Microbiome Studies from Saudi Arabia over the Last 10 Years: Achievements, Gaps, and Future Directions
Abstract
:1. Introduction
2. Global Trends of Metagenome Studies
2.1. Global Metagenome Studies on Human Health
2.2. Global Metagenome Studies on Environment
2.2.1. Metagenome for Environment and Ecology Surveillance
2.2.2. Metagenome for Surveillance Antimicrobial Resistance
2.3. Global Metagenome Studies on Other Aspects
2.3.1. Metagenome for Food Monitoring
2.3.2. Metagenome for Industrial Applications
2.3.3. Microbiome and Astrobiology
3. Literature Search Criteria and Article Selection to Review Metagenome-Assisted Microbiome Studies from Saudi Arabia
4. Saudi Arabian Microbiome Studies on Human Health
5. Saudi Arabian Microbiome Studies on Animal Health
6. Saudi Arabian Microbiome Studies on the Environment
7. Saudi Arabian Microbiome Studies on Other Aspects
7.1. Studies on Plant Pests
7.2. Bacterial Novel Strains Isolated from Various Parts of Saudi Arabia
8. Conclusions and Future Direction
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.-C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Cullen, C.M.; Aneja, K.K.; Beyhan, S.; Cho, C.E.; Woloszynek, S.; Convertino, M.; McCoy, S.J.; Zhang, Y.; Anderson, M.Z.; Alvarez-Ponce, D.; et al. Emerging Priorities for Microbiome Research. Front. Microbiol. 2020, 11, 136. [Google Scholar] [CrossRef] [Green Version]
- Kumar Awasthi, M.; Ravindran, B.; Sarsaiya, S.; Chen, H.; Wainaina, S.; Singh, E.; Liu, T.; Kumar, S.; Pandey, A.; Singh, L.; et al. Metagenomics for taxonomy profiling: Tools and approaches. Bioengineered 2020, 11, 356–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roumpeka, D.D.; Wallace, R.J.; Escalettes, F.; Fotheringham, I.; Watson, M. A Review of Bioinformatics Tools for Bio-Prospecting from Metagenomic Sequence Data. Front. Genet. 2017, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Zepeda, A.; Godoy-Lozano, E.E.; Raggi, L.; Segovia, L.; Merino, E.; Gutiérrez-Rios, R.M.; Juarez, K.; Licea-Navarro, A.F.; Pardo-Lopez, L.; Sanchez-Flores, A. Analysis of sequencing strategies and tools for taxonomic annotation: Defining standards for progressive metagenomics. Sci. Rep. 2018, 8, 12034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanean, H.; Almazroui, M. Rainfall: Features and Variations over Saudi Arabia, A Review. Climate 2015, 3, 578–626. [Google Scholar] [CrossRef] [Green Version]
- Al-Obaid, S.; Samraoui, B.; Thomas, J.; El-Serehy, H.A.; Alfarhan, A.H.; Schneider, W.; O’Connell, M. An overview of wetlands of Saudi Arabia: Values, threats, and perspectives. Ambio 2016, 46, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzallah, H.K.; Antonisamy, B.R.; Shafee, M.H.; Al-Otaibi, S.T. Temporal trends in the incidence and demographics of cancers, communicable diseases, and non-communicable diseases in Saudi Arabia over the last decade. Saudi Med. J. 2019, 40, 277–286. [Google Scholar] [CrossRef]
- Al-Hanawi, M.K.; Keetile, M. Socio-Economic and Demographic Correlates of Non-communicable Disease Risk Factors Among Adults in Saudi Arabia. Front. Med. 2021, 8, 605912. [Google Scholar] [CrossRef] [PubMed]
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaulke, C.A.; Sharpton, T.J. The influence of ethnicity and geography on human gut microbiome composition. Nat. Med. 2018, 24, 1495–1496. [Google Scholar] [CrossRef]
- Premaraj, T.S.; Vella, R.; Chung, J.; Lin, Q.; Panier, H.; Underwood, K.; Premaraj, S.; Zhou, Y. Ethnic variation of oral microbiota in children. Sci. Rep. 2020, 10, 14788. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.S.; Koller, K.R.; Ramaboli, M.C.; Nesengani, L.T.; Ocvirk, S.; Chen, C.; Flanagan, C.A.; Sapp, F.R.; Merritt, Z.T.; Bhatti, F.; et al. Diet and the Human Gut Microbiome: An International Review. Dig. Dis. Sci. 2020, 65, 723–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zhou, J.; Wang, L. Role and Mechanism of Gut Microbiota in Human Disease. Front. Cell. Infect. Microbiol. 2021, 11, 625913. [Google Scholar] [CrossRef] [PubMed]
- Willis, J.R.; Gabaldón, T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms 2020, 8, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anahtar, M.N.; Gootenberg, D.B.; Mitchell, C.M.; Kwon, D.S. Cervicovaginal Microbiota and Reproductive Health: The Virtue of Simplicity. Cell Host Microbe 2018, 23, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Lu, Y.; Chen, T.; Li, R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front. Cell. Infect. Microbiol. 2021, 11, 631972. [Google Scholar] [CrossRef]
- Khare, R.; Espy, M.J.; Cebelinski, E.; Boxrud, D.; Sloan, L.M.; Cunningham, S.A.; Pritt, B.S.; Patel, R.; Binnicker, M.J. Comparative evaluation of two commercial multiplex panels for detection of gastrointestinal pathogens by use of clinical stool specimens. J. Clin. Microbiol. 2014, 52, 3667–3673. [Google Scholar] [CrossRef] [Green Version]
- Leber, A.L.; Everhart, K.; Balada-Llasat, J.-M.; Cullison, J.; Daly, J.; Holt, S.; Lephart, P.; Salimnia, H.; Schreckenberger, P.C.; DesJarlais, S.; et al. Multicenter Evaluation of BioFire FilmArray Meningitis/Encephalitis Panel for Detection of Bacteria, Viruses, and Yeast in Cerebrospinal Fluid Specimens. J. Clin. Microbiol. 2016, 54, 2251–2261. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, P.; McMillen, T.; Tang, Y.-W.; Babady, N.E. Evaluation of the BioFire FilmArray respiratory panel and the GenMark eSensor respiratory viral panel on lower respiratory tract specimens. J. Clin. Microbiol. 2014, 52, 288–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.-W.; Gonsalves, S.; Sun, J.Y.; Stiles, J.; Gilhuley, K.A.; Mikhlina, A.; Dunbar, S.A.; Babady, N.E.; Zhang, H. Clinical Evaluation of the Luminex NxTAG Respiratory Pathogen Panel. J. Clin. Microbiol. 2016, 54, 1912–1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlaberg, R.; Queen, K.; Simmon, K.; Tardif, K.; Stockmann, C.; Flygare, S.; Kennedy, B.; Voelkerding, K.; Bramley, A.; Zhang, J.; et al. Viral Pathogen Detection by Metagenomics and Pan-Viral Group Polymerase Chain Reaction in Children with Pneumonia Lacking Identifiable Etiology. J. Infect. Dis. 2017, 215, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Blauwkamp, T.A.; Thair, S.; Rosen, M.J.; Blair, L.; Lindner, M.S.; Vilfan, I.D.; Kawli, T.; Christians, F.C.; Venkatasubrahmanyam, S.; Wall, G.D.; et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol. 2019, 4, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Naccache, S.N.; Samayoa, E.; Messacar, K.; Arevalo, S.; Federman, S.; Stryke, D.; Pham, E.; Fung, B.; Bolosky, W.J.; et al. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid. Genome Res. 2019, 29, 831–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, A.C.; Levy, M. New Approaches to Microbiome-Based Therapies. mSystems 2019, 4, e00122-19. [Google Scholar] [CrossRef] [Green Version]
- Barrientos-Durán, A.; Fuentes-López, A.; de Salazar, A.; Plaza-Díaz, J.; García, F. Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis. Nutrients 2020, 12, 419. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Baptista, L.C.; Roberts, L.M.; Jumbo-Lucioni, P.; McMahon, L.L.; Buford, T.W.; Carter, C.S. The Gut Microbiome as a Therapeutic Target for Cognitive Impairment. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 1242–1250. [Google Scholar] [CrossRef]
- Mueller, U.G.; Sachs, J.L. Engineering Microbiomes to Improve Plant and Animal Health. Trends Microbiol. 2015, 23, 606–617. [Google Scholar] [CrossRef] [Green Version]
- Peixoto, R.S.; Harkins, D.M.; Nelson, K.E. Advances in Microbiome Research for Animal Health. Annu. Rev. Anim. Biosci. 2021, 9, 289–311. [Google Scholar] [CrossRef] [PubMed]
- Garlapati, D.; Charankumar, B.; Ramu, K.; Madeswaran, P.; Ramana Murthy, M.V. A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Rev. Environ. Sci. Biotechnol. 2019, 18, 389–411. [Google Scholar] [CrossRef]
- Karsenti, E.; Acinas, S.G.; Bork, P.; Bowler, C.; De Vargas, C.; Raes, J.; Sullivan, M.; Arendt, D.; Benzoni, F.; Claverie, J.-M.; et al. Tara Oceans Consortium. A holistic approach to marine eco-systems biology. PLoS Biol. 2011, 9, e1001177. [Google Scholar] [CrossRef] [PubMed]
- Gorsky, G.; Bourdin, G.; Lombard, F.; Pedrotti, M.L.; Audrain, S.; Bin, N.; Boss, E.; Bowler, C.; Cassar, N.; Caudan, L.; et al. Expanding Tara Oceans Protocols for Underway, Ecosystemic Sampling of the Ocean-Atmosphere Interface During Tara Pacific Expedition (2016–2018). Front. Mar. Sci. 2019, 6, 750. [Google Scholar] [CrossRef] [Green Version]
- Lax, S.; Smith, D.P.; Hampton-Marcell, J.; Owens, S.M.; Handley, K.M.; Scott, N.M.; Gibbons, S.M.; Larsen, P.; Shogan, B.D.; Weiss, S.; et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 2014, 345, 1048–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbons, S.M.; Jones, E.; Bearquiver, A.; Blackwolf, F.; Roundstone, W.; Scott, N.; Hooker, J.; Madsen, R.; Coleman, M.L.; Gilbert, J.A. Human and environmental impacts on river sediment microbial communities. PLoS ONE 2014, 9, e97435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espínola, F.; Dionisi, H.M.; Borglin, S.; Brislawn, C.J.; Jansson, J.K.; Mac Cormack, W.P.; Carroll, J.; Sjöling, S.; Lozada, M. Metagenomic Analysis of Subtidal Sediments from Polar and Subpolar Coastal Environments Highlights the Relevance of Anaerobic Hydrocarbon Degradation Processes. Microb. Ecol. 2018, 75, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Techtmann, S.M.; Hazen, T.C. Metagenomic applications in environmental monitoring and bioremediation. J. Ind. Microbiol. Biotechnol. 2016, 43, 1345–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köchling, T.; Sanz, J.L.; Galdino, L.; Florencio, L.; Kato, M.T. Impact of pollution on the microbial diversity of a tropical river in an urbanized region of northeastern Brazil. Int. Microbiol. 2017, 20, 11–24. [Google Scholar] [CrossRef]
- Imchen, M.; Kumavath, R.; Barh, D.; Vaz, A.; Góes-Neto, A.; Tiwari, S.; Ghosh, P.; Wattam, A.R.; Azevedo, V. Comparative mangrove metagenome reveals global prevalence of heavy metals and antibiotic resistome across different ecosystems. Sci. Rep. 2018, 8, 11187. [Google Scholar] [CrossRef]
- Zhuang, M.; Sanganyado, E.; Li, P.; Liu, W. Distribution of microbial communities in metal-contaminated nearshore sediment from Eastern Guangdong, China. Environ. Pollut. 2019, 250, 482–492. [Google Scholar] [CrossRef]
- Acinas, S.G.; Sánchez, P.; Salazar, G.; Cornejo-Castillo, F.M.; Sebastián, M.; Logares, R.; Royo-Llonch, M.; Paoli, L.; Sunagawa, S.; Hingamp, P.; et al. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun. Biol. 2021, 4, 604. [Google Scholar] [CrossRef]
- Bourhane, Z.; Lanzén, A.; Cagnon, C.; Said, O.B.; Mahmoudi, E.; Coulon, F.; Atai, E.; Borja, A.; Cravo-Laureau, C.; Duran, R. Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum. J. Hazard. Mater. 2021, 421, 126789. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, S.; Gai, Y.; Liu, G.; Jin, T.; Liu, H.; Gram, L.; Strube, M.L.; Fan, G.; Sahu, S.K.; et al. Metagenomic Analysis Reveals Microbial Community Structure and Metabolic Potential for Nitrogen Acquisition in the Oligotrophic Surface Water of the Indian Ocean. Front. Microbiol. 2021, 12, 518865. [Google Scholar] [CrossRef]
- Suttner, B.; Johnston, E.R.; Orellana, L.H.; Rodriguez-R, L.M.; Hatt, J.K.; Carychao, D.; Carter, M.Q.; Cooley, M.B.; Konstantinidis, K.T. Metagenomics as a Public Health Risk Assessment Tool in a Study of Natural Creek Sediments Influenced by Agricultural and Livestock Runoff: Potential and Limitations. Appl. Environ. Microbiol. 2020, 86, e02525-19. [Google Scholar] [CrossRef] [PubMed]
- Hendriksen, R.S.; Munk, P.; Njage, P.; van Bunnik, B.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Pedersen, S.K.; Kjeldgaard, J.; et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 2019, 10, 1124. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Kapley, A. Antibiotic resistance: Global health crisis and metagenomics. Biotechnol. Rep. 2021, 29, e00604. [Google Scholar] [CrossRef] [PubMed]
- Filipic, B.; Novovic, K.; Studholme, D.J.; Malesevic, M.; Mirkovic, N.; Kojic, M.; Jovcic, B. Shotgun metagenomics reveals differences in antibiotic resistance genes among bacterial communities in Western Balkans glacial lakes sediments. J. Water Health 2020, 18, 383–397. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, X.; Qin, J.; Lu, N.; Cheng, G.; Wu, N.; Pan, Y.; Li, J.; Zhu, L.; Wang, X.; et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat. Commun. 2013, 4, 2151. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, D.; Walsh, F. Antibiotic resistance genes across a wide variety of metagenomes. FEMS Microbiol. Ecol. 2016, 92, fiv168. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cao, W.; Liang, S.; Yamasaki, S.; Chen, X.; Shi, L.; Ye, L. Metagenomic characterization of bacterial community and antibiotic resistance genes in representative ready-to-eat food in southern China. Sci. Rep. 2020, 10, 15175. [Google Scholar] [CrossRef]
- Auguet, O.T.; Niehus, R.; Gweon, H.S.; Berkley, J.A.; Waichungo, J.; Njim, T.; Edgeworth, J.D.; Batra, R.; Chau, K.; Swann, J.; et al. Population-level faecal metagenomic profiling as a tool to predict antimicrobial resistance in Enterobacterales isolates causing invasive infections: An exploratory study across Cambodia, Kenya, and the UK. EClinicalMedicine 2021, 36, 100910. [Google Scholar] [CrossRef]
- Naik, O.A.; Shashidhar, R.; Rath, D.; Bandekar, J.R.; Rath, A. Characterization of multiple antibiotic resistance of culturable microorganisms and metagenomic analysis of total microbial diversity of marine fish sold in retail shops in Mumbai, India. Environ. Sci. Pollut. Res. Int. 2018, 25, 6228–6239. [Google Scholar] [CrossRef]
- Noyes, N.R.; Yang, X.; Linke, L.M.; Magnuson, R.J.; Cook, S.R.; Zaheer, R.; Yang, H.; Woerner, D.R. Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems. Sci. Rep. 2016, 6, 24645. [Google Scholar] [CrossRef]
- Coughlan, L.M.; Cotter, P.D.; Hill, C.; Alvarez-Ordóñez, A. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Front. Microbiol. 2015, 6, 672. [Google Scholar] [CrossRef] [Green Version]
- Leonard, S.R.; Mammel, M.K.; Lacher, D.W.; Elkins, C.A. Application of metagenomic sequencing to food safety: Detection of Shiga Toxin-producing Escherichia coli on fresh bagged spinach. Appl. Environ. Microbiol. 2015, 81, 8183–8191. [Google Scholar] [CrossRef] [Green Version]
- Walsh, A.M.; Crispie, F.; Daari, K.; O’Sullivan, O.; Martin, J.C.; Arthur, C.T.; Claesson, M.J.; Scott, K.P.; Cotter, P. D Strain-Level Metagenomic Analysis of the Fermented Dairy Beverage Nunu Highlights Potential Food Safety Risks. Appl. Environ. Microbiol. 2017, 83, e01144-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar-Zepeda, A.; Sanchez-Flores, A.; Quirasco Baruch, M. Metagenomic analysis of a Mexican ripened cheese reveals a unique complex microbiota. Food Microbiol. 2016, 57, 116–127. [Google Scholar] [CrossRef]
- Huang, A.D.; Luo, C.; Pena-Gonzalez, A.; Weigand, M.R.; Tarr, C.L.; Konstantinidis, K.T. Metagenomics of Two Severe Foodborne Outbreaks Provides Diagnostic Signatures and Signs of Coinfection Not Attainable by Traditional Methods. Appl. Environ. Microbiol. 2017, 83, e02577-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottesen, A.; Ramachandran, P.; Reed, E.; White, J.R.; Hasan, N.; Subramanian, P.; Ryan, G.; Jarvis, K.; Grim, C.; Daquiqan, N.; et al. Enrichment dynamics of Listeria monocytogenes and the associated microbiome from naturally contaminated ice cream linked to a listeriosis outbreak. BMC Microbiol. 2016, 16, 275. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Noyes, N.R.; Doster, E.; Martin, J.N.; Linke, L.M.; Magnuson, R.J.; Yang, H.; Geornaras, I.; Woerner, D.R.; Jones, K.L.; et al. Use of Metagenomic Shotgun Sequencing Technology to Detect Foodborne Pathogens within the Microbiome of the Beef Production Chain. Appl. Environ. Microbiol. 2016, 82, 2433–2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley, L.; O’Sullivan, D.J.; Daly, D.; O’Sullivan, O.; Burdikova, Z.; Vana, R.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; McSweeney, P.L.H.; et al. Thermus and the Pink Discoloration Defect in Cheese. mSystems 2016, 1, e00023-16. [Google Scholar] [CrossRef] [Green Version]
- De Filippis, F.; Parente, E.; Ercolini, D. Metagenomics insights into food fermentations. Microb. Biotechnol. 2017, 10, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Leech, J.; Cabrera-Rubio, R.; Walsh, A.M.; Macori, G.; Walsh, C.J.; Barton, W.; Finnegan, L.; Crispie, F.; O’Sullivan, O.; Claesson, M.J.; et al. Fermented-Food Metagenomics Reveals Substrate-Associated Differences in Taxonomy and Health-Associated and Antibiotic Resistance Determinants. mSystems 2020, 5, e00522-20. [Google Scholar] [CrossRef]
- Lorenz, P.; Eck, J. Metagenomics and industrial applications. Nat. Rev. Microbiol. 2005, 3, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Prayogo, F.A.; Budiharjo, A.; Kusumaningrum, H.P.; Wijanarka, W.; Suprihadi, A.; Nurhayati, N. Metagenomic applications in exploration and development of novel enzymes from nature: A review. J. Genet. Eng. Biotechnol. 2020, 18, 39. [Google Scholar] [CrossRef] [PubMed]
- Pabbathi, N.P.P.; Velidandi, A.; Tavarna, T.; Gupta, S.; Raj, R.S.; Gandam, P.K.; Baadhe, R.R. Role of metagenomics in prospecting novel endoglucanases, accentuating functional metagenomics approach in second-generation biofuel production: A review. Biomass Convers. Biorefin. 2021, 7, 1–28. [Google Scholar] [CrossRef]
- Bashir, A.K.; Wink, L.; Duller, S.; Schwendner, P.; Cockell, C.; Rettberg, P.; Mahnert, A.; Beblo-Vranesevic, K.; Bohmeier, M.; Rabbow, E.; et al. Taxonomic and functional analyses of intact microbial communities thriving in extreme, astrobiology-relevant, anoxic sites. Microbiome 2021, 9, 50. [Google Scholar] [CrossRef]
- Peimbert, M.; Alcaraz, L.D.; Bonilla-Rosso, G.; Olmedo-Alvarez, G.; García-Oliva, F.; Segovia, L.; Eguiarte, L.E.; Souza, V. Comparative metagenomics of two microbial mats at Cuatro Ciénegas Basin I: Ancient lessons on how to cope with an environment under severe nutrient stress. Astrobiology 2012, 12, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Be, N.A.; Avila-Herrera, A.; Allen, J.E.; Singh, N.; Checinska Sielaff, A.; Jaing, C.; Venkateswaran, K. Whole metagenome profiles of particulates collected from the International Space Station. Microbiome 2017, 5, 81. [Google Scholar] [CrossRef]
- Bashir, M.; Ahmed, M.; Weinmaier, T.; Ciobanu, D.; Ivanova, N.; Pieber, T.R.; Vaishampayan, P.A. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens. Front. Microbiol. 2016, 7, 1321. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.K.; Wood, J.M.; Karouia, F.; Venkateswaran, K. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. Microbiome 2018, 6, 204. [Google Scholar] [CrossRef] [Green Version]
- Mardanov, A.V.; Babykin, M.M.; Beletsky, A.V.; Grigoriev, A.I.; Zinchenko, V.V.; Kadnikov, V.V.; Kirpichnikov, M.P.; Mazur, A.M.; Nedoluzhko, A.V.; Novikova, N.D.; et al. Metagenomic Analysis of the Dynamic Changes in the Gut Microbiome of the Participants of the MARS-500 Experiment, Simulating Long Term Space Flight. Acta Nat. 2013, 5, 116–125. [Google Scholar] [CrossRef]
- Avila-Herrera, A.; Thissen, J.; Urbaniak, C.; Be, N.A.; Smith, D.J.; Karouia, F.; Mehta, S.; Venkateswaran, K.; Jaing, C. Crewmember microbiome may influence microbial composition of ISS habitable surfaces. PLoS ONE 2020, 15, e0231838. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.D.; O’Rourke, A.; Lorenzi, H.; Bebout, B.M.; Dupont, C.L.; Everroad, R.C. Reference-guided metagenomics reveals genome-level evidence of potential microbial transmission from the ISS environment to an astronaut’s microbiome. iScience 2021, 24, 102114. [Google Scholar] [CrossRef]
- Góes-Neto, A.; Kukharenko, O.; Orlovska, I.; Podolich, O.; Imchen, M.; Kumavath, R.; Kato, R.B.; Carvalho, D.S.; Tiwari, S.; Brenig, B.; et al. Shotgun metagenomic analysis of kombucha mutualistic community exposed to Mars-like environment outside the International Space Station. Environ. Microbiol. 2021, 23, 3727–3742. [Google Scholar] [CrossRef]
- Orlovska, I.; Podolich, O.; Kukharenko, O.; Zaets, I.; Reva, O.; Khirunenko, L.; Zmejkoski, D.; Rogalsky, S.; Barh, D.; Tiwari, S.; et al. Bacterial Cellulose Retains Robustness but Its Synthesis Declines After Exposure to a Mars-like Environment Simulated Outside the International Space Station. Astrobiology 2021, 21, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Wood, J.M.; Mhatre, S.S.; Venkateswaran, K. Metagenome to phenome approach enables isolation and genomics characterization of Kalamiella piersonii gen. nov.; sp. nov. from the International Space Station. Appl. Microbiol. Biotechnol. 2019, 103, 4483–4497. [Google Scholar] [CrossRef]
- Yasir, M.; Angelakis, E.; Bibi, F.; Azhar, E.I.; Bachar, D.; Lagier, J.-C.; Gaborit, B.; Hassan, A.M.; Jiman-Fatani, A.A.; Alshali, K.Z.; et al. Comparison of the gut microbiota of people in France and Saudi Arabia. Nutr. Diabetes 2015, 5, e153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelakis, E.; Bachar, D.; Yasir, M.; Musso, D.; Djossou, F.; Melenotte, C.; Robert, C.; Davoust, B.; Gaborit, B.; Azhar, E.I.; et al. Comparison of the gut microbiota of obese individuals from different geographic origins. New Microbes New Infect. 2018, 27, 40–47. [Google Scholar] [CrossRef]
- Bittar, F.; Bibi, F.; Ramasamy, D.; Lagier, J.-C.; Azhar, E.I.; Jiman-Fatani, A.A.; Al-Ghamdi, A.K.; Nguyen, T.T.; Yasir, M.; Fournier, P.-E.; et al. Non contiguous-finished genome sequence and description of Bacillus jeddahensis sp. nov. Stand. Genom. Sci. 2015, 10, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khelaifia, S.; Lagier, J.-C.; Bibi, F.; Azhar, E.I.; Croce, O.; Padmanabhan, R.; Jiman-Fatani, A.A.; Yasir, M.; Robert, C.; Andrieu, C.; et al. Microbial Culturomics to Map Halophilic Bacterium in Human Gut: Genome Sequence and Description of Oceanobacillus jeddahense sp. nov. Omics 2016, 20, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Kieu, H.T.; Garrigou, N.; Fadlane, A.; Brechard, L.; Armstrong, N.; Decloquement, P.; Yasir, M.; Azhar, E.I.; Al-Masaudi, S.B.; Lagier, J.-C.; et al. Clostridium culturomicium sp. nov. and Clostridium jeddahitimonense sp. nov.; novel members of the Clostridium genus isolated from the stool of an obese Saudi Arabian. Curr. Microbiol. 2021, 74, 3586–3595. [Google Scholar] [CrossRef]
- Al-Obaida, M.I.; Al-Nakhli, A.K.M.; Arif, I.A.; Faden, A.; Al-Otaibi, S.; Al-Eid, B.; Ekhzaimy, A.; Khan, H.A. Molecular identification and diversity analysis of dental bacteria in diabetic and non-diabetic females from Saudi Arabia. Saudi J. Biol. Sci. 2020, 27, 358–362. [Google Scholar] [CrossRef]
- Abdulhaq, A.; Halboub, E.; Homeida, H.E.; Kumar Basode, V.; Ghzwani, A.H.; Zain, K.A.; Baraniya, D.; Chen, T.; Al-Hebshi, N.N. Tongue microbiome in children with autism spectrum disorder. J. Oral. Microbiol. 2021, 13, 1936434. [Google Scholar] [CrossRef]
- Alzahrani, F.M.; Al-Amri, A.; Shaikh, S.S.; Alomar, A.I.; Acharya, S.; Aldossary, M.A.; Hassan, F.M. Direct DNA Sequencing-Based Analysis of Microbiota Associated with Hematological Malignancies in the Eastern Province of Saudi Arabia. BioMed Res. Int. 2021, 2021, 4202019. [Google Scholar] [CrossRef]
- Aljabr, W.; Alruwaili, M.; Penrice-Randal, R.; Alrezaihi, A.; Harrison, A.J.; Ryan, Y.; Bentley, E.; Jones, B.; Alhatlani, B.Y.; AlShahrani, D.; et al. Amplicon and Metagenomic Analysis of Middle East Respiratory Syndrome (MERS) Coronavirus and the Microbiome in Patients with Severe MERS. mSphere 2021, 21, e0021921. [Google Scholar] [CrossRef]
- Khan, I.; Yasir, M.; Farman, M.; Kumosani, T.; AlBasri, S.F.; Bajouh, O.S.; Azhar, E.I. Evaluation of gut bacterial community composition and antimicrobial resistome in pregnant and non-pregnant women from Saudi population. Infect. Drug Resist. 2019, 12, 1749–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Moaleem, M.M.; Porwal, A.; Al Ahmari, N.M.; Shariff, M.; Homeida, H.; Khalid, A. Khat Chewing Induces a Floral Shift in Dental Material-Associated Microbiota: A Preliminary Study. Med. Sci. Monit. 2020, 26, e918219. [Google Scholar] [CrossRef] [PubMed]
- Badger-Emeka, L.I.; AlJaziri, Z.Y.; Almulhim, C.F.; Aldrees, A.S.; AlShakhs, Z.H.; AlAithan, R.I.; Alothman, F.A. Vitamin D Supplementation in Laboratory-Bred Mice: An In Vivo Assay on Gut Microbiome and Body Weight. Microbiol. Insights 2020, 13, 1178636120945294. [Google Scholar] [CrossRef] [PubMed]
- Elbir, H.; Almathen, F.; Alhumam, N.A. A glimpse of the bacteriome of Hyalomma dromedarii ticks infesting camels reveals human Helicobacter pylori pathogen. J. Infect. Dev. Ctries. 2019, 13, 1001–1012. [Google Scholar] [CrossRef]
- Elbir, H.; Almathen, F.; Elnahas, A. Low genetic diversity among Francisella-like endosymbionts within different genotypes of Hyalomma dromedarii ticks infesting camels in Saudi Arabia. Vet. World 2020, 13, 1462–1472. [Google Scholar] [CrossRef]
- Alreshidi, M.M.; Veettil, V.N.; Noumi, E.; Campo, R.D.; Snoussi, M. Description of microbial diversity associated with ticks Hyalomma dromedarii (Acari: Ixodidae) isolated from camels in Hail region (Saudi Arabia) using massive sequencing of 16S rDNA. Bioinformation 2020, 16, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidy, H.; Essack, M.; Malas, T.B.; Bokhari, A.; Motwalli, O.; Kamanu, F.K.; Jamhor, S.A.; Mokhtar, N.A.; Antunes, A.; Simões, M.F.; et al. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea. Gene 2016, 576, 626–636. [Google Scholar] [CrossRef] [Green Version]
- Al-Quwaie, D.A. Bacterial community dynamics with rhizosphere of Calotropis procera and Senna alexandrina desert plants in Saudi Arabia. Bioinformation 2020, 16, 567–578. [Google Scholar] [CrossRef]
- Yasir, M.; Azhar, E.I.; Khan, I.; Bibi, F.; Baabdullah, R.; Al-Zahrani, I.A.; Al-Ghamdi, A.K. Composition of soil microbiome along elevation gradients in southwestern highlands of Saudi Arabia. BMC Microbiol. 2015, 15, 65. [Google Scholar] [CrossRef] [Green Version]
- Gat, D.; Mazar, Y.; Cytryn, E.; Rudich, Y. Origin-Dependent Variations in the Atmospheric Microbiome Community in Eastern Mediterranean Dust Storms. Environ. Sci. Technol. 2017, 51, 6709–6718. [Google Scholar] [CrossRef]
- Yasir, M.; Qureshi, A.K.; Khan, I.; Bibi, F.; Rehan, M.; Khan, S.B.; Azhar, E.I. Culturomics-Based Taxonomic Diversity of Bacterial Communities in the Hot Springs of Saudi Arabia. Omics 2019, 23, 17–27. [Google Scholar] [CrossRef]
- Yasir, M.; Qureshi, A.K.; Srinivasan, S.; Ullah, R.; Bibi, F.; Rehan, M.; Khan, S.B.; Azhar, E.I. Domination of Filamentous Anoxygenic Phototrophic Bacteria and Prediction of Metabolic Pathways in Microbial Mats from the Hot Springs of Al Aridhah. Folia Biol. 2020, 66, 24–35. [Google Scholar]
- Li, D.; Sharp, J.O.; Saikaly, P.E.; Ali, S.; Alidina, M.; Alarawi, M.S.; Keller, S.; Hoppe-Jones, C.; Drewes, J.E. Dissolved organic carbon influences microbial community composition and diversity in managed aquifer recharge systems. Appl. Environ. Microbiol. 2012, 78, 6819–6828. [Google Scholar] [CrossRef] [Green Version]
- Al-Jassim, N.; Ansari, M.I.; Harb, M.; Hong, P.Y. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation? Water Res. 2015, 73, 277–290. [Google Scholar] [CrossRef] [Green Version]
- Bibi, F.; Alvi, S.A.; Al-Sofyani, A.; Naseer, M.I.; Yasir, M.; Azhar, E.I. Pyrosequencing reveals sponge specific bacterial communities in marine sponges of Red Sea, Saudi Arabia. Saudi J. Biol. Sci. 2020, 27, 67–73. [Google Scholar] [CrossRef]
- Albokari, M.; Mashhour, I.; Alshehri, M.; Boothman, C.; Al-Enezi, M. Characterization of microbial communities in heavy crude oil from Saudi Arabia. Ann. Microbiol. 2015, 65, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed, W.S.; Ibrahim, R.A. Diversity and phylogenetic analysis of endosymbiotic bacteria of the date palm root borer Oryctes agamemnon (Coleoptera: Scarabaeidae). BMC Microbiol. 2015, 15, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moussa, T.A.; Al-Zahrani, H.S.; Almaghrabi, O.A.; Sabry, N.M.; Fuller, M.P. Metagenomic analysis of fungal taxa inhabiting Mecca region, Saudi Arabia. Genom. Data 2016, 9, 126–127. [Google Scholar] [CrossRef] [Green Version]
- Soltani, R.; Lkbel, C.; Hamouda, M.H.B. Descriptive study of damage caused by the rhinoceros beetle, Oryctes agamemnon, and its influence on date palm oases of Rjim Maatoug, Tunisia. J. Insect Sci. 2008, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Sefrji, F.O.; Michoud, G.; Marasco, R.; Merlino, G.; Daffonchio, D. Mangrovivirga cuniculi gen. nov.; sp. nov.; a moderately halophilic bacterium isolated from bioturbated Red Sea mangrove sediment, and proposal of the novel family Mangrovivirgaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2021, 71, 004866. [Google Scholar] [CrossRef]
- Sefrji, F.O.; Marasco, R.; Michoud, G.; Seferji, K.A.; Merlino, G.; Daffonchio, D. Kaustia mangrovi gen. nov.; sp. nov. isolated from Red Sea mangrove sediments belongs to the recently proposed Parvibaculaceae family within the order Rhizobiales. Int. J. Syst. Evol. Microbiol. 2021, 71, 004806. [Google Scholar] [CrossRef]
- Röttig, A.; Atasayar, E.; Meier-Kolthoff, J.P.; Spröer, C.; Schumann, P.; Schauer, J.; Steinbüchel, A. Streptomyces jeddahensis sp. nov.; an oleaginous bacterium isolated from desert soil. Int. J. Syst. Evol. Microbiol. 2017, 67, 1676–1682. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.W.; Salam, N.; Hua, Z.S.; Liu, B.B.; Han, M.X.; Fang, B.Z.; Wang, D.; Xiao, M.; Hozzein, W.N.; Li, W.J. Siccirubricoccus deserti gen. nov.; sp. nov.; a proteobacterium isolated from a desert sample. Int. J. Syst. Evol. Microbiol. 2017, 67, 4862–4867. [Google Scholar] [CrossRef] [PubMed]
- Wübbeler, J.H.; Oppermann-Sanio, F.B.; Ockenfels, A.; Röttig, A.; Osthaar-Ebker, A.; Verbarg, S.; Poehlein, A.; Madkour, M.H.; Al-Ansari, A.M.; Almakishah, N.H.; et al. Sphingomonas jeddahensis sp. nov.; isolated from Saudi Arabian desert soil. Int. J. Syst. Evol. Microbiol. 2017, 67, 4057–4063. [Google Scholar] [CrossRef]
- Yang, Z.W.; Salam, N.; Mohany, M.; Chinnathambi, A.; Alharbi, S.A.; Xiao, M.; Hozzein, W.N.; Li, W.J. Microbacterium album sp. nov. and Microbacterium deserti sp. nov.; two halotolerant actinobacteria isolated from desert soil. Int. J. Syst. Evol. Microbiol. 2018, 68, 217–222. [Google Scholar] [CrossRef]
- Li, L.Y.; Yang, Z.W.; Asem, M.D.; Salam, N.; Xiao, M.; Alkhalifah, D.H.M.; Hozzein, W.N.; Nie, G.X.; Li, W.J. Georgenia alba sp. nov.; a novel halotolerant actinobacterium isolated from a desert sand sample. Antonie Van Leeuwenhoek 2019, 112, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Hozzein, W.N.; Yang, Z.W.; Alharbi, S.A.; Alsakkaf, W.A.A.; Asem, M.D.; Xiao, M.; Salam, N.; Li, W.J. Georgenia deserti sp. nov.; a halotolerant actinobacterium isolated from a desert sample. Int. J. Syst. Evol. Microbiol. 2018, 68, 1135–1139. [Google Scholar] [CrossRef]
- Hussain, F.; Khan, I.U.; Habib, N.; Xian, W.D.; Hozzein, W.N.; Zhang, Z.D.; Zhi, X.Y.; Li, W.J. Deinococcus saudiensis sp. nov.; isolated from desert. Int. J. Syst. Evol. Microbiol. 2016, 66, 5106–5111. [Google Scholar] [CrossRef] [PubMed]
- Almuhayawi, M.S.; Mohamed, M.S.M.; Abdel-Mawgoud, M.; Selim, S.; Al Jaouni, S.K.; AbdElgawad, H. Bioactive Potential of Several Actinobacteria Isolated from Microbiologically Barely Explored Desert Habitat, Saudi Arabia. Biology 2021, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-W.; Kuo, C.-H.; Kuo, F.-C.; Wang, Y.-K.; Hsu, W.-H.; Yu, F.-J.; Hu, H.-M.; Hsu, P.-I.; Wang, J.-Y.; Wu, D.C. Fecal microbiota transplantation: Review and update. J. Formos Med. Assoc. 2019, 118, S23–S31. [Google Scholar] [CrossRef]
- Ooijevaar, R.E.; Terveer, E.M.; Verspaget, H.W.; Kuijper, E.J.; Keller, J.J. Clinical Application and Potential of Fecal Microbiota Transplantation. Annu. Rev. Med. 2019, 70, 335–351. [Google Scholar] [CrossRef] [Green Version]
- Dubilier, N.; McFall-Ngai, M.; Zhao, L. Microbiology: Create a global microbiome effort. Nature 2015, 526, 631–634. [Google Scholar] [CrossRef] [Green Version]
Broad Areas of Global Interest | Sample | Outcome of the Metagenome Study | Ref. |
---|---|---|---|
Metagenome studies on human health | Disease diagnosis and management | ||
Gut microbiota | Microbiota composition indicates Parkinson’s disease, Alzheimer’s disease, hypertension, cognitive impairments, atherosclerosis, obesity, diabetes, non-alcoholic fatty liver disease, inflammatory bowel disease, colorectal cancer | [14,25,26,27] | |
Oral microbiota | Microbiota composition indicates Periodontitis, dental caries, oral cancer, esophageal cancer, pancreatic cancer, cystic fibrosis, cardiovascular disease, rheumatoid arthritis, Alzheimer’s disease, diabetes | [15] | |
Vaginal microbiome | Microbiota composition indicates female reproductive health | [16,17] | |
Cerebrospinal fluids | Microbiota composition indicates encephalitis, meningitis | [19] | |
Respiratory tract | Microbiota composition indicates respiratory tract infection | [20,21] | |
Metagenome studies on environment | Antimicrobial resistance | ||
Water treatment plants | Abundance and diversity of antimicrobial resistance genes found | [44,45] | |
Mangrove and glacial lakes sediments | Abundance and diversity of antimicrobial resistance genes found | [38,46] | |
Ready-to-eat foods | Antimicrobial resistance genes detected | [49] | |
Fecal microbiota | Antimicrobial resistance genes detected | [50] | |
Beef production wastes | Antimicrobial resistance genes detected | [52] | |
Environmental monitoring | |||
Human-occupied home | Microbiome uniquely differs for each family | [33] | |
Tongue River sediment | Microbial community indicates presence of town waste and methane by-products | [34] | |
Soil microbiome | Presence of Rhodanobacter and Rhodocyclaceae indicates presence of uranium | [36] | |
Soil, river, lake, seashore, mangrove, ocean water, and sediments | Microbial community indicates water quality, various pollutants, and chemical contaminations in respective biomes | [37,38,39,40,41,42] | |
Metagenome studies on other aspects | Food monitoring | ||
Mexican Cotija cheese | Predominant genera are: Lactobacillus, Leuconostoc, and Weissella | [56] | |
Ice cream samples | Identification of L. monocytogenes, the causal organism for Listeriosis outbreak | [58] | |
Beef processing waste | Presence of S. enterica, E. coli, and C. botulinum | [59] | |
Fermentation samples | Microbial community indicates stage of fermentation and the microbes that are beneficial to health | [61,62] | |
Industrial applications | |||
Environmental samples | Identification of bacterial strains producing novel biocatalysts, antimicrobial metabolites, and industrial enzymes | [53,63,64,65] | |
Astrobiology | |||
International Space Station (ISS) | Corynebacterium ihumii GD7 is the dominant species in ISS | [68] | |
International Space Station (ISS) | Identification of novel strain Kalamiella piersonii gen. nov., sp. nov in ISS | [76] | |
Spacecraft assembly cleanroom samples | Identification of several pathogenic bacteria, antimicrobial resistance genes, and metal resistance genes | [69,70] | |
Kombucha mutualistic community | Enable the understanding of how and which bacterial community members survive under a Mars-like environment | [74,75] |
Broad Areas of Global Interest | Specific Area of Study | Sample | Outcome of the Metagenome Study | Ref. |
---|---|---|---|---|
Metagenome studies on human health | Obesity | Fecal microbiota | Abundance of Firmicutes in obese cases | [77] |
Gut microbiota | Abundance of Lactobacillus sp. in obese samples | [78] | ||
Fecal microbiota | Isolation of Bacillus jeddahensis sp. nov. (JCE(T)) and Oceanobacillus jeddahense sp. nov. (S5T) from obese samples | [79,80] | ||
Pregnancy | Gut microbiota | Abundance of Faecalibacterium spp. and Eubacterium spp. in pregnant women | [86] | |
Diabetes | Sub-gingival samples | Aggregatibacter actinomycetemcomitans and Capnocytophaga ochracea are predominant in diabetic samples | [82] | |
Autism Spectrum Disorder (ASD) | Tongue microbiota | Abundance of Actinomyces odontolyticus and Actinomyces lingnae are increased and Campylobacter concisus and Streptococcus vestibularis are decreased in ASD | [83] | |
Bloodstream infections | Blood cancer patient’s blood sample | Abundance of E. coli and K. pneumonia in the samples | [84] | |
MERS-CoV | Oropharyngeal and throat swabs | Dominance of Acinetobacter baumannii, Pseudomonas aeruginosa, Streptococcus pneumonia, and several ARGs | [85] | |
Metagenome studies on animal health | Vitamin D deficiency | Mice gut microbiota | Decline of P. aeruginosa abandance under high vitamin D dose | [88] |
Microbial diversity | Camel parasite ticks | Abundance of Proteobacteria | [89,91] | |
Metagenome studies on environment | Microbial diversity | Rhizosphere microbiome, Red Sea | Predominance of Proteobacteria, Bacteroidetes, and Firmicutes | [92] |
Rhizosphere microbiota desert | Predominance of Pseudomonas stutzeri and Virgibacillus koreensis provide saline resistance in desert plant | [93] | ||
Rhizosphere microbiota desert | Marinobacter, Porticoccus, and Alcanivorax genera provide pathogen resistance in desert plant | [93] | ||
South-western highlands | Predominance of Proteobacteria, Actinobacteria, and Acidobacteria | [94] | ||
Dust storm | Predominance of Proteobacteria and decline of Actinobacteria | [95] | ||
Hot spring sediments | Dominance of Bacillus, Chloroflexus, and Brevibacillus | [96,97] | ||
Taif River water | Dominance of Proteobacteria | [98] | ||
local waste water treatment plant | Dominance of several opportunistic pathogens | [99] | ||
Red sea marine sponge | Dominance of Proteobacteria in sponges may be a biosensor for environmental monitoring | [100] | ||
Oil samples | Prevalence of Bacilli in crude oil and Flavobacteria in oil sludge | [101] | ||
O. agamemnon larval mid-gut | Presence of Enterobacteriaceae, Shewanellaceae, and Cellulomonadaceae | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, K.J. Microbiome Studies from Saudi Arabia over the Last 10 Years: Achievements, Gaps, and Future Directions. Microorganisms 2021, 9, 2021. https://doi.org/10.3390/microorganisms9102021
Alzahrani KJ. Microbiome Studies from Saudi Arabia over the Last 10 Years: Achievements, Gaps, and Future Directions. Microorganisms. 2021; 9(10):2021. https://doi.org/10.3390/microorganisms9102021
Chicago/Turabian StyleAlzahrani, Khalid J. 2021. "Microbiome Studies from Saudi Arabia over the Last 10 Years: Achievements, Gaps, and Future Directions" Microorganisms 9, no. 10: 2021. https://doi.org/10.3390/microorganisms9102021