Absence of Resistance Mutations in the Integrase Coding Region among ART-Experienced Patients in the Republic of the Congo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Populations and Context
2.2. Ethical Considerations
2.3. Biosample Collection and Molecular Analysis
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. HIV Genotypic Subtypes
3.3. Drug Resistance Mutations (DRMs)
3.3.1. NRTI and NNRTI
3.3.2. PI and INSTI
3.3.3. GSS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pircher, M.; Diafouka, M.; Papuchon, J.; Recordon-Pinson, P.; Mahambou, D.N.; Akolbout, M.; Simon, B.; Fleury, H. Molecular Characterization of HIV Type 1 in Brazzaville, Republic of Congo, and First Data on Resistance to Antiretroviral Drugs. AIDS Res. Hum. Retrovir. 2012, 28, 1798–1802. [Google Scholar] [CrossRef] [PubMed]
- Niama, F.R.; Vidal, N.; Diop-Ndiaye, H.; Nguimbi, E.; Ahombo, G.; Diakabana, P.; Kombo, É.S.B.; Mayengue, P.I.; Kobawila, S.-C.; Parra, H.J.; et al. HIV-1 genetic diversity and primary drug resistance mutations before large-scale access to antiretroviral therapy, Republic of Congo. BMC Res. Notes 2017, 10, 243. [Google Scholar] [CrossRef]
- Bennett, D.E.; Camacho, R.J.; Otelea, D.; Kuritzkes, D.R.; Fleury, H.; Kiuchi, M.; Heneine, W.; Kantor, R.; Jordan, M.R.; Schapiro, J.M.; et al. Drug Resistance Mutations for Surveillance of Transmitted HIV-1 Drug-Resistance: 2009 Update. PLoS ONE 2009, 4, e4724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Yendewa, G.A.; Sahr, F.; Lakoh, S.; Ruiz, M.; Patiño, L.; Tabernilla, A.; Deen, G.F.; Sesay, M.; Salata, R.A.; Poveda, E. Prevalence of drug resistance mutations among ART-naive and -experienced HIV-infected patients in Sierra Leone. J. Antimicrob. Chemother. 2019, 74, 2024–2029. [Google Scholar] [CrossRef]
- Niama, F.R.; Toure-Kane, C.; Vidal, N.; Obengui, P.; Bikandou, B.; Nkodia, M.Y.N.; Montavon, C.; Diop-Ndiaye, H.; Mombouli, J.V.; Mokondzimobe, E.; et al. HIV-1 subtypes and recombinants in the Republic of Congo. Infect. Genet. Evol. 2006, 6, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Bikandou, B.; N’Doundou-N’Kodia, M.Y.; Niama, F.R.; Ekwalanga, M.; Obengui, O.; Taty-Taty, R.; Parra, H.J.; Saragosti, S. Genetic subtyping of gag and env regions of HIV type 1 isolates in Republic of Congo. AIDS Res Hum. Retrovir. 2004, 20, 1005–1009. [Google Scholar] [CrossRef]
- Mboudjeka, I.; Bikandou, B.; Zekeng, L.; Takehisa, J.; Harada, Y.; Yamaguchi-Kabata, Y.; Taniguchi, Y.; Ido, E.; Kaptue, L.; M’Pelle, P.; et al. Genetic diversity of HIV-1 group M from Cameroon and Republic of Congo. Arch. Virol. 1999, 144, 2291–2311. [Google Scholar] [CrossRef]
- Bbosa, N.; Kaleebu, P.; Ssemwanga, D. HIV subtype diversity worldwide. Curr. Opin. HIV AIDS 2019, 14, 153–160. [Google Scholar] [CrossRef]
- Marta, G.; Massimo, C.; Christina, P.; Borsetti, A. Molecular epidemiology of HIV-1in African countries: A comprehensive over-view. Pathogens 2020, 9, 1072. [Google Scholar]
- Caron, M.; Lekana-Douki, S.E.; Makuwa, M.; Obiang-Ndong, G.P.; Biba, O.; Nkoghé, D.; Kazanji, M. Prevalence, genetic diversity and antiretroviral drugs resistance-associated mutations among untreated HIV-1 infected pregnant women in Gabon, central Africa. BMC Infect. Dis. 2012, 12, 64. [Google Scholar] [CrossRef] [Green Version]
- Teto, G.; Tagny, C.T.; Mbanya, D.; Fonsah, J.Y.; Fokam, J.; Nchindap, E.; Kenmogne, L.; Njamnshi, A.K.; Kanmogne, G.D. Gag P2/NC and pol genetic diversity, polymorphism, and drug resistance mutations in HIV-1 CRF02_AG- and non-CRF02_AG-infected patients in Yaoundé, Cameroon. Sci. Rep. 2017, 7, 14136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, V.; Stark, T.; Loeliger, A.E.; Lange, J.M.A. The impact of the M184V substitution in HIV-1 reverse transcriptase on treatment response. HIV Med. 2002, 3, 135–145. [Google Scholar] [CrossRef]
- Brenner, B.G.; Wainberg, M.A.; Turner, D. HIV-1 drug resistance: Can we overcome? Expert Opin. Biol. Ther. 2002, 2, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Averbuch, D.; Schapiro, J.M.; Lanier, E.R.; Gradstein, S.; Gottesman, G.; Kedem, E.; Einhorn, M.; Grisaru-Soen, G.; Ofir, M.; Engelhard, D.; et al. Diminished Selection for Thymidine-Analog Mutations Associated With the Presence of M184V in Ethiopian Children Infected With HIV Subtype C Receiving Lamivudine-Containing Therapy. Pediatr. Infect. Dis. J. 2006, 25, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Whitcomb, J.M.; Parkin, N.T.; Chappey, C.; Hellmann, N.S.; Petropoulos, C.J. Broad Nucleoside Reverse-Transcriptase Inhibitor Cross-Resistance in Human Immunodeficiency Virus Type 1 Clinical Isolates. J. Infect. Dis. 2003, 188, 992–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, S.-Y.; Liu, T.; Ravela, J.; Gonzales, M.J.; Shafer, R.W. Distribution of Human Immunodeficiency Virus Type 1 Protease and Reverse Transcriptase Mutation Patterns in 4183 Persons Undergoing Genotypic Resistance Testing. Antimicrob. Agents Chemother. 2004, 48, 3122–3126. [Google Scholar] [CrossRef] [Green Version]
- Bacheler, L.T.; Anton, E.D.; Kudish, P.; Baker, D.; Bunville, J.; Krakowski, K.; Bolling, L.; Aujay, M.; Wang, X.V.; Ellis, D.; et al. Human Immunodeficiency Virus Type 1 Mutations Selected in Patients Failing Efavirenz Combination Therapy. Antimicrob. Agents Chemother. 2000, 44, 2475–2484. [Google Scholar] [CrossRef] [Green Version]
- Rhee, S.-Y.; Taylor, J.; Wadhera, G.; Ben-Hur, A.; Brutlag, D.L.; Shafer, R.W. Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proc. Natl. Acad. Sci. USA 2006, 103, 17355–17360. [Google Scholar] [CrossRef] [Green Version]
- WHO. HIV Drug Resistance Report 2019; WHO/CDS/HIV/19.21; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Han, Y.-S.; Mesplède, T.; Wainberg, M.A. Differences among HIV-1 subtypes in drug resistance against integrase inhibitors. Infect. Genet. Evol. 2016, 46, 286–291. [Google Scholar] [CrossRef]
- Koullias, Y.; Sax, P.E.; Fields, N.F.; Walensky, R.P.; Hyle, E.P. Should We Be Testing for Baseline Integrase Resistance in Patients Newly Diagnosed With Human Immunodeficiency Virus? Clin. Infect. Dis. 2017, 65, 1274–1281. [Google Scholar] [CrossRef] [PubMed]
- Llibre, J.M.; Pulido, F.; García, F.; Deltoro, M.G.; Blanco, J.L.; Delgado, R. Genetic barrier to resistance for dolutegravir. Aids Rev. 2014, 17, 56–64. [Google Scholar]
- Kyeyune, F.; Gibson, R.M.; Nankya, I.; Venner, C.; Metha, S.; Akao, J.; Ndashimye, E.; Kityo, C.M.; Salata, R.A.; Mugyenyi, P.; et al. Low-Frequency Drug Resistance in HIV-Infected Ugandans on Antiretroviral Treatment Is Associated with Regimen Failure. Antimicrob. Agents Chemother. 2016, 60, 3380–3397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Global N = 85 (%) | Dolisie N = 29 (%) | Ouesso N = 33 (%) | Owando N = 13 (%) | Sibiti N = 10 (%) | p-Value |
---|---|---|---|---|---|---|
Gender | 0.36 | |||||
Male | 31 (36.5) | 14 (48.3) | 9 (27.3) | 5 (38.5) | 3 (30.0) | |
Female | 54 (63.5) | 15 (51.7) | 24 (72.7) | 8 (61.5) | 7 (70.0) | |
Age, years | 44 (6–72) | 47 (18–72) | 42 (6–62) | 42 (14–72) | 46 (23–72) | 0.61 |
Mean (min–max) | ||||||
Educational level | 0.14 | |||||
grade school | 19 (22.4) | 5 (17.2) | 10 (30.3) | 3 (23.1) | 1 (10.0) | |
high school | 58 (68.2) | 18 (62.1) | 21 (36.6) | 10 (76.9) | 9 (90.0) | |
university level | 8 (9.4) | 6 (20.7) | 2 (6.1) | - | - | |
Marital status in a relationship | 37 (43.5) | 11 (37.9) | 15 (45.5) | 6 (46.2) | 5 (50.0) | |
single | 24 (28.2) | 9 (31.0) | 7 (21.2) | 3 (23.1) | 5 (50.0) | |
divorced | 18 (21.2) | 7 (24.1) | 8 (24.2) | 3 (23.1) | - | |
widower | 6 (7.1) | 2 (6.9) | 3 (9.1) | 1 (7.7) | - | |
WHO HIV clinical staging | 0.02 | |||||
stage 1 | 6 (7.1) | 1 (3.4) | 5 (15.2) | - | - | |
stage 2 | 28 (32.9) | 7 (24.1) | 12 (36.4) | 4 (30.8) | 5 (50.0) | |
stage 3 | 26 (30.6) | 8 (27.6) | 13 (39.4) | 2 (15.4) | 3 (30.0) | |
stage 4 | 25 (29.4) | 13 (44.8) | 3 (9.1) | 7 (53.8) | 2 (20.0) | |
Current ART regimens | 0.07 | |||||
AZT+3TC + (NVP or EFV) | 40 (47.1) | 12 (41.4) | 17 (51.5) | 4 (30.8) | 7 (70.0) | |
TDF + 3TC + EFV | 26 (30.6) | 5 (17.2) | 11 (33.3) | 7 (53.8) | 3 (30.0) | |
DTG+3TC + (ABC or TDF) | 15 (17.6) | 10 (34.5) | 3 (9.1) | 2 (15.4) | - | |
(ABC or AZT) + 3TC + LPV/r | 4 (4.7) | 2 (6.9) | 2 (6.1) | - | - | |
Duration of ART exposure (months) | 0.91 | |||||
Median | ||||||
≤24 | 9 (10.6) | 2 (6.9) | 4 (12.1) | 2 (15.4) | 1 (10.0) | |
25–36 | 12 (14.1) | 4 (13.8) | 5 (15.2) | 2 (15.4) | 1 (10.0) | |
36–48 | 28 (32.9) | 10 (34.5) | 8 (24.2) | 6 (46.2) | 4 (40.0) | |
≥48 | 36 (42.4) | 13 (44.8) | 16 (48.5) | 3 (23.1) | 4 (40.0) | |
Viral load cells/mm3 | 0.75 | |||||
<1000 | 13 (15.3) | 3 (10.3) | 7 (21.2) | 3 (23.1) | - | |
1000–10,000 | 15 (17.6) | 5 (17.2) | 6 (18.2) | 1 (7.7) | 3 (30.0) | |
10,000–100,000 | 23 (27.1) | 9 (31.0) | 6 (18.2) | 4 (30.8) | 4 (40.0) | |
>100,000 | 30 (35.3) | 10 (34.5) | 12 (36.4) | 5 (38.5) | 3 (30.0) | |
ND | 4 (4.7) | 2 (6.9) | 2 (6.1) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Got, F.E.B.; Recordon-Pinson, P.; Loubano-Voumbi, G.; Ebourombi, D.; Blondot, M.-L.; Metifiot, M.; Ondzotto, G.; Andreola, M.-L. Absence of Resistance Mutations in the Integrase Coding Region among ART-Experienced Patients in the Republic of the Congo. Microorganisms 2021, 9, 2355. https://doi.org/10.3390/microorganisms9112355
Got FEB, Recordon-Pinson P, Loubano-Voumbi G, Ebourombi D, Blondot M-L, Metifiot M, Ondzotto G, Andreola M-L. Absence of Resistance Mutations in the Integrase Coding Region among ART-Experienced Patients in the Republic of the Congo. Microorganisms. 2021; 9(11):2355. https://doi.org/10.3390/microorganisms9112355
Chicago/Turabian StyleGot, Ferdinand Emaniel Brel, Patricia Recordon-Pinson, Ghislain Loubano-Voumbi, Dagene Ebourombi, Marie-Lise Blondot, Mathieu Metifiot, Gontran Ondzotto, and Marie-Line Andreola. 2021. "Absence of Resistance Mutations in the Integrase Coding Region among ART-Experienced Patients in the Republic of the Congo" Microorganisms 9, no. 11: 2355. https://doi.org/10.3390/microorganisms9112355
APA StyleGot, F. E. B., Recordon-Pinson, P., Loubano-Voumbi, G., Ebourombi, D., Blondot, M.-L., Metifiot, M., Ondzotto, G., & Andreola, M.-L. (2021). Absence of Resistance Mutations in the Integrase Coding Region among ART-Experienced Patients in the Republic of the Congo. Microorganisms, 9(11), 2355. https://doi.org/10.3390/microorganisms9112355