Characterization of the Field Fludioxonil Resistance and Its Molecular Basis in Botrytis cinerea from Shanghai Province in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection, Isolation, Cultivation and Preservation of B. cinerea Isolates
2.2. Fungicides and Sensitivity Test
2.3. Biological Characteristics of Sensitive and Resistant Isolates
2.4. Osmotic Sensitivity Test of B. cinerea Isolates
2.5. Gene Amplification and Protein Sequence Alignment
2.6. Statistical Analysis
3. Results
3.1. The Sensitivity of B. cinerea Isolates to Fludioxonil
3.2. The Sensitivity of HR Isolates to Other Fungicides
3.3. Biological Characteristics of Fludioxonil-Resistant Isolates
3.4. Osmotic Sensitivity of B. cinerea Isolates to Fludioxonil
3.5. Molecular Resistance Mechanisms of B. cinerea Isolates to Fludioxonil
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef] [PubMed]
- Van Kan, J.A.L.; Shaw, M.W.; Grant-Downton, R.T. Botrytis species: Relentless necrotrophic thugs or endophytes gone rogue? Mol. Plant Pathol. 2014, 15, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Van Kan, J.A.L.; Stassen, J.H.M.; Mosbach, A.; Van Der Lee, T.A.J.; Faino, L.; Farmer, A.D.; Papasotiriou, D.G.; Zhou, S.; Seidl, M.F.; Cottam, E.; et al. A gapless genome sequence of the fungus Botrytis cinerea. Mol. Plant Pathol. 2017, 18, 75–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupp, S.; Weber, R.W.; Rieger, D.; Detzel, P.; Hahn, M. Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Front. Microbiol. 2016, 7, 2075. [Google Scholar] [CrossRef] [Green Version]
- Toffolatti, S.L.; Bezza, D.; Bianco, P.A.; Massi, F.; Marcianòa, D.; Maddalena, G.; Russo, G. Characterization of fungicide sensitivity profiles of Botrytis cinerea populations sampled in Lombardy (northern Italy) and implications for resistance management. Pest Manag. Sci. 2020, 76, 2198–2207. [Google Scholar] [CrossRef]
- Leroux, P.; Gredt, M.; Leroch, M.; Walker, A.S. Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Appl. Environ. Microbiol. 2010, 76, 6615–6630. [Google Scholar] [CrossRef] [Green Version]
- Pokorny, A.; Smilanick, J.; Xiao, C.-L.; Farrar, J.J.; Shrestha, A. Determination of fungicide resistance in Botrytis cinerea from strawberry in the central coast region of California. Plant Health Prog. 2016, 17, 30–34. [Google Scholar] [CrossRef]
- Sang, C.; Ren, W.; Wang, J.; Xu, H.; Zhang, Z.; Zhou, M.; Chen, C.; Wang, K. Detection and fitness comparison of target-based highly fludioxonil-resistant isolates of Botrytis cinerea from strawberry and cucumber in China. Pestic. Biochem. Physiol. 2018, 147, 110–118. [Google Scholar] [CrossRef]
- Rosslenbroich, H.-J.; Stuebler, D. Botrytis cinerea—History of chemical control and novel fungicides for its management. Crop Prot. 2000, 19, 557–561. [Google Scholar] [CrossRef]
- Diskin, S.; Sharir, T.; Feygenberg, O.; Maurer, D.; Alkan, N. Fludioxonil—A potential alternative for postharvest disease control in mango fruit. Crop Prot. 2019, 124, 104855. [Google Scholar] [CrossRef]
- Leroux, P. Recent developments in the mode of action of fungicides. Pestic. Sci. 1996, 47, 191–197. [Google Scholar] [CrossRef]
- Fujimura, M.; Ochiai, N.; Ichiishi, A.; Usami, R.; Horikoshi, K.; Yamaguchi, I. Fungicide resistance and osmotic stress sensitivity in os mutants of Neurospora crassa. Pestic. Biochem. Physiol. 2000, 67, 125–133. [Google Scholar] [CrossRef]
- Qiu, J.; Yu, M.; Yin, Q.; Xu, J.; Shi, J. Molecular characterization, fitness, and mycotoxin production of Fusarium asiaticum strains resistant to fludioxonil. Plant Dis. 2018, 102, 1759–1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochiai, N.; Fujimura, M.; Motoyama, T.; Ichiishi, A.; Usami, R.; Horikoshi, K.; Yamaguchi, I. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Manag. Sci. 2001, 57, 437–442. [Google Scholar] [CrossRef]
- Avenot, H.; Simoneau, P.; Iacomi-Vasilescu, B.; Bataillé-Simoneau, N. Characterization of mutations in the two-component histidine kinase gene AbNIK1 from Alternaria brassicicola that confer high dicarboximide and phenylpyrrole resistance. Curr. Genet. 2005, 47, 234–243. [Google Scholar] [CrossRef]
- Ren, W.; Shao, W.; Han, X.; Zhou, M.; Chen, C. Molecular and biochemical characterization of laboratory and field mutants of Botrytis cinerea resistant to fludioxonil. Plant Dis. 2016, 100, 1414–1423. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhou, Y.; Gao, T.; Geng, J.; Dai, Y.; Ren, H.; Lamour, K.; Liu, X. Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. Pestic. Biochem. Physiol. 2019, 156, 123–128. [Google Scholar] [CrossRef]
- Kretschmer, M.; Leroch, M.; Mosbach, A.; Walker, A.S.; Fillinger, S.; Mernke, D.; Schoonbeek, H.J.; Pradier, J.M.; Leroux, P.; De Waard, M.A.; et al. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog. 2009, 5, 1000696. [Google Scholar] [CrossRef]
- Hu, M.J.; Cosseboom, S.; Schnabel, G. AtrB-associated fludioxonil resistance in Botrytis fragariae not linked to mutations in transcription factor mrr1. Phytopathology 2019, 109, 839–846. [Google Scholar] [CrossRef]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The Evolution of fungicide resistance. Adv. Appl. Microbiol. 2015, 90, 29–92. [Google Scholar]
- Yang, J.; Wang, Z.; Lv, G.; Liu, W.; Wang, Y.; Sun, X.; Gao, J. Indirect photodegradation of fludioxonil by hydroxyl radical and singlet oxygen in aquatic environment: Mechanism, photoproducts formation and eco-toxicity assessment. Ecotoxicol. Environ. Saf. 2020, 197, 110644. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Hu, H.; Song, Y.; Gao, Y.; Liu, Q.; Song, P.; Chen, E.; Yu, Y.; Li, D.; Li, C. Biological characteristics and molecular mechanism of fludioxonil resistance in Botrytis cinerea from Henan province of China. Plant Dis. 2020, 104, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Yarden, O.; Katan, T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 1993, 83, 1478–1483. [Google Scholar] [CrossRef]
- Jiang, J.; Ding, L.; Michailides, T.J.; Li, H.; Ma, Z. Molecular characterization of field azoxystrobin-resistant isolates of Botrytis cinerea. Pestic. Biochem. Physiol. 2009, 93, 72–76. [Google Scholar] [CrossRef]
- De Miccolis Angelini, R.M.; Rotolo, C.; Masiello, M.; Gerin, D.; Pollastro, S.; Faretra, F. Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Manag. Sci. 2014, 70, 1785–1796. [Google Scholar] [CrossRef]
- Hu, M.J.; Fernández-Ortuño, D.; Schnabel, G. Monitoring resistance to SDHI fungicides in Botrytis cinerea from strawberry fields. Plant Dis. 2016, 100, 959–965. [Google Scholar] [CrossRef] [Green Version]
- Chapeland, F.; Fritz, R.; Lanen, C.; Gredt, M.; Leroux, P. Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea (Botryotinia fuckeliana). Pestic. Biochem. Physiol. 1999, 64, 85–100. [Google Scholar] [CrossRef]
- Avenot, H.F.; Quattrini, J.; Puckett, R.; Michailides, T.J. Different levels of resistance to cyprodinil and iprodione and lack of fludioxonil resistance in Botrytis cinerea isolates collected from pistachio, grape, and pomegranate fields in California. Crop Prot. 2018, 112, 274–281. [Google Scholar] [CrossRef]
- Leroch, M.; Mernke, D.; Koppenhoefer, D.; Schneider, P.; Mosbach, A.; Doehlemann, G.; Hahn, M. Living colors in the gray mold pathogen Botrytis cinerea: Codon-optimized genes encoding green fluorescent protein and mCherry, which exhibit bright fluorescence. Appl. Environ. Microbiol. 2011, 77, 2887–2897. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Stewart, C.N., Jr.; Via, L.E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 1993, 14, 748–750. [Google Scholar] [PubMed]
- Ma, Z.; Yan, L.; Luo, Y.; Michailides, T.J. Sequence variation in the two-component histidine kinase gene of Botrytis cinerea associated with resistance to dicarboximide fungicides. Pestic. Biochem. Physiol. 2007, 88, 300–306. [Google Scholar] [CrossRef]
- Zhao, H.; Kim, Y.K.; Huang, L.; Xiao, C.L. Resistance to thiabendazole and baseline sensitivity to fludioxonil and pyrimethanil in Botrytis cinerea populations from apple and pear in Washington state. Postharvest Biol. Technol. 2010, 56, 12–18. [Google Scholar] [CrossRef]
- Saito, S.; Wang, F.; Xiao, C.L. Efficacy of natamycin against gray mold of stored mandarin fruit caused by isolates of Botrytis cinerea with multiple fungicide resistance. Plant Dis. 2020, 104, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Hamada, M.S.; Li, N.; Li, G.Q.; Luo, C.X. Multiple fungicide resistance in Botrytis cinerea from greenhouse strawberries in Hubei province, China. Plant Dis. 2017, 101, 601–606. [Google Scholar] [CrossRef] [Green Version]
- Hamada, M.S.; Yin, Y.; Ma, Z. Sensitivity to iprodione, difenoconazole and fludioxonil of Rhizoctonia cerealis isolates collected from wheat in China. Crop Prot. 2011, 30, 1028–1033. [Google Scholar] [CrossRef]
- Brandhorst, T.T.; Klein, B.S. Uncertainty surrounding the mechanism and safety of the post-harvest fungicide fludioxonil. Food Chem. Toxicol. 2019, 123, 561–565. [Google Scholar]
- Han, X.; Zhao, H.; Ren, W.; Lv, C.; Chen, C. Resistance risk assessment for fludioxonil in Bipolaris maydis. Pestic. Biochem. Physiol. 2017, 139, 32–39. [Google Scholar] [CrossRef]
- Gong, C.; Qin, Y.; Qu, J.; Wang, X. Resistance detection and mechanism of strawberry Botrytis cinerea to fludioxonil in Sichuan province. Sci. Agric. Sin. 2018, 51, 4277–4287. [Google Scholar]
- Grabke, A.; Fernández-Ortuño, D.; Amiri, A.; Li, X.; Peres, N.A.; Smith, P.; Schnabel, G. Characterization of iprodione resistance in Botrytis cinerea from strawberry and blackberry. Phytopathology 2014, 104, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Fillinger, S.; Ajouz, S.; Nicot, P.C.; Leroux, P.; Bardin, M. Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. PLoS ONE 2012, 7, e42520. [Google Scholar] [CrossRef]
- Li, H.X.; Xiao, C.L. Characterization of fludioxonil-resistant and pyrimethanil-resistant phenotypes of Penicillium expansum from apple. Phytopathology 2008, 98, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Kilani, J.; Fillinger, S. Phenylpyrroles: 30 years, two molecules and (nearly) no resistance. Front. Microbiol. 2016, 7, 2014. [Google Scholar] [CrossRef] [Green Version]
- Colclough, A.; Corander, J.; Sheppard, S.K.; Bayliss, S.C.; Vos, M. Patterns of cross-resistance and collateral sensitivity between clinical antibiotics and natural antimicrobials. Evol. Appl. 2019, 12, 878–887. [Google Scholar] [CrossRef]
- Catlett, N.L.; Yoder, O.C.; Turgeon, B.G. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot. Cell 2003, 2, 1151–1161. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, T.; Schoonbeek, H.; De Waard, M.A. The ABC Transporter BcatrB from Botrytis cinerea is a determinant of the activity of the phenylpyrrole fungicide fludioxonil. Pest Manag. Sci. 2001, 57, 393–402. [Google Scholar] [CrossRef]
- Bohnert, S.; Heck, L.; Gruber, C.; Neumann, H.; Distler, U.; Tenzer, S.; Yemelin, A.; Thines, E.; Jacob, S. Fungicide resistance toward fludioxonil conferred by overexpression of the phosphatase gene MoPTP2 in Magnaporthe oryzae. Mol. Microbiol. 2019, 111, 662–677. [Google Scholar]
Chemical Class | Fungicide | Mode of Action a |
---|---|---|
Benzimidazoles | Carbendazim | Inhibition of β-tubuline assembly in mitosis |
Pyridine-carboxamides | Boscalid | Inhibition of complex II: succinate-dehydrogenase in respiration |
Pyridinyl-ethyl-benzamides | Fluopyram | Inhibition of complex II: succinate-dehydrogenase in respiration |
Strobilurins | Azoxystrobin | Inhibition of complex III: cytochrome bc1 (ubiquinol oxidase) at quinone-outside (Qo) site in respiration |
Anilinopyrimidines | Pyrimethanil | Inhibition of methionine biosynthesis (proposed) |
Triazoles | Difenoconazole | Inhibition of C14-demethylase in sterol biosynthesis |
Isolate | Resistance to Fungicides a | Location | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Flud | Car | Azox | Bos | Fluop | Dif | Pyr | Cyp | Ipr | ||
SH-S205 | HR | S | S | S | S | S | S | R | na | Chongming |
SH-537 | MR | S | S | S | S | R | S | na | na | Fengxian |
SH-225 | HR | S | S | S | S | S | R | S | R | Jinshan |
SH-562 | MR | S | S | S | S | S | R | na | R | Fengxian |
SH-458 | MR | S | S | R | S | S | R | S | na | Fengxian |
SH-338 | MR | S | S | R | S | S | R | S | R | Jinshan |
SH-251 | HR | S | R | S | S | S | R | S | R | Jinshan |
SH-234 | HR | S | R | S | S | S | R | S | R | Jinshan |
SH-330 | HR | S | S | S | S | R | R | S | R | Jinshan |
SH-595 | MR | S | S | S | S | R | R | S | R | Songjiang |
SH-719 | HR | R | S | S | S | S | R | na | na | Fengxian |
SH-725 | HR | R | S | S | S | S | R | na | na | Fengxian |
SH-728 | MR | R | R | S | R | S | S | na | na | Pudong New Area |
SH-233 | HR | S | R | R | R | S | S | S | na | Jinshan |
SH-473 | MR | R | S | R | S | S | R | S | S | Fengxian |
SH-227 | HR | R | S | R | S | S | R | S | R | Jinshan |
SH-332 | HR | S | S | R | S | R | R | S | R | Jinshan |
SH-237 | HR | S | R | R | S | S | R | S | R | Jinshan |
SH-440 | HR | S | R | R | S | S | R | S | na | Fengxian |
SH-437 | HR | S | S | R | R | S | R | S | S | Fengxian |
SH-631 | MR | S | S | R | R | S | R | S | R | Songjiang |
SH-714 | MR | R | R | S | S | S | R | na | na | Jinshan |
SH-702 | HR | R | R | S | S | S | R | na | na | Pudong New Area |
SH-S143 | HR | R | S | S | R | S | R | S | S | Chongming |
SH-S146 | HR | R | S | S | R | S | R | S | R | Chongming |
SH-335 | MR | S | R | R | R | S | S | S | R | Jinshan |
SH-309 | MR | S | R | R | R | S | R | S | R | Jinshan |
SH-727 | HR | R | R | S | S | R | R | na | na | Pudong New Area |
SH-S148 | MR | R | S | R | R | S | R | R | R | Chongming |
SH-S62 | HR | R | R | S | R | S | R | S | R | Pudong New Area |
SH-641 | HR | S | S | R | R | R | R | S | R | Songjiang |
Isolate | Resistance to Fungicides | Colony Diameter (mm) | Sporulation (cm−2) | Germination (%) | Lesion Area (mm2) | CFI (×107) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flud | Car | Azox | Bos | Fluop | Dif | Pyr | Cyp | Ipr | ||||||
SH-223 | S | S | S | S | S | S | S | na | na | 23.17 cd | 144.17 a | 91.67 a | 775.67 a | 23.75 |
SH-S94 | S | S | S | S | S | S | S | na | na | 24.17 c | 130.17 b | 97.33 a | 575.33 c | 17.62 |
SH-S172 | S | S | S | S | S | S | S | na | na | 23.33 c | 148.50 a | 92.33 a | 509.00 d | 16.28 |
SH-S205 | HR | S | S | S | S | S | S | R | na | 26.33 b | 77.00 cd | 74.67 b | 727.67 b | 11.02 |
SH-330 | HR | S | S | S | S | R | R | S | R | 22.17 d | 34.50 e | 75.67 b | 527.33 d | 3.05 |
SH-227 | HR | R | S | R | S | S | R | S | R | 29.00 a | 85.33 c | 69.67 b | 778.00 a | 13.41 |
SH-309 | MR | S | R | R | R | S | R | S | R | 21.00 e | 68.00 d | 73.33 b | 455.33 e | 4.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Fang, Y.; Imran, M.; Hu, Z.; Zhang, S.; Huang, Z.; Liu, X. Characterization of the Field Fludioxonil Resistance and Its Molecular Basis in Botrytis cinerea from Shanghai Province in China. Microorganisms 2021, 9, 266. https://doi.org/10.3390/microorganisms9020266
Wang W, Fang Y, Imran M, Hu Z, Zhang S, Huang Z, Liu X. Characterization of the Field Fludioxonil Resistance and Its Molecular Basis in Botrytis cinerea from Shanghai Province in China. Microorganisms. 2021; 9(2):266. https://doi.org/10.3390/microorganisms9020266
Chicago/Turabian StyleWang, Weizhen, Yuan Fang, Muhammad Imran, Zhihong Hu, Sicong Zhang, Zhongqiao Huang, and Xili Liu. 2021. "Characterization of the Field Fludioxonil Resistance and Its Molecular Basis in Botrytis cinerea from Shanghai Province in China" Microorganisms 9, no. 2: 266. https://doi.org/10.3390/microorganisms9020266
APA StyleWang, W., Fang, Y., Imran, M., Hu, Z., Zhang, S., Huang, Z., & Liu, X. (2021). Characterization of the Field Fludioxonil Resistance and Its Molecular Basis in Botrytis cinerea from Shanghai Province in China. Microorganisms, 9(2), 266. https://doi.org/10.3390/microorganisms9020266