y. Nosema ceranae, a newly identified pathogen of Apis mellifera in the USA and Asia. Apidologie 2010, 41, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Cox-Foster, D.L.; Conlan, S.; Holmes, E.C.; Palacios, G.; Evans, J.D.; Moran, N.A.; Quan, P.L.; Briese, T.; Hornig, M.; Geiser, D.M.; et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 2007, 318, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Aronstein, K.A.; Murray, K.D. Chalkbrood disease in honey bees. J. Invertebr. Pathol. 2010, 103, S20–S29. [Google Scholar] [CrossRef]
- Genersch, E. Paenibacillus larvae and American Foulbrood-long since known and still surprising. J. Verbrauch. Lebensm. 2008, 3, 429–434. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef] [PubMed]
- Brodschneider, R.; Crailsheim, K. Nutrition and health in honey bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Mattila, H.R.; Seeley, T.D. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 2007, 317, 362–364. [Google Scholar] [CrossRef] [Green Version]
- VanEngelsdorp, D.; Tarpy, D.R.; Lengerich, E.J.; Pettis, J.S. Idiopathic brood disease syndrome and queen events as precursors of colony mortality in migratory beekeeping operations in the eastern United States. Prev. Vet. Med. 2013, 108, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Jacques, A.; Laurent, M.; EPILOBEE Consortium; Ribière-Chabert, M.; Saussac, M.; Bougeard, S.; Budge, G.E.; Hendrikx, P.; Chauzat, M.P. A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control. PLoS ONE 2017, 12, e0172591. [Google Scholar] [CrossRef] [Green Version]
- Alger, S.A.; Burnham, P.A.; Lamas, Z.S.; Brody, A.K.; Richardson, L.L. Home sick: Impacts of migratory beekeeping on honey bee (Apis mellifera) pests, pathogens, and colony size. PeerJ 2018, 6, e5812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traynor, K.; Pettis, J.; Tarpy, D.; Mullin, C.A.; Frazier, J.L.; Frazier, M.; van Engelsdorp, D. In-hive pesticide exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Sci. Rep. 2016, 6, 33207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simone-Finstrom, M.; Li-Byarlay, H.; Huang, M.; Strand, M.K.; Rueppell, O.; Tarpy, D.R. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Sci. Rep. 2016, 6, 32023. [Google Scholar] [CrossRef] [PubMed]
- Ahn, K.; Xie, X.; Riddle, J.; Pettis, J.; Huang, Z.Y. Effects of Long Distance Transportation on Honey Bee Physiology. Psyche 2012, 2012, 193029. [Google Scholar] [CrossRef]
- Melicher, D.; Wilson, E.S.; Bowsher, J.H.; Peterson, S.S.; Yocum, G.D.; Rinehart, J.P. Long-Distance Transportation Causes Temperature Stress in the Honey Bee, Apis mellifera (Hymenoptera: Apidae). Environ. Entomol. 2019, 48, 691–701. [Google Scholar] [CrossRef]
- Mullin, C.A.; Frazier, M.; Frazier, J.L.; Ashcraft, S.; Simonds, R.; van Engelsdorp, D.; Pettis, J.S. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 2010, 5, e9754. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhou, S.; Huang, Z.Y. Transportation and pollination service increase abundance and prevalence of Nosema ceranae in honey bees (Apis mellifera). J. Apic. Res. 2014, 53, 469–471. [Google Scholar] [CrossRef] [Green Version]
- Jara, L.; Martínez-López, D.; Muñoz, I.; De la Rúa, P. Epidemiological Survey of Ascosphaera apis in Small-Scale Migratory Apis mellifera iberiensis Colonies. Sociobiology 2018, 65, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.L.; Jay, S.C. The effect of colony relocation on loss and disorientation of honeybees. Apidologie 1989, 20, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Fries, I.; Camazine, S. Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie 2001, 32, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Welch, A.; Drummond, F.; Tewari, S.; Averill, A.; Burand, J.P. Presence and prevalence of viruses in local and migratory honeybees (Apis mellifera) in Massachusetts. Appl. Environ. Microbiol. 2009, 75, 7862–7865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- REGA. 2017. Available online: https://www.mapa.gob.es/es/ganaderia/estadisticas/indicadoreseconomicossectordelamiel2017_pub_tcm30-419675.pdf (accessed on 20 October 2020).
- Cánovas, F.; De la Rúa, P.; Serrano, J.; Galián, J. Microsatellite variability reveals beekeeping influences on Iberian honeybee populations. Apidologie 2011, 42, 235–251. [Google Scholar] [CrossRef] [Green Version]
- Jara, L.; Muñoz, I.; Cepero, A.; Martín-Hernández, R.; Serrano, J.; Higes, M.; De la Rúa, P. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies. Sci. Nat. 2015, 102, 9–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spivak, M.; Reuter, G.S. Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 2001, 32, 555–565. [Google Scholar] [CrossRef] [Green Version]
- Chávez-Galarza, J.; Henriques, D.; Johnston, J.S.; Azevedo, J.C.; Patton, J.C.; Muñoz, I.; De la Rúa, P.; Pinto, M.A. Signatures of selection in the Iberian honey bee (Apis mellifera iberiensis) revealed by a genome scan analysis of single nucleotide polymorphisms. Mol. Ecol. 2013, 22, 5890–5907. [Google Scholar] [CrossRef] [Green Version]
- Reed, D.H.; Frankham, R. Correlation between Fitness and Genetic Diversity. Conserv. Biol. 2003, 17, 230–237. [Google Scholar] [CrossRef]
- Spielman, D.; Brook, B.W.; Briscoe, D.A.; Frankham, R. Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv. Genet. 2004, 5, 439–448. [Google Scholar] [CrossRef]
- Whitehorn, P.R.; Tinsley, M.C.; Brown, M.J.F.; Darvill, B.; Goulson, D. Genetic diversity, parasite prevalence and immunity in wild bumblebees. Proc. R. Soc. Lond. B 2011, 278, 1195–1202. [Google Scholar] [CrossRef]
- Jack, C.J.; Lucas, H.M.; Webster, T.C.; Sagili, R.R. Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L.). PLoS ONE. 2016, 11, e0163522. [Google Scholar] [CrossRef] [Green Version]
- Dietemann, V.; Nazzi, F.; Martin, S.J.; Anderson, D.L.; Locke, B.; Delaplane, K.S.; Tannahill, C.; Frey, E.; Ziegelmann, B.; Rosenkranz, P.; et al. Standard methods for varroa research. J. Apic. Res. 2013, 52, 1–54. [Google Scholar] [CrossRef] [Green Version]
- Jara, L.; Rogerio, C.; De la Rúa, P.; Higes, M.; Martín-Hernández, R. Improving the DNA extraction method for pathogen (Nosema spp.) detection in honeybees. In Poster Communication, Proceedings of the Seventh European Conference of Apidology; Eurbee: Cluj-Napoca, Romania, 2016; pp. 7–9. [Google Scholar]
- Highfield, A.C.; El Nagar, A.; Mackinder, L.C.; Noël, L.M.; Hall, M.J.; Martin, S.J.; Schroeder, D.C. Deformed wing virus implicated in overwintering honey bee colony losses. Appl. Environ. Microbiol. 2009, 75, 7212–7220. [Google Scholar] [CrossRef] [Green Version]
- Martín-Hernández, R.; Botías, C.; Bailón, E.G.; Martínez-Salvador, A.; Prieto, L.; Meana, A.; Higes, M. Microsporidia infecting Apis mellifera: Coexistence or competition. Is Nosema ceranae replacing Nosema apis? Environ. Microbiol. 2012, 14, 2127–2138. [Google Scholar] [CrossRef] [PubMed]
- Fries, I.; Chauzat, M.P.; Chen, Y.P.; Doublet, V.; Genersch, E.; Gisder, S.; Higes, M.; McMahon, D.P.; Martín-Hernández, R.; Natsopoulou, M.; et al. Standard methods for Nosema research. J. Apic. Res. 2013, 52, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Chantawannakul, P.; Ward, L.; Boonham, N.; Brown, M. A scientific note on detection of honeybee viruses using real-time PCR (TaqMan) in Varroa mites collected from Thai honeybee (Apis mellifera) apiary. J. Invertebr. Pathol. 2006, 91, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Budge, G.E.; Pietravalle, S.; Brown, M.; Laurenson, L.; Jones, B.; Tomkies, V.; Delaplane, K.S. Pathogens as Predictors of Honey Bee Colony Strength in England and Wales. PLoS ONE 2015, 10, e0133228. [Google Scholar] [CrossRef] [PubMed]
- De Miranda, J.R.; Bailey, L.; Ball, B.V.; Blanchard, P.; Budge, P.E.; Chejanovsky, N.; Chen, Y.-P.; Gauthier, L.; Genersch, E.; de Graaf, D.C.; et al. Standard methods for virus research in Apis mellifera. J. Apic. Res. 2013, 52, 1–56. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: http://www.R-project.org/ (accessed on 20 October 2017).
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 20 October 2017).
- Hernández-García, R.; De la Rúa, P.; Serrano, J. Mating frequency of Apis mellifera iberiensis queens. J. Apic. Res. Bee World. 2009, 48, 121–125. [Google Scholar] [CrossRef]
- Evans, J.D.; Schwarz, R.S.; Chen, Y.P.; Budge, G.; Cornman, R.S.; De la Rúa, P.; de Miranda, J.R.; Foret, S.; Foster, L.; Gauthier, L.; et al. Standard methodologies for molecular research in Apis mellifera. J. Apic. Res. 2013, 52, 1–54. [Google Scholar] [CrossRef] [Green Version]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Rousset, F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Jones, O.; Wang, J. COLONY: A program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 2010, 10, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Cavigli, I.; Daughenbaugh, K.F.; Martin, M.; Lerch, M.; Banner, K.; García, E.; Brutscher, L.M.; Flenniken, M.L. Pathogen prevalence and abundance in honey bee colonies involved in almond pollination. Apidologie 2016, 47, 251–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calis, J.N.M.; Fries, I.; Ryrie, S.C. Population modelling of Varroa jacobsoni Oud. Apidologie 1999, 30, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.J. The role of varroa and viral pathogens in the collapse of honey bee colonies: A modeling approach. J. Appl. Ecol. 2001, 38, 1082–1093. [Google Scholar] [CrossRef] [Green Version]
- Behrens, D.; Huang, Q.; Geßner, C.; Rosenkranz, P.; Frey, E.; Locke, B.; Moritz, R.F.A.; Kraus, F.B. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor. Ecol. Evol. 2011, 1, 451–458. [Google Scholar] [CrossRef]
- Jara, L.; Cepero, A.; Garrido-Bailón, E.; Martín-Hernández, R.; Higes, M.; De la Rúa, P. Linking evolutionary lineage with parasite and pathogen prevalence in the Iberian honey bee. J. Invertebr. Pathol. 2012, 110, 8–13. [Google Scholar] [CrossRef]
- Huang, Q.; Lattorff, H.M.G.; Kryger, P.; Le Conte, Y.; Moritz, R.F.A. A selective sweep in a microsporidian parasite Nosema-tolerant honey bee population, Apis mellifera. Anim. Genet. 2013, 45, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Milbrath, M.O.; van Tran, T.; Huang, W.F.; Solter, L.F.; Tarpy, D.R.; Lawrence, F.; Huang, Z.Y. Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera). J. Invertebr. Pathol. 2015, 125, 9–15. [Google Scholar] [CrossRef]
- Fries, I. Nosema ceranae in European honey bees (Apis mellifera). J. Invertebr. Pathol. 2010, 103, S73–S79. [Google Scholar] [CrossRef]
- Webster, T.C. Nosema apis spore transmission among honey bees. Am. Bee J. 1993, 133, 869–870. [Google Scholar]
- Malone, L.A.; Gatehouse, H.S.; Tregidga, E.L. Effects of Time, Temperature, and Honey on Nosema apis (Microsporidia: Nosematidae), a Parasite of the honeybee, Apis mellifera (Hymenoptera: Apidae). J. Invertebr. Pathol. 2001, 77, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Martín-Hernández, R. Nosema ceranae in Apis mellifera: A 12 years post-detection perspective. Environ. Microbiol. 2018, 20, 1302–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higes, M.; Martín-Hernández, R.; García-Palencia, P.; Marín, P.; Meana, A. Horizontal transmission of Nosema ceranae (Microsporidia) from worker honeybees to queens (Apis mellifera). Environ. Microbiol. Rep. 2009, 1, 495–498. [Google Scholar] [CrossRef]
- Smith, M.L. The honey bee parasite Nosema ceranae: Transmissible via food exchange? PLoS ONE 2012, 7, e43319. [Google Scholar] [CrossRef] [Green Version]
- VanEngelsdorp, D.; Evans, J.D.; Saegerman, C.; Mullin, C.; Haubruge, E.; Nguyen, B.K.; Frazier, M.; Frazier, J.; Cox-Foster, D.; Chen, Y.; et al. Colony collapse disorder: A descriptive study. PLoS ONE 2009, 4, e6481. [Google Scholar] [CrossRef]
- Cornman, R.S.; Tarpy, D.R.; Chen, Y.; Jeffreys, L.; Lopez, D.; Pettis, J.S.; van Engelsdorp, D.; Evans, J.D. Pathogen webs in collapsing honey bee colonies. PLoS ONE 2012, 7, e43562. [Google Scholar] [CrossRef] [Green Version]
- Tentcheva, D.; Gauthier, L.; Bagny, L.; Fievet, J.; Dainat, B.; Cousserans, F.; Colin, M.E.; Bergoin, M. Comparative analysis of deformed wing virus (DWV) RNA in Apis mellifera and Varroa destructor. Apidologie 2006, 37, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Meixner, M.D.; Francis, R.M.; Gajda, A.; Kryger, P.; Andonov, S.; Uzunov, A.; Topolska, G.; Costa, C.; Amiri, E.; Berg, S.; et al. Occurrence of parasites and pathogens in honey bee colonies used in a European genotype-environment-interactions experiment. J. Apic. Res. 2014, 53, 215–229. [Google Scholar] [CrossRef]
- Prisco, G.D.; Zhang, X.; Pennacchio, F.; Caprio, E.; Li, J.; Evans, J.D.; Degrandi-Hoffman, G.; Hamilton, M.; Chen, Y.P. Dynamics of persistent and acute deformed wing virus infections in honey bees, Apis mellifera. Viruses 2011, 3, 2425–2441. [Google Scholar] [CrossRef] [Green Version]
- Bourgeois, A.L.; Rinderer, T.E.; Sylvester, H.A.; Holloway, B.; Oldroyd, B.P. Patterns of Apis mellifera infestation by Nosema ceranae support the parasite hypothesis for the evolution of extreme polyandry in eusocial insects. Apidologie 2012, 43, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.A.; Oldroyd, B.P. Evidence for Intra-Colonial Genetic Variance in Resistance to American Foulbrood of Honey Bees (Apis Mellifera): Further Support for the Parasite/Pathogen Hypothesis for the Evolution of Polyandry. Naturwissenschaften 2003, 90, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Tanner, G.; Lodesani, M.; Maistrello, L.; Neumann, P. Negative correlation between Nosema ceranae spore loads and deformed wing virus infection levels in adult honey bee workers. J. Invertebr. Pathol. 2011, 108, 224–225. [Google Scholar] [CrossRef] [PubMed]
- Runckel, C.; Flenniken, M.L.; Engel, J.C.; Ruby, J.G.; Ganem, D.; Andino, R.; DeRisi, J.L. Temporal Analysis of the Honey Bee Microbiome Reveals Four Novel Viruses and Seasonal Prevalence of Known Viruses, Nosema, and Crithidia. PLoS ONE 2011, 6, e20656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazzi, F.; Brown, S.P.; Annoscia, D.; Del Piccolo, F.; Di Prisco, G.; Varricchio, P.; Della Vedova, G.; Cattonaro, F.; Caprio, E.; Pennacchio, F. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog. 2012, 8, e1002735. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.J.; Hardy, J.; Villalobos, E.; Martín-Hernández, R.; Nikaido, S.; Higes, M. Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically? Environ. Microbiol. Rep. 2013, 5, 506–510. [Google Scholar] [CrossRef] [Green Version]
He | Na | Ne | Pa | |||||
---|---|---|---|---|---|---|---|---|
Colony | T0 | T2 | T0 | T2 | T0 | T2 | T0 | T2 |
UM-M-1 | 0.606 | 0.563 | 5.000 | 4.600 | 2.667 | 2.479 | 0.400 | 0.000 |
UM-M-2 | 0.610 | 0.594 | 4.400 | 4.000 | 2.644 | 2.505 | 0.200 | 0.000 |
UM-M-3 | 0.473 | 0.450 | 5.200 | 3.400 | 2.313 | 2.029 | 0.000 | 0.000 |
UM-M-4 | 0.598 | 0.531 | 5.800 | 4.200 | 2.992 | 2.378 | 0.200 | 0.200 |
UM-M-5 | 0.149 | 0.183 | 2.200 | 2.600 | 1.327 | 1.398 | 0.000 | 0.000 |
PB-M-6 † | 0.539 | N.A. | 4.200 | N.A. | 2.406 | N.A. | 0.000 | N.A. |
PB-M-7 | 0.636 | 0.627 | 6.200 | 6.600 | 3.115 | 2.925 | 0.000 | 0.000 |
PB-M-8 | 0.630 | 0.564 | 5.400 | 5.400 | 3.453 | 2.481 | 0.000 | 0.200 |
PB-M-9 | 0.507 | 0.501 | 4.600 | 4.000 | 2.498 | 2.389 | 0.200 | 0.200 |
PB-M-10 | 0.567 | 0.642 | 4.400 | 4.400 | 2.541 | 3.016 | 0.200 | 0.000 |
Migratory mean | 0.532 | 0.517 | 4.740 | 4.356 | 2.596 | 2.400 | 0.120 | 0.067 |
UM-S-1 | 0.524 | 0.563 | 4.800 | 4.800 | 2.314 | 2.469 | 0.000 | 0.000 |
UM-S-2 | 0.375 | 0.360 | 4.200 | 3.400 | 2.040 | 1.980 | 0.000 | 0.000 |
UM-S-3 | 0.635 | 0.626 | 5.000 | 5.400 | 2.943 | 2.914 | 0.000 | 0.200 |
UM-S-4 | 0.561 | 0.565 | 5.600 | 4.200 | 2.554 | 2.558 | 0.000 | 0.000 |
UM-S-5 | 0.605 | 0.584 | 4.800 | 5.200 | 2.772 | 2.686 | 0.000 | 0.000 |
SO-S-6 | 0.638 | 0.582 | 5.800 | 4.200 | 2.816 | 2.441 | 0.200 | 0.000 |
SO-S-7 | 0.671 | 0.637 | 6.000 | 5.000 | 3.312 | 2.942 | 0.200 | 0.400 |
SO-S-8 | 0.557 | 0.619 | 6.800 | 6.000 | 3.100 | 2.842 | 0.400 | 0.400 |
SO-S-9 | 0.565 | 0.567 | 3.800 | 4.400 | 2.702 | 2.672 | 0.000 | 0.000 |
SO-S-10 | 0.421 | 0.486 | 4.000 | 4.600 | 2.020 | 2.189 | 0.000 | 0.000 |
Stationary mean | 0.555 | 0.559 | 5.080 | 4.720 | 2.657 | 2.569 | 0.080 | 0.100 |
Total mean | 0.543 | 0.539 | 4.910 | 4.547 | 2.626 | 2.489 | 0.100 | 0.084 |
Number Patrilines | Queen Events | Drifting Workers | ||||
---|---|---|---|---|---|---|
Colony | T0 | T2 | T0 | T2 | T0 | T2 |
UM-M-1 | 11 | 11 | 1 | |||
UM-M-2 | 8 | 8 | 1 | |||
UM-M-3 | 17 | 8 | 1 | 2 | ||
UM-M-4 * | 9 F1/7 F2 | 9 F2 | 1 | 3 | 2 | |
UM-M-5 | 7 | 6 | 1 | 1 | ||
PB-M-6 † | 15 | N.A. | N.A. | N.A. | 1 | N.A. |
PB-M-7 * | 12 F1/6 F2 | 13 F3 | 1 | 1 | 1 | 10 |
PB-M-8 | 8 | 14 | 1 | 2 | ||
PB-M-9 | 7 | 8 | 1 | 1 | ||
PB-M-10 | 13 | 8 | 1 | 1 | 1 | |
UM-S-1 | 13 | 13 | 1 | |||
UM-S-2 | 9 | 9 | 2 | |||
UM-S-3 | 13 | 14 | ||||
UM-S-4 | 8 | 8 | 6 | 1 | ||
UM-S-5 | 16 | 18 | ||||
SO-S-6 | 11 | 9 | 3 | |||
SO-S-7 | 15 | 16 | 6 | |||
SO-S-8 | 15 | 17 | 1 | 11 | 3 | |
SO-S-9 | 6 | 5 | 4 | 3 | ||
SO-S-10 | 10 | 11 | 2 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jara, L.; Ruiz, C.; Martín-Hernández, R.; Muñoz, I.; Higes, M.; Serrano, J.; De la Rúa, P. The Effect of Migratory Beekeeping on the Infestation Rate of Parasites in Honey Bee (Apis mellifera) Colonies and on Their Genetic Variability. Microorganisms 2021, 9, 22. https://doi.org/10.3390/microorganisms9010022
Jara L, Ruiz C, Martín-Hernández R, Muñoz I, Higes M, Serrano J, De la Rúa P. The Effect of Migratory Beekeeping on the Infestation Rate of Parasites in Honey Bee (Apis mellifera) Colonies and on Their Genetic Variability. Microorganisms. 2021; 9(1):22. https://doi.org/10.3390/microorganisms9010022
Chicago/Turabian StyleJara, Laura, Carlos Ruiz, Raquel Martín-Hernández, Irene Muñoz, Mariano Higes, José Serrano, and Pilar De la Rúa. 2021. "The Effect of Migratory Beekeeping on the Infestation Rate of Parasites in Honey Bee (Apis mellifera) Colonies and on Their Genetic Variability" Microorganisms 9, no. 1: 22. https://doi.org/10.3390/microorganisms9010022
APA StyleJara, L., Ruiz, C., Martín-Hernández, R., Muñoz, I., Higes, M., Serrano, J., & De la Rúa, P. (2021). The Effect of Migratory Beekeeping on the Infestation Rate of Parasites in Honey Bee (Apis mellifera) Colonies and on Their Genetic Variability. Microorganisms, 9(1), 22. https://doi.org/10.3390/microorganisms9010022