The In Vitro Potential of 1-(1H-indol-3-yl) Derivatives against Candida spp. and Aspergillus niger as Tyrosinase Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.2. General Synthetic Procedure for 1-(1H-indol-3-yl)ethanone Derivatives (2a–b and 2d–g)
2.3. General Synthetic Procedure for Compounds 3a–c, 3di, 3e–g
2.4. Synthetic Procedure for 3-(4-Benzylpiperidin-1-yl)-1-(6-hydroxy-1H-indol-3-yl) Propan-1-one (3d)
2.5. Microbial Strains and Culture Conditions
2.6. Susceptibility Studies
2.7. Erythrocytes Isolation and Haemolysis Assay
2.8. Partial Purification of Tyrosinase, Total Protein Content and Enzymes Activity
2.9. Partial Purification of Tyrosinase, Total Protein Content and Enzyme Activity
3. Results
3.1. Chemistry
3.2. Antifungal Activity of 1-(1H-indol-3-yl) Derivatives
3.3. Cytotoxicity Studies by Haemolytic Activity
3.4. Effect of 1-(1H-indol-3-yl) Derivatives on Tyrosinase Enzymatic Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Odds, F.C.; Brown, A.J.; Gow, N.A. Antifungal agents: Mechanisms of action. Trends Microbiol. 2003, 11, 272–279. [Google Scholar] [CrossRef]
- Yapar, N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk Manag. 2014, 10, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, A.L.; Júnior, J.N.A.; Guinea, J. Emerging multidrug-resistant Candida species. Curr. Opin. Infect. Dis. 2017, 30, 528–538. [Google Scholar] [CrossRef]
- Wu, Y.; Du, S.; Johnson, J.L.; Tung, H.Y.; Landers, C.T.; Liu, Y.; Seman, B.G.; Wheeler, R.T.; Costa-Mattioli, M.; Kheradmand, F.; et al. Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nat. Commun. 2019, 10, 58. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Jimenez, A.; Teruel-Puche, J.A.; Garcia-Ruiz, P.A.; Berna, J.; Rodríguez-López, J.N.; Tudela, J.; Garcia-Canovas, F. Action of 2,2’,4,4’-tetrahydroxybenzophenone in the biosynthesis pathway of melanin. Int. J. Biol. Macromol. 2017, 98, 622–629. [Google Scholar] [CrossRef]
- Chung, B.Y.; Kim, S.Y.; Jung, J.M.; Won, C.H.; Choi, J.H.; Lee, M.W.; Chang, S.E. The antimycotic agent clotrimazole inhibits melanogenesis by accelerating ERK and PI3K-/Akt-mediated tyrosinase degradation. Exp. Dermatol. 2015, 24, 386–388. [Google Scholar] [CrossRef]
- Taslimi, P. Evaluation of in vitro inhibitory effects of some natural compounds on tyrosinase activity and molecular docking study: Antimelanogenesis potential. J. Biochem. Mol. Toxic. 2020, 34, e22566. [Google Scholar] [CrossRef] [PubMed]
- Cairone, F.; Simonetti, G.; Orekhova, A.; Casadei, M.A.; Zengin, G.; Cesa, S. Health Potential of Clery Strawberries: Enzymatic Inhibition and Anti-Candida Activity Evaluation. Molecules 2021, 26, 1731. [Google Scholar] [CrossRef] [PubMed]
- D’Arrigo, M.; Bisignano, C.; Irrera, P.; Smeriglio, A.; Zagami, R.; Trombetta, D.; Romeo, O.; Mandalari, G. In vitro evaluation of the activity of an essential oil from Pistacia vera L. variety Bronte hull against Candida sp. Bmc. Complem. Altern. Med. 2019, 19, 6. [Google Scholar] [CrossRef]
- Buemi, M.R.; De Luca, L.; Ferro, S.; Gitto, R. Targeting GluN2B-containing N-Methyl-D-aspartate receptors: Design, synthesis, and binding affinity evaluation of novel 3-substituted indoles. Arch. Pharm. (Weinheim) 2014, 347, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Ferro, S.; De Luca, L.; Germanò, M.P.; Buemi, M.R.; Ielo, L.; Certo, G.; Kanteev, M.; Fishman, A.; Rapisarda, A.; Gitto, R. Chemical exploration of 4-(4-fluorobenzyl)piperidine fragment for the development of new tyrosinase inhibitors. Eur. J. Med. Chem. 2017, 125, 992–1001. [Google Scholar] [CrossRef]
- Gitto, R.; De Luca, L.; Ferro, S.; Buemi, M.R.; Russo, E.; De Sarro, G.; Costa, L.; Ciranna, L.; Prezzavento, O.; Arena, E.; et al. Synthesis and biological characterization of 3-substituted-1H-indoles as ligands of GluN2B-containing N-methyl-D-aspartate receptors. J. Med. Chem. 2011, 54, 8702–8706. [Google Scholar] [CrossRef] [PubMed]
- Bisignano, C.; Filocamo, A.; Faulks, R.M.; Mandalari, G. In vitro antimicrobial activity of pistachio (Pistacia vera L.) polyphenols. FEMS Microbiol. Lett. 2013, 341, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and laboratory Standards Institute. CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Standard M27-A3. M27-A3, 3rd ed.; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- White, R.L.; Burgess, D.S.; Manduru, M.; Bosso, J.A. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob. Agents Chemother. 1996, 40, 1914–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naraoka, T.; Uchisawa, H.; Mori, H.; Matsue, H.; Chiba, S.; Kimura, A. Purification, characterization and molecular cloning of tyrosinase from the cephalopod mollusk, Illex argentinus. Eur. J. Biochem. 2003, 270, 4026–4038. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Masamoto, Y.; Ando, H.; Murata, Y.; Shimoishi, Y.; Tada, M.; Takahata, K. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Biosci. Biotechnol. Biochem. 2003, 67, 631–634. [Google Scholar] [CrossRef]
- Filocamo, A.; Bisignano, C.; D’Arrigo, M.; Ginestra, G.; Mandalari, G.; Galati, E.M. Norfloxacin and ursolic acid: In vitro association and postantibiotic effect against Staphylococcus aureus. Lett. Appl. Microbiol. 2011, 53, 193–197. [Google Scholar] [CrossRef]
- Visalli, M.A.; Jacobs, M.R.; Appelbaum, P.C. Activities of three quinolones, alone and in combination with extended-spectrum cephalosporins or gentamicin, against Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 1998, 42, 2002–2005. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; HM Government and the Wellcome Trust: London, UK, 2016.
- Lebouvier, N.; Pagniez, F.; Na, Y.M.; Shi, D.; Pinson, P.; Marchivie, M.; Guillon, J.; Hakki, T.; Bernhardt, R.; Yee, S.W.; et al. Synthesis, Optimization, Antifungal Activity, Selectivity, and CYP51 Binding of New 2-Aryl-3-azolyl-1-indolyl-propan-2-ols. Pharmaceuticals 2020, 13, 186. [Google Scholar] [CrossRef] [PubMed]
- Shirinzadeh, H.; Süzen, S.; Altanlar, N.; Westwell, A.D. Antimicrobial Activities of New Indole Derivatives Containing 1,2,4-Triazole, 1,3,4-Thiadiazole and Carbothioamide. Turk. J. Pharm. Sci. 2018, 15, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, R.K.; Lee, J.H.; Lee, J. Efficacy of 7-benzyloxyindole and other halogenated indoles to inhibit Candida albicans biofilm and hyphal formation. Microb. Biotechnol. 2018, 11, 1060–1069. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.; Ferrarini, M.; Dos Santos, A.P.; Varela, M.T.; Corrêa, I.; Tempone, A.G.; Melhem, M.; Vallim, M.A.; Fernandes, J.; Pascon, R.C. Coumaric acid analogues inhibit growth and melanin biosynthesis in Cryptococcus neoformans and potentialize amphotericin B antifungal activity. Eur. J. Pharm. Sci 2020, 153, 105473. [Google Scholar] [CrossRef] [PubMed]
- Nazir, Y.; Saeed, A.; Rafiq, M.; Afzal, S.; Ali, A.; Latif, M.; Zuegg, J.; Hussein, W.M.; Fercher, C.; Barnard, R.T.; et al. Hydroxyl substituted benzoic acid/cinnamic acid derivatives: Tyrosinase inhibitory kinetics, anti-melanogenic activity and molecular docking studies. Bioorg. Med. Chem. Lett. 2020, 30, 126722. [Google Scholar] [CrossRef] [PubMed]
- Ilić, B.; Unković, N.; Knežević, A.; Savković, Ž.; Ljaljević Grbić, M.; Vukojević, J.; Jovanović, Z.; Makarov, S.; Lučić, L. Multifaceted activity of millipede secretions: Antioxidant, antineurodegenerative, and anti-Fusarium effects of the defensive secretions of Pachyiulus hungaricus (Karsch, 1881) and Megaphyllum unilineatum (C. L. Koch, 1838) (Diplopoda: Julida). PLoS ONE 2019, 14, e0209999. [Google Scholar] [CrossRef] [Green Version]
- Glattard, E.; Salnikov, E.S.; Aisenbrey, C.; Bechinger, B. Investigations of the synergistic enhancement of antimicrobial activity in mixtures of magainin 2 and PGLa. Biophys. Chem. 2016, 210, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Vriens, K.; Cools, T.L.; Harvey, P.J.; Craik, D.J.; Braem, A.; Vleugels, J.; De Coninck, B.; Cammue, B.P.; Thevissen, K. The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms. Peptides 2016, 75, 71–79. [Google Scholar] [CrossRef]
STRAIN | 3a | 3b | 3c | 3d | 3e | 3f | 3g |
---|---|---|---|---|---|---|---|
Candida glabrata strain 9 | >1.000 | 0.125–0.125 | 0.125–0.250 | >1.000 | 0.250–0.250 | >1.000 | >1.000 |
Candida glabrata strain 33 | >1.000 | 0.125–0.125 | 0.125–0.125 | >1.000 | 0.250–0.250 | >1.000 | 0.125–0.250 |
Candida parapsilosis strain 30 | >1.000 | 0.125–0.125 | 0.125–0.125 | >1.000 | 0.250–0.250 | >1.000 | >1.000 |
Candida parapsilosis strain 34 | >1.000 | 0.125–0.125 | 0.125–0.125 | >1.000 | 0.250–0.250 | >1.000 | >1.000 |
Candida albicans strain 12 | >1.000 | 0.250–0.500 | 0.250–0.500 | >1.000 | 0.500–1.000 | >1.000 | >1.000 |
Candida albicans strain 13 | >1.000 | 0.250–0.250 | 0.250–0.250 | >1.000 | 0.500–1.000 | >1.000 | >1.000 |
Candida albicans strain 16 | >1.000 | 0.125–0.125 | 0.125–0.250 | >1.000 | 0.500–1.000 | >1.000 | 0.250–0.500 |
Candida albicans ATCC10231 | >1.000 | 0.250–0.250 | 0.250–0.250 | >1.000 | 0.500–1.000 | >1.000 | >1.000 |
Aspergillus niger ATCC16404 | >1.000 | 0.500–0.500 | 0.500–0.500 | >1.000 | 1.000–1.000 | 0.500–0.500 | >1.000 |
STRAIN | 3a | 3b | 3c | 3d | 3e | 3f | 3g |
---|---|---|---|---|---|---|---|
Candida glabrata strain 9 | >1.000 | 0.250 | 0.250 | >1.000 | 0.500 | >1.000 | >1.000 |
Candida glabrata strain 33 | >1.000 | 0.250 | 0.125 | >1.000 | 0.500 | >1.000 | >1.000 |
Candida parapsilosis strain 30 | >1.000 | 0.250 | 0.125 | >1.000 | 0.500 | >1.000 | >1.000 |
Candida parapsilosis strain 34 | >1.000 | 0.125 | 0.125 | >1.000 | 0.500 | >1.000 | >1.000 |
Candida albicans strain 12 | >1.000 | 1.000 | 0.500 | >1.000 | 0.500 | >1.000 | >1.000 |
Candida albicans strain 13 | >1.000 | 1.000 | 0.500 | >1.000 | 0.500 | >1.000 | >1.000 |
Candida albicans strain 16 | >1.000 | 0.250 | 0.250 | >1.000 | 0.500 | >1.000 | >1.000 |
Candida albicans ATCC10231 | >1.000 | 0.500 | 0.250 | >1.000 | 0.500 | >1.000 | >1.000 |
Aspergillus niger ATCC16404 | >1.000 | 1.000 | 1.000 | >1.000 | 1.000 | >1.000 | >1.000 |
STRAIN | 3b/Caspofungin | 3b/Fluconazole | 3c/Caspofungin | 3c/Fluconazole |
---|---|---|---|---|
Candida glabrata strain 33 | 1.50 | 1.06 | 2.00 | 2.00 |
Candida parapsilosis strain 34 | 1.50 | 1.06 | 1.06 | 0.61 |
Candida albicans strain 16 | 1.47 | 2.62 | 1.21 | 0.62 |
Candida albicans ATCC10231 | 0.75 | 3.00 | 1.25 | 1.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gervasi, T.; Ginestra, G.; Mancuso, F.; Barreca, D.; De Luca, L.; Mandalari, G. The In Vitro Potential of 1-(1H-indol-3-yl) Derivatives against Candida spp. and Aspergillus niger as Tyrosinase Inhibitors. Microorganisms 2021, 9, 2070. https://doi.org/10.3390/microorganisms9102070
Gervasi T, Ginestra G, Mancuso F, Barreca D, De Luca L, Mandalari G. The In Vitro Potential of 1-(1H-indol-3-yl) Derivatives against Candida spp. and Aspergillus niger as Tyrosinase Inhibitors. Microorganisms. 2021; 9(10):2070. https://doi.org/10.3390/microorganisms9102070
Chicago/Turabian StyleGervasi, Teresa, Giovanna Ginestra, Francesca Mancuso, Davide Barreca, Laura De Luca, and Giuseppina Mandalari. 2021. "The In Vitro Potential of 1-(1H-indol-3-yl) Derivatives against Candida spp. and Aspergillus niger as Tyrosinase Inhibitors" Microorganisms 9, no. 10: 2070. https://doi.org/10.3390/microorganisms9102070
APA StyleGervasi, T., Ginestra, G., Mancuso, F., Barreca, D., De Luca, L., & Mandalari, G. (2021). The In Vitro Potential of 1-(1H-indol-3-yl) Derivatives against Candida spp. and Aspergillus niger as Tyrosinase Inhibitors. Microorganisms, 9(10), 2070. https://doi.org/10.3390/microorganisms9102070