Legionella Occurrence beyond Cooling Towers and Premise Plumbing
Abstract
:1. Introduction
2. Surface Freshwater
3. River Water
4. Lake Water
5. Rainwater
6. Ground Freshwater
7. Wells
8. Springs
9. Saltwater
10. Marine
11. Inland Sources
12. Drinking Water
13. Drinking Water Treatment Plants
14. Drinking Water Distribution Systems
15. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brenner, D.J.; Steigerwalt, A.G.; McDade, J.E. Classification of the Legionnaires’ disease bacterium: Legionella pneumophila, genus novum, species nova, of the family Legionelleceae, familia nova. Ann. Intern. Med. 1979, 9, 656–658. [Google Scholar] [CrossRef] [PubMed]
- Brunkard, J.M.; Ailes, E.; Roberts, V.A.; Hilborn, E.D.; Craun, G.F.; Rajasingham, A.; Kahler, A.; Garrison, L.; Hicks, L.; Carpenter, J.; et al. Surveillance for waterborne disease outbreaks associated with drinking water—United States, 2007–2008. MMWR Surveill. Summ. 2011, 60, 38–68. [Google Scholar] [PubMed]
- Fliermans, C.B.; Cherry, W.B.; Orrison, L.H.; Thacker, L. Isolation of Legionella pneumophila from nonepidemic-related aquatic habitats. Appl. Environ. Microbiol. 1979, 37, 1239–1242. [Google Scholar] [CrossRef] [Green Version]
- Whiley, H.; Bentham, R. Legionella longbeachae and legionellosis. Emerg. Infect. Dis. 2011, 17, 579–583. [Google Scholar] [CrossRef]
- Vatansever, C.; Türetgen, I. Survival of biofilm-associated Legionella pneumophila exposed to various stressors. Water Environ. Res. 2015, 87, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Declerck, P. Biofilms: The environmental playground of Legionella pneumophila. Environ. Microbiol. 2010, 12, 557–566. [Google Scholar] [CrossRef]
- Fields, B.S. The molecular ecology of legionellae. Trends Microbiol. 1996, 4, 286–290. [Google Scholar] [CrossRef]
- Parr, A.; Whitney, E.A.; Berkelman, R.L. Legionellosis on the Rise: A Review of Guidelines for Prevention in the United States. J. Public Health Manag. Pract. 2015, 21, E17–E26. [Google Scholar] [CrossRef] [Green Version]
- Den Boer, J.W.; Euser, S.M.; Brandsema, P.; Reijnen, L.; Bruin, J.P. Results from the National Legionella Outbreak Detection Program, the Netherlands, 2002–2012. Emerg. Infect. Dis. 2015, 21, 1167–1173. [Google Scholar] [CrossRef]
- Walser, S.M.; Gerstner, D.G.; Brenner, B.; Höller, C.; Liebl, B.; Herr, C.E. Assessing the environmental health relevance of cooling towers—A systematic review of legionellosis outbreaks. Int. J. Hyg. Environ. Health 2014, 217, 145–154. [Google Scholar] [CrossRef]
- Mercante, J.W.; Winchell, J.M. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin. Microbiol. Rev. 2015, 28, 95–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrhardt, J.; Alabi, A.S.; Kuczius, T.; Tsombeng, F.F.; Becker, K.; Kremsner, P.G.; Schaumburg, F.; Esen, M. Population structure of Legionella spp. from environmental samples in Gabon, 2013. Infect. Genet. Evol. 2015, 33, 299–303. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Hemati, Z.; Moezzi, M.O.; Azimzadeh, N. Isolation and identification of Legionella spp. from different aquatic sources in south-west of Iran by molecular & culture methods. Mol. Biol. Res. Commun. 2016, 5, 215–223. [Google Scholar] [PubMed]
- Borella, P.; Guerrieri, E.; Marchesi, I.; Bondi, M.; Messi, P. Water ecology of Legionella and protozoan: Environmental and public health perspectives. Biotechnol. Annu. Rev. 2005, 11, 355–380. [Google Scholar]
- van Heijnsbergen, E.; Schalk, J.A.C.; Euser, S.M.; Brandsema, P.S.; den Boer, J.W.; Husman, A.M. Confirmed and Potential Sources of Legionella Reviewed. Environ. Sci. Technol. 2015, 49, 4797–4815. [Google Scholar] [CrossRef]
- Lau, H.Y.; Ashbolt, N.J. The role of biofilms and protozoa in Legionella pathogenesis: Implications for drinking water. J. Appl. Microbiol. 2009, 107, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Fliermans, C.B.; Cherry, W.B.; Orrison, L.H.; Smith, S.J.; Tison, D.L.; Pope, D.H. Ecological distribution of Legionella pneumophila. Appl. Environ. Microbiol. 1981, 41, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Lye, D.; Fout, G.S.; Crout, S.R.; Danielson, R.; Thio, C.L.; Paszko-Kolva, C.M. Survey of ground, surface, and potable waters for the presence of Legionella species by Enviroamp PCR Legionella kit, culture, and immunofluorescent staining. Water Res. 1997, 31, 287–293. [Google Scholar] [CrossRef]
- Wullings, B.A.; van der Kooij, D. Occurrence and genetic diversity of uncultured Legionella spp. in drinking water treated at temperatures below 15 °C. Appl. Environ. Microbiol. 2006, 72, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.R.; Vazoller, R.F.; Foronda, A.S.; Pellizari, V.H. Phylogenetic study of legionella species in pristine and polluted aquatic samples from a tropical Atlantic forest ecosystem. Curr. Microbiol. 2007, 55, 288–293. [Google Scholar] [CrossRef]
- Sinigalliano, C.D.; Gidley, M.L.; Shibata, T.; Whitman, D.; Dixon, T.H.; Laws, E.; Hou, A.; Bachoon, D.; Brand, L.; Amaral-Zettler, L.; et al. Impacts of hurricanes Katrina and Rita on the microbial landscape of the New Orleans area. Proc. Natl. Acad. Sci. USA 2007, 104, 9029–9034. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.R.; Nastasi, F.R.; Gamba, R.C.; Foronda, A.S.; Pellizari, V.H. Occurrence and diversity of Legionellaceae in polar lakes of the Antarctic peninsula. Curr. Microbiol. 2008, 57, 294–300. [Google Scholar] [CrossRef]
- Simmons, G.; Jury, S.; Thornley, C.; Harte, D.; Mohiuddin, J.; Taylor, M. A Legionnaires’ disease outbreak: A water blaster and roof-collected rainwater systems. Water Res. 2008, 42, 1449–1458. [Google Scholar] [CrossRef]
- Sakamoto, R.; Ohno, A.; Nakahara, T.; Satomura, K.; Iwanaga, S.; Kouyama, Y.; Kura, F.; Kato, N.; Matsubayashi, K.; Okumiya, K.; et al. Legionella pneumophila in rainwater on roads. Emerg. Infect. Dis. 2009, 15, 1295–1297. [Google Scholar] [CrossRef] [PubMed]
- Lück, P.C.; Jacobs, E.; Röske, I.; Schröter-Bobsin, U.; Dumke, R.; Gronow, S. Legionella dresdenensis sp. nov., isolated from river water. Int. J. Syst. Evol. Microbiol. 2010, 60 (Pt 11), 2557–2562. [Google Scholar] [CrossRef]
- Olsen, J.S.; Aarskaug, T.; Thrane, I.; Pourcel, C.; Ask, E.; Johansen, G.; Waagen, V.; Blatny, J.M. Alternative routes for dissemination of Legionella pneumophila causing three outbreaks in Norway. Environ. Sci. Technol. 2010, 44, 8712–8717. [Google Scholar] [CrossRef] [PubMed]
- Parthuisot, N.; West, N.J.; Lebaron, P.; Baudart, J. High diversity and abundance of Legionella spp. in a pristine river and impact of seasonal and anthropogenic effects. Appl. Environ. Microbiol. 2010, 76, 8201–8210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parthuisot, N.; Binet, M.; Touron-Bodilis, A.; Pounard, C.; Lebaron, P.; Baudart, J. Total and viable Legionella pneumophila cells in hot and natural waters as measured by immunofluorescence-based assays and solid-phase cytometry. Appl. Environ. Microbiol. 2011, 77, 6225–6232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Xing, P.; Wu, Q.L.; Yu, D.W. Distribution and diversity of Legionella spp. in Lake Taihu in the winter. Huan Jing Ke Xue 2011, 32, 2125–2131. [Google Scholar] [PubMed]
- Wang, Q.; Lin, H.R.; Zhang, S.T.; Yu, X. Real-time PCR detection and quantification of emerging waterborne pathogens (EWPs) and antibiotic resistance genes (ARGs) in the downstream area of Jiulong River. Huan Jing Ke Xue 2012, 33, 2685–2690. [Google Scholar]
- Lin, W.; Yu, Z.; Zhang, H.; Thompson, I.P. Diversity and dynamics of microbial communities at each step of treatment plant for potable water generation. Water Res. 2014, 52, 218–230. [Google Scholar] [CrossRef]
- Ahmed, W.; Brandes, H.; Gyawali, P.; Sidhu, J.P.; Toze, S. Opportunistic pathogens in roof-captured rainwater samples, determined using quantitative PCR. Water Res. 2014, 53, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Chidamba, L.; Korsten, L. Pyrosequencing analysis of roof-harvested rainwater and river water used for domestic purposes in Luthengele village in Eastern Cape Province of South Africa. Environ. Monit. Assess. 2015, 187, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Heijnsbergen, E.; de Roda Husman, A.M.; Lodder, W.J.; Bouwknegt, M.; Docters van Leeuwen, A.E.; Bruin, J.P.; Euser, S.M.; den Boer, J.W.; Schalk, J.A. Viable Legionella pneumophila bacteria in natural soil and rainwater puddles. J. Appl. Microbiol. 2014, 117, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.T.; Hsu, B.M.; Chang, T.Y.; Kao, P.M.; Huang, K.H.; Tsai, S.F.; Huang, Y.L.; Fan, C.W. Surveillance and evaluation of the infection risk of free-living amoebae and Legionella in different aquatic environments. Sci. Total Environ. 2014, 499, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Kao, P.M.; Hsu, B.M.; Change, T.Y.; Hsu, T.K.; Tzeng, K.J.; Huang, Y.L. Seasonal variation of Legionella in Taiwan’s reservoir and its relationships with environmental factors. Environ. Sci. Pollut. Res. Int. 2015, 22, 6104–6111. [Google Scholar] [CrossRef]
- Bakh, Y.Y.; Kim, H.S.; Rhee, O.; You, K.; Bae, K.S.; Lee, W.; Kim, T.; Lee, S. Long-Term Monitoring of Noxious Bacteria for Construction of Assurance Management System of Water Resources in Natural Status of the Republic of Korea. J. Microbiol. Biotechnol. 2020, 30, 1516–1524. [Google Scholar] [CrossRef]
- Shimada, S.; Nakai, R.; Aoki, K.; Shimoeda, N.; Ohno, G.; Kudoh, S.; Imura, S.; Watanabe, K.; Miyazaki, Y.; Ishii, Y.; et al. Chasing Waterborne Pathogens in Antarctic Human-Made and Natural Environments, with Special Reference to Legionella spp. Appl. Environ. Microbiol. 2021, 87, e02247-20. [Google Scholar] [CrossRef]
- Wang, H.; Edwards, M.; Falkinham, J.O.; Pruden, A. Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Appl. Environ. Microbiol. 2012, 78, 6285–6294. [Google Scholar] [CrossRef] [Green Version]
- Kao, P.M.; Tung, M.C.; Hsu, B.M.; Hsu, S.Y.; Huang, J.T.; Liu, J.H.; Huang, Y.L. Differential Legionella spp. survival between intracellular and extracellular forms in thermal spring environments. Environ. Sci. Pollut. Res. Int. 2013, 20, 3098–3106. [Google Scholar] [CrossRef]
- Boers, T.M.; Ben-Asher, J. A review of rainwater harvesting. Agric. Water Manag. 1982, 5, 145–158. [Google Scholar] [CrossRef]
- Dean, J.; Hunter, P.R. Risk of gastrointestinal illness associated with the consumption of rainwater: A systematic review. Environ. Sci. Technol. 2012, 46, 2501–2507. [Google Scholar] [CrossRef]
- Farhat, M.; Molletta-Denat, M.; Frère, J.; Onillon, S.; Trouilhé, M.C.; Robine, E. Effects of disinfection on Legionella spp., eukarya, and biofilms in a hot water system. Appl. Environ. Microbiol. 2012, 78, 6850–6858. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Surveillance for waterborne disease outbreaks associated with drinking water and other nonrecreational water—United States, 2009–2010. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 714–720. [Google Scholar]
- Dutka, B.J.; Evans, P. Isolation of Legionella pneumophila from Canadian hot springs. Can. J. Public Health 1986, 77, 136–138. [Google Scholar] [PubMed]
- Mashiba, K.; Hamamoto, T.; Torikai, K. A case of Legionnaires’ disease due to aspiration of hot spring water and isolation of Legionella pneumophila from hot spring water. Kansenshogaku Zasshi 1993, 67, 163–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornstein, N.; Marmet, D.; Surgot, M.; Nowicki, M.; Arslan, A.; Esteve, J.; Fleurette, J. Exposure to Legionellaceae at a hot spring spa: A prospective clinical and serological study. Epidem. Inf. 1989, 102, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Riffard, S.; Douglass, S.; Brooks, T.; Springthorpe, S.; Filion, L.G.; Sattar, S.A. Occurrence of Legionella in groundwater: An ecological study. Water Sci. Technol. 2001, 43, 99–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, T.; Osicki, R.; Springthorpe, V.; Sattar, S.; Filion, L.; Abrial, D.; Riffard, S. Detection and identification of Legionella species from groundwaters. J. Toxicol. Environ. Health A 2004, 67, 1845–1859. [Google Scholar] [CrossRef]
- Costa, J.; Tiago, I.; da Costa, M.S.; Veríssimo, A. Presence and persistence of Legionella spp. in groundwater. Appl. Environ. Microbiol. 2005, 71, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.W.; Hsu, B.M.; Chen, N.H.; Huang, C.C.; Huang, K.H.; Chen, J.S.; Kao, P.M. Isolation and identification of Legionella and their host amoebae from weak alkaline carbonate spring water using a culture method combined with PCR. Parasitol. Res. 2011, 109, 1233–1241. [Google Scholar] [CrossRef]
- Wullings, B.A.; Bakker, G.; van der Kooij, D. Concentration and diversity of uncultured Legionella spp. in two unchlorinated drinking water supplies with different concentrations of natural organic matter. Appl. Environ. Microbiol. 2011, 77, 634–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojek, N.M.; Wójcik-Fatla, A.; Dutkiewicz, J. Efficacy of the detection of Legionella in hot and cold water samples by culture and PCR. II. Examination of native samples from various sources. Ann. Agric. Environ. Med. 2012, 19, 295–298. [Google Scholar]
- Furuhata, K.; Edagawa, A.; Ishizaki, N.; Fukuyama, M. Isolation of Legionella species from Noyu (unattended natural hot springs in mountains and fields) samples in Japan. Biocontrol. Sci. 2013, 18, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Ghrairi, T.; Chaftar, N.; Jarraud, S.; Berjeaud, J.M.; Hani, K.; Frere, J. Diversity of legionellae strains from Tunisian hot spring water. Res. Microbiol. 2013, 164, 342–350. [Google Scholar] [CrossRef]
- Yan, G.B.; Wang, H.X.; Qin, T.; Zhou, H.J.; Li, M.C.; Xu, Y.; Zhao, M.Q.; Shao, Z.J.; Ren, H.Y. Three quantitative methods to continuously monitor Legionella in spring water. Zonghua Yu Fang Yi Xue Za Zhi 2013, 47, 637–640. [Google Scholar]
- Inoue, D.; Hinoura, T.; Suzuki, N.; Pang, J.; Malla, R.; Shrestha, S.; Chapagain, S.K.; Matsuzawa, H.; Nakamura, T.; Tanaka, Y.; et al. High-throughput DNA microarray detection of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley, Nepal. Curr. Microbiol. 2015, 70, 43–50. [Google Scholar] [CrossRef]
- Shen, S.M.; Chou, M.Y.; Hsu, B.M.; Ji, W.T.; Hsu, T.K.; Tsai, H.F.; Huang, Y.L.; Chiu, Y.C.; Kao, E.S.; Kao, P.M.; et al. Assessment of Legionella pneumophila in recreational spring water with quantitative PCR (Taqman) assay. Pathog. Glob. Health 2015, 109, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Ishizaki, N.; Sogawa, K.; Inoue, H.; Agata, K.; Edagawa, A.; Miyamoto, H.; Fukuyama, M.; Furuhata, K. Legionella thermalis sp. nov., isolated from hot spring water in Tokyo, Japan. Microbiol. Immunol. 2016, 60, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, X.; Shangguan, Z.; Zhou, H.; Wu, J.; Wan, L.; Ren, H.; Hu, Y.; Meifen, L.; Qin, T. High Prevalence and Genetic Polymorphisms of Legionella in Natural and Man-Made Aquatic Environments in Whenzhou, China. Int. J. Environ. Res. 2017, 14, 222. [Google Scholar] [CrossRef] [Green Version]
- De Giglio, O.; Napoli, C.; Apollonia, F.; Brigida, S.; Marzella, A.; Diella, G.; Calia, C.; Scrascia, M.; Pacifico, C.; Pazzani, C.; et al. Occurrence of Legionella in Groundwater used for sprinkler irrigation in Southern Italy. Environ. Res. 2019, 170, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Roque, C.; Hazen, T.C. Legionellosis and Legionella spp. in the waters of Puerto Rico. Biol. Assoc. Med. PR 1983, 75, 403–407. [Google Scholar]
- Dutka, B.J. Sensitivity of Legionella pneumophila to sunlight in fresh and marine waters. Appl. Environ. Microbiol. 1984, 48, 970–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Roque, C.M.; Hazen, T.C. Abundance and distribution of Legionellaceae in Puerto Rican Waters. Appl. Environ. Microbiol. 1987, 53, 2231–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, C.J.; Tsai, Y.L.; Paszko-Kolva, C.; Mayer, C.; Sangermano, L.R. Detection of Legionella species in sewage and ocean water by polymerase chain reaction, direct fluorescent-antibody, and plate culture methods. Appl. Environ. Microbiol. 1993, 59, 3618–3624. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, H.; Servais, P.; Muyzer, G. Successional changes in the genetic diversity of a marine bacterial assemblage during confinement. Arch. Microbiol. 2000, 173, 138–145. [Google Scholar] [CrossRef]
- Chiou, S.F.; Kuo, J.; Wong, T.Y.; Fan, T.Y.; Tew, K.S.; Liu, J.K. Analysis of the coral associated bacterial community structures in healthy and diseased corals from off-shore of southern Taiwan. J. Environ. Sci. Health B 2010, 45, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Gast, R.J.; Moran, D.M.; Dennett, M.R.; Wurtsbaugh, W.A.; Amaral-Zettler, L.A. Amoebae and Legionella pneumophila in saline environments. J. Water Health 2011, 9, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Pagnier, I.; Boughalmi, M.; Croce, O.; Robert, C.; Raoult, D.; La Scola, B. Genome sequence of Legionella tunisiensis strain LegM(T), a new Legionella species isolated from hypersaline lake water. J. Bacteriol. 2012, 194, 5978. [Google Scholar] [CrossRef] [Green Version]
- Walczak, M.; Krawiec, A.; Lalke-Porczyk, E. Legionella pneumophila bacteria in thermal saline bath. Ann Agric. Environ. Med. 2013, 20, 649–652. [Google Scholar]
- Kilmer, B.R.; Eberl, T.C.; Cunderla, B.; Chen, F.; Clark, B.C.; Schneegurt, M.A. Molecular and phenetic characterization of the bacterial assemblage of Hot Lake, WA, an environment with high concentrations of magnesium sulfate, and its relevance to Mars. Int. J. Astrobiol. 2014, 13, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzari, C.; Fosso, B.; Marzano, M.; Annese, A.; Caprioli, R.; D’Erchia, A.M.; Gissi, C.; Intranuovo, M.; Picardi, E.; Santamaria, M.; et al. The influence of invasive jellyfish blooms on the aquatic microbiome in a coastal lagoon (Varano, SE Italy) detected by an Illumina-based deep sequencing strategy. Biol. Invasions 2015, 17, 923–940. [Google Scholar] [CrossRef] [Green Version]
- Tuyet, D.T.A.; Tanaka, T.; Sohrin, R.; Hao, D.M.; Nagaosa, K.; Kato, K. Effects of warming on microbial communities in the coastal waters of temperate and subtropical zones in the Northern Hemisphere, with a focus on Gammaproteobacteria. J. Oceanogr. 2015, 71, 91–103. [Google Scholar] [CrossRef]
- Leight, A.K.; Crump, B.C.; Hood, R.R. Assessment of Fecal Indicator Bacteria and Potential Pathogen Co-Occurrence at a Shellfish Growing Area. Front. Microbiol. 2018, 9, 384. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.C.; Han, M.; Chandrasekaran, S.; Fang, Y.; Kellogg, C.A. Assessing the water quality impacts of two Category-5 hurricanes on St. Thomas, Virgin Islands. Water Res. 2020, 171, 115440. [Google Scholar] [CrossRef]
- Fleming, L.E.; Broad, K.; Clement, A.; Dewailly, E.; Elmir, S.; Knap, A.; Pomponi, S.A.; Smith, S.; Solo Gabriele, H.; Walsh, P. Oceans and Human health: Emerging public health risks in the marine environment. Mar. Pollut. Bull. 2006, 53, 545–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US EPA. Surface Water Treatment Rule; US EPA: Washington, DC, USA, 1989.
- Beer, K.D.; Gargano, J.W.; Roberts, V.A.; Reses, H.E.; Hill, V.R.; Garrison, L.E.; Kutty, P.K.; Hilborn, E.D.; Wade, T.J.; Fullerton, K.E.; et al. Outbreaks Associated With Environmental and Undetermined Water Exposures—United States, 2011–2012. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 849–851. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, T.; Hoffman, S.; Obst, U. Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. J. Appl. Microbiol. 2003, 95, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Emtiazi, F.; Schwartz, T.; Marten, S.M.; Krolla-Sidenstein, P.; Obst, U. Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water Res. 2004, 38, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Pryor, M.; Springthorpe, S.; Riffard, S.; Brooks, T.; Huo, Y.; Davis, G.; Sattar, S.A. Investigation of opportunistic pathogens in municipal drinking water under different supply and treatment regimes. Water Sci. Technol. 2004, 50, 83–90. [Google Scholar] [CrossRef]
- Thomas, V.; Loret, J.F.; Jousset, M.; Greub, G. Biodiversity of amoebae and amoebae-resisting bacteria in a drinking water treatment plant. Environ. Microbiol. 2008, 10, 2728–2745. [Google Scholar] [CrossRef] [PubMed]
- Felföldi, T.; Tarnóczai, T.; Homonnay, Z.G. Presence of potential bacterial pathogens in a municipal drinking water supply system. Acta Microbiol. Immunol. Hung. 2010, 57, 165–179. [Google Scholar] [CrossRef]
- Valster, R.M.; Wullings, B.A.; van den Berg, R.; van der Kooij, D. Relationships between free-living protozoa, cultivable Legionella spp., and water quality characteristics in three drinking water supplies in the Caribbean. Appl. Environ. Microbiol. 2011, 77, 7321–7328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baba, T.; Inoue, N.; Yamaguchi, N.; Nasu, M. Rapid enumeration of active Legionella pneumophila in freshwater environments by the microcolony method combined with direct fluorescent antibody staining. Microbes Environ. 2012, 27, 324–326. [Google Scholar] [CrossRef] [Green Version]
- Al-Sulami, A.A.; Al-Taee, A.M.; Yehyazarian, A.A. Isolation and identification of Legionella pneumophila from drinking water in Basra governorate, Iraq. East. Mediterr. Health J. 2013, 19, 936–941. [Google Scholar] [CrossRef]
- Donohue, M.J.; O’Connell, K.; Vesper, S.J.; Mistry, J.H.; King, D.; Kostich, M.; Pfaller, S. Widespread molecular detection of Legionella pneumophila serogroup 1 in cold water taps across the United States. Environ. Sci. Technol. 2014, 48, 3145–3152. [Google Scholar] [CrossRef] [PubMed]
- Whiley, H.; Keegan, A.; Fallowfield, H.; Bentham, R. Detection of Legionella, L. pneumophila, and Mycobacterium avium complex (MAC) along potable water distribution pipelines. Int. J. Environ. Res. Public Health 2014, 11, 7393–7405. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Busó, L.; Olmos, M.P.; Camaró, M.L.; Adrián, F.; Calafat, J.M.; González-Candelas, F. Phylogenetic analysis of environmental Legionella pneumophila isolates from an endemic area (Alcoy, Spain). Infect. Genet. Evol. 2015, 30, 45–54. [Google Scholar] [CrossRef]
- Schwake, D.O.; Alum, A.; Abbaszadegan, M. Impact of environmental factors on Legionella populations in drinking water. Pathogens 2015, 4, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Waak, M.B.; LaPara, T.M.; Hallé, C.; Hozalski, R.M. Occurrence of Legionella spp. In Water-Main Biofilms from Two Drinking Water Distribution Systems. Environ. Sci. Technol. 2018, 52, 7630–7639. [Google Scholar] [CrossRef] [PubMed]
- Perrin, Y.; Bouchon, D.; Héchard, Y.; Moulin, L. Spatio-temporal survey of opportunistic premise plumbing pathogens in the Paris drinking water distribution system. Int. J. Hyg. Environ. Health 2019, 222, 687–694. [Google Scholar] [CrossRef] [PubMed]
- States, J.S.; Conley, L.F.; Kuchta, J.M.; Oleck, B.M.; Lipvich, M.J.; Wolford, R.S.; Wadowsky, R.M.; McNamara, A.M.; Sykora, J.L.; Keleti, G.; et al. Survival and Multiplication of Legionella pneumophila in municipal drinking water systems. Appl. Environ. Microbiol. 1987, 53, 979–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhoads, W.J.; Garner, E.; Ji, P.; Zhu, N.; Parks, J.; Schwake, D.O.; Pruden, A.; Edwards, M.A. Distribution system operational deficiencies coincide with reported Legionnaires’ disease clusters in Flint, Michigan. Environ. Sci. Technol. 2017, 51, 11986–11995. [Google Scholar] [CrossRef] [PubMed]
Geographic Location | % Positivity | Concentration | Reference |
---|---|---|---|
USA: NC, SC, GA, FL, AL, IN, IL | DFA: 99.5% samples, 98.5% sites | 9.1–3.3 × 104 cells/mL | [17] |
USA: CA | DFA: 100%, PCR: 100%, Cul.: 25% | DFA: <0.1–>0.1 cells/mL PCR: <103–103 cells/mL | [18] |
Netherlands | PCR: 100% | 20–2.5 × 103 cells/mL | [19] |
Itanhaém River, Sao Paolo, Brazil | Cul.: 0%, PCR: 100% | N/A | [20] |
Lake Pontchartrain, New Orleans, USA | PCR: 72.9% samples, 100% sites | N/A | [21] |
Antarctica (King George Island) | PCR: 100%, Cul.: 50% | 0.02 CFU/mL | [22] |
Auckland, New Zealand | Cul.: 15% Lp | 0.3–8 × 102 CFU/mL | [23] |
Tokyo, Japan | Cul.: 25%. PCR: 60% | <0.2 CFU/mL–>10 CFU/mL | [24] |
Elbe River, Dresden, Germany | NA | N/A | [25] |
Glomma River, Norway | Cul.: 42.3% samples, 87.5% sites | 40–1.9 × 103 CFU/mL | [26] |
Tech River, France | Cul.: 20.8%, PCR: 100% | 0.05–0.583 CFU/mL. 7.39–936 GU/mL | [27] |
Pyranees, France | Cul: 20.8%. PCR: 100% | Cul.: 0.19–0.22 CFU/mL PCR: 1.1–2 × 102 cells/mL | [28] |
Lake Taihu, China | PCR: 65.6% | NA | [29] |
Jiulong River, Fujian province, China | PCR: 100% | <5 × 102–2.5 × 104 GU/mL | [30] |
Hubei Province, China | PCR: 100% | Biofilm:10–103 GU/g. Water: 30–100 GU/mL | [31] |
Queensland, Australia | PCR: 6% | 16–100 GU/mL | [32] |
East Cape Province, South Africa | PCR: 86% | N/A | [33] |
Utrecht, Netherlands | Cul.: 3.9% | N/A | [34] |
Puzih river, Taiwan | PCR: 63.1% Leg:, 7.7% Lp | 18–103 GU/mL | [35] |
Taiwan | PCR: 35.5% samples, 78.9% reservoirs | 0.05–1.6 × 106 cells/mL | [36] |
South Korea | PCR: 100% sites, 14% samples | N/A | [37] |
Antarctica | PCR: 36.8% | N/A | [38] |
Geographic Location | % Positivity | Concentration | Reference |
---|---|---|---|
Savoie, France | Cul: NA | 1–100 CFU/mL | [47] |
USA: AL, FL, ID, IL, IN, MD, MI, MN, MT, NY, NC, OH, OR, TX, VT, WA, USA | PCR: 94.8%, Cul.: 7% | <44–>44 cells/mL | [18] |
US | Cul.: 100% | Water: 0.1–840 CFU/mL. Biofilm: 2–267 CFU/cm2 | [48] |
USA: FL, AZ, TX, IL, MO, MI, NJ. Canada: Ontario, New Brunswick | Cul.: 33.3%. PCR: 24.1%. Combined: 46% (58% water, 34.1% biofilm) | Cul: Water: 0.1–100 CFU/mL, Biofilm: 3–1.2 × 102 CFU/cm2 | [49] |
Central Portugal | Cul.: Water: 58.6%, Well: 83.3%, Biofilm: 100% | Water: 0.05–400 CFU/mL. Biofilm: 24–240 CFU/mL | [50] |
The Netherlands | PCR: Anaerobic Water: 42.9%, Aerobic Water: 88.9% | Anaerobic: <0.2–2.4 cells/mL Aerobic: <0.2–25 cells/mL | [19] |
Taiwan | Cul.: Spring water: 33.3%, Hot tub/spa water: 33.3% | N/A | [51] |
Netherlands | PCR: 60%, Cul.: 0% | PCR: 0.076–0.39 cells/mL | [52] |
Southern Taiwan | Cul. and PCR: 38% | N/A | [40] |
Eastern Poland | Cul.: 6.3%, PCR: 62.5% | N/A | [53] |
Japan | Cul.: 37.2% samples, 72.7% prefectures | 0.1–3 CFU/mL | [54] |
Northern Tunisia | Cul.: 22%. PCR: 70.1% | Cul.: 0.1–8.2 CFU/mL. PCR: 0.1–420 GU/mL | [55] |
Beijing, China | Cul.: 74.4%. PCR: 100%. EMA qPCR: 100% | Cul.: 0.1–216 CFU/mL. PCR: 1.47–1557.75 GU/mL. EMA qPCR: 0.2–301.69 GU/mL | [56] |
Central and Southern Taiwan | PCR: 47.5% Leg, 9.8% Lp | 14–170 GU/mL | [35] |
Kathmandu Valley, Nepal | PCR: 73% | N/A | [57] |
Taiwan | Cul.: 93.8% | Cul.: 72.1–5.7 × 106 CFU/mL | [58] |
Tokyo, Japan | Cul.: N/A | Cul.: N/A | [59] |
Wenzhou, China | PCR: 62.5% | Cul: 0.2–107 CFU/mL | [60] |
Apulia Region, Italy | Cul: 21.2%, PCR: 32.4% | PCR: 0.263–2.87 × 103 GU/mL Cul: 50 CFU/mL (maximum) | [61] |
Geographic Location | % Positivity | Concentration | Reference |
---|---|---|---|
Puerto Rico | DFA: 100% | Leg: 8.67 × 103–5.6 × 104 cells/mL, Lp: 2.1 × 103–3.1 × 104 cells/mL | [64] |
USA | Cul.: 0%, PCR: 30%, DFA: 26.7% | PCR: <103–>103 cells/mL. DFA: 4–28 cells/mL | [65] |
Gulf of Lyons, Mediterranean Sea | PCR: 100% | N/A | [66] |
Itanhaém River, Sao Paolo, Brazil | Cul.: 0%, PCR: 100% | N/A | [20] |
3 coral reef sites; Southern Taiwan | PCR: N/A | N/A | [67] |
Mt Hope Bay, New England, and Great Salt Lake, UT, USA | PCR: 88.6% soil samples | N/A | [68] |
Lake Sabka, Tunisia | Cul.: N/A | N/A | [69] |
Poland | DFA: 100% | Leg: 1.98 × 103–3.2 × 104 cells/mL, Lp: 70–4.85 × 103 cells/mL | [70] |
Hot Lake, WA, USA | PCR: N/A | N/A | [71] |
Varano Lagoon, Adriatic coast. Apulia, Italy | PCR: 50% sampling sites | N/A | [72] |
Suruga Bay, Japan. Ha Long Bay, Vietnam | PCR: ≥30% | N/A | [73] |
Oxford, Maryland, USA | PCR: 100% | >103 GU/mL (maximum) | [74] |
St. Thomas, Virgin Islands | PCR: 10% | N/A | [75] |
Geographic Location | % Positivity | Concentration | Reference |
---|---|---|---|
Central Europe | PCR: 100% platelet materials, 87.5% sampling sets | N/A | [79] |
Central Europe | PCR: 100% | N/A | [80] |
Pinellas County, Florida, USA | PCR: 20% of select sites | N/A | [81] |
Drinking Water Treatment Plant Paris, France. | PCR: 29% samples | N/A | [82] |
Hungary | PCR: 40% (Post chlorination 8%) | N/A | [83] |
Leeward Antilles, Caribbean Sea | PCR: 84% | UV: 0.3–250 CFU/mL, Cl: <0.25–65 CFU/mL | [84] |
Netherlands | Cul.: 0%. PCR: 100% water, 93% biofilm | Water: 0.13–5.7 cells/mL, biofilm: 1.8–390 cells/cm2 | [52] |
Japan | Cul.: 17%, MC-FA 28% | Cul.: 0.1–12 CFU/mL. MC-FA: 0.02–19 micro CFU/mL | [85] |
Eastern Poland | Cul.: 0%. PCR: 7.4% | N/A | [53] |
USA: FL and VA | PCR: Water: 51.7% (4.8% Lp), Biofilm: 34.6% (3.8% Lp) | Leg: 2.3 × 103 GU/mL water, 1.5 × 106 /swab biofilm. Lp: 219.4 GU/mL water, 1.9 × 104 GU/swab biofilm | [39] |
Basra, Iraq | Cul.: WTP: 70%, DS: 100% sites, Water tankers: 31.6%. | WTP: 10–5.6 × 104 CFU/mL, DS: 20–400 CFU/mL | [86] |
Hubei Province, China | PCR: 100% sampling sites | Biofilm: 10–3000 GU/g, Water: 0.316–10 GU/mL | [31] |
USA. 25 states | PCR: 20% samples, 47% taps | 0.04–3.65 × 102 GU/mL | [87] |
South Australia, Australia | PCR: 100% sampling sites | Cl: Leg: 3–1238 GU/mL, Lp: 3–1981 GU/mL. Cla: Leg: 24–316,956 GU/mL, Lp: 3–3176 GU/mL | [88] |
Alcoy, Spain | Cul.: 7.5% water, 21.6% biofilm | <0.04–0.45 CFU/mL | [89] |
Arizona, USA | Cul.: 0%. PCR: Leg: 13.4%, Lp: 7.5% | N/A | [90] |
US and Norway | PCR. biofilm: 0% cla, 43.47% no residual system | Biofilm: 7.8 × 104 GU/ cm2 (maximum) | [91] |
Paris, France | PCR: 52.17% sampling sites | >102 GU/mL (maximum) | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwake, D.O.; Alum, A.; Abbaszadegan, M. Legionella Occurrence beyond Cooling Towers and Premise Plumbing. Microorganisms 2021, 9, 2543. https://doi.org/10.3390/microorganisms9122543
Schwake DO, Alum A, Abbaszadegan M. Legionella Occurrence beyond Cooling Towers and Premise Plumbing. Microorganisms. 2021; 9(12):2543. https://doi.org/10.3390/microorganisms9122543
Chicago/Turabian StyleSchwake, David Otto, Absar Alum, and Morteza Abbaszadegan. 2021. "Legionella Occurrence beyond Cooling Towers and Premise Plumbing" Microorganisms 9, no. 12: 2543. https://doi.org/10.3390/microorganisms9122543
APA StyleSchwake, D. O., Alum, A., & Abbaszadegan, M. (2021). Legionella Occurrence beyond Cooling Towers and Premise Plumbing. Microorganisms, 9(12), 2543. https://doi.org/10.3390/microorganisms9122543