Changes of the Proteome and Acetylome during Transition into the Stationary Phase in the Organohalide-Respiring Dehalococcoides mccartyi Strain CBDB1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Conditions and Experimental Design
2.2. Nucleic Acid Extraction
2.3. Reverse Transcription and Quantitative PCR (RT-qPCR).
2.4. Cell Harvest for Proteomic Analyses
2.5. Peptide Preparation from Lysed Cells
2.6. Immunoaffinity Enrichment of Lysine-Acetylated Peptides
2.7. Liquid Chromatography-Tandem Mass Spectrometry
2.8. Data Analysis
3. Results and Discussion
3.1. Proteome and Acetylome in Different Growth Phases
3.2. The Organohalide Respiration Complex
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schubert, T.; Adrian, L.; Sawers, R.G.; Diekert, G. Organohalide respiratory chains: Composition, topology and key enzymes. FEMS Microb. Ecol. 2018, 94, fiy035. [Google Scholar] [CrossRef] [PubMed]
- Seidel, K.; Kuhnert, J.; Adrian, L. The complexome of Dehalococcoides mccartyi reveals its organohalide respiration-complex is modular. Front. Microbiol. 2018, 9, 1130. [Google Scholar] [CrossRef]
- Kublik, A.; Deobald, D.; Hartwig, S.; Schiffmann, C.L.; Andrades, A.; von Bergen, M.; Sawers, R.G.; Adrian, L. Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement. Environ. Microbiol. 2016, 18, 3044–3056. [Google Scholar] [CrossRef] [PubMed]
- Zinder, S. The genus Dehalococcoides. In Organohalide-Respiring Bacteria; Adrian, L., Löffler, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 107–136. [Google Scholar]
- Seshadri, R.; Adrian, L.; Fouts, D.E.; Eisen, J.A.; Phillippy, A.M.; Methe, B.A.; Ward, N.L.; Nelson, W.C.; Deboy, R.T.; Khouri, H.M.; et al. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 2005, 307, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Adrian, L.; Szewzyk, U.; Wecke, J.; Görisch, H. Bacterial dehalorespiration with chlorinated benzenes. Nature 2000, 408, 580–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hölscher, T.; Lisec, J.; Baani, M.; Duan, T.H.; Adrian, L. Bacterial cultures preferentially removing singly flanked chlorine substituents from chlorobenzenes. Environ. Sci. Technol. 2010, 44, 8936–8942. [Google Scholar] [CrossRef]
- Wagner, A.; Cooper, M.; Ferdi, S.; Seifert, J.; Adrian, L. Growth of Dehalococcoides mccartyi strain CBDB1 by reductive dehalogenation of brominated benzenes to benzene. Environ. Sci. Technol. 2012, 46, 8960–8968. [Google Scholar] [CrossRef]
- Bunge, M.; Adrian, L.; Kraus, A.; Opel, M.; Lorenz, W.G.; Andreesen, J.R.; Görisch, H.; Lechner, U. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 2003, 421, 357–360. [Google Scholar] [CrossRef]
- Adrian, L.; Dudkova, V.; Demnerova, K.; Bedard, D.L. Dehalococcoides sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl. Environ. Microbiol. 2009, 75, 4516–4524. [Google Scholar] [CrossRef] [Green Version]
- Adrian, L.; Hansen, S.K.; Fung, J.M.; Görisch, H.; Zinder, S.H. Growth of Dehalococcoides strains with chlorophenols as electron acceptors. Environ. Sci. Technol. 2007, 41, 2318–2323. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Kublik, A.; Weidauer, C.; Seiwert, B.; Adrian, L. Reductive dehalogenation of oligocyclic phenolic bromoaromatics by Dehalococcoides mccartyi strain CBDB1. Environ. Sci. Technol. 2015, 49, 8497–8505. [Google Scholar] [CrossRef]
- Al-Fathi, H.; Koch, M.; Lorenz, W.G.; Lechner, U. Anaerobic degradation of 2,4,5-trichlorophenoxyacetic acid by enrichment cultures from freshwater sediments. Environ. Sci. Pollut. Res. Int. 2019, 26, 34459–34467. [Google Scholar] [CrossRef] [PubMed]
- Löffler, F.E.; Yan, J.; Ritalahti, K.M.; Adrian, L.; Edwards, E.A.; Konstantinidis, K.T.; Müller, J.A.; Fullerton, H.; Zinder, S.H.; Spormann, A.M. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 2013, 63, 625–635. [Google Scholar] [PubMed] [Green Version]
- Major, D.W.; McMaster, M.L.; Cox, E.E.; Edwards, E.A.; Dworatzek, S.M.; Hendrickson, E.R.; Starr, M.G.; Payne, J.A.; Buonamici, L.W. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ. Sci. Technol. 2002, 36, 5106–5116. [Google Scholar] [CrossRef]
- Adrian, L.; Rahnenfuhrer, J.; Gobom, J.; Hölscher, T. Identification of a chlorobenzene reductive dehalogenase in Dehalococcoides sp. strain CBDB1. Appl. Environ. Microbiol. 2007, 73, 7717–7724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiffmann, C.L.; Jehmlich, N.; Otto, W.; Hansen, R.; Nielsen, P.H.; Adrian, L.; Seifert, J.; von Bergen, M. Proteome profile and proteogenomics of the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 grown on hexachlorobenzene as electron acceptor. J. Proteom. 2014, 98, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.; Adrian, L.; Kleinsteuber, S.; Andreesen, J.R.; Lechner, U. Transcription analysis of genes encoding homologues of reductive dehalogenases in “Dehalococcoides” sp. strain CBDB1 by using terminal restriction fragment length polymorphism and quantitative PCR. Appl. Environ. Microbiol. 2009, 75, 1876–1884. [Google Scholar] [CrossRef] [Green Version]
- Rowe, A.R.; Mansfeldt, C.B.; Heavner, G.L.; Richardson, R.E. Relating mRNA and protein biomarker levels in a Dehalococcoides and Methanospirillum-containing community. Appl. Microbiol. Biotechnol. 2015, 99, 2313–2327. [Google Scholar] [CrossRef]
- Carabetta, V.J.; Cristea, I.M. Regulation, function, and detection of protein acetylation in bacteria. J. Bacteriol. 2017, 199, e00107-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, B.J.; Kim, J.A.; Moon, J.H.; Ryu, S.E.; Pan, J.G. The diversity of lysine-acetylated proteins in Escherichia coli. J. Microbiol. Biotechnol. 2008, 18, 1529–1536. [Google Scholar]
- Christensen, D.G.; Baumgartner, J.T.; Xie, X.; Jew, K.M.; Basisty, N.; Schilling, B.; Kuhn, M.L.; Wolfe, A.J. Mechanisms, detection, and relevance of protein acetylation in Prokaryotes. mBio 2019, 10, e02708-18. [Google Scholar] [CrossRef] [Green Version]
- Christensen, D.G.; Xie, X.; Basisty, N.; Byrnes, J.; McSweeney, S.; Schilling, B.; Wolfe, A.J. Post-translational protein acetylation: An elegant mechanism for bacteria to dynamically regulate metabolic functions. Front. Microbiol. 2019, 10, 1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Türkowsky, D.; Esken, J.; Goris, T.; Schubert, T.; Diekert, G.; Jehmlich, N.; von Bergen, M. A retentive memory of tetrachloroethene respiration in Sulfurospirillum halorespirans-involved proteins and a possible link to acetylation of a two-component regulatory system. J. Proteom. 2018, 181, 36–46. [Google Scholar] [CrossRef]
- Holliger, C.; Schraa, G.; Stams, A.J.; Zehnder, A.J. Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene. Appl. Environ. Microbiol. 1992, 58, 1636–1644. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.; Gu, H.; Zhou, J.; Mulhern, D.; Wang, Y.; Lee, K.A.; Yang, V.; Aguiar, M.; Kornhauser, J.; Jia, X.; et al. Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol. Cell. Proteom. 2014, 13, 372–387. [Google Scholar] [CrossRef] [Green Version]
- Vizcaino, J.A.; Cote, R.G.; Csordas, A.; Dianes, J.A.; Fabregat, A.; Foster, J.M.; Griss, J.; Alpi, E.; Birim, M.; Contell, J.; et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: Status in 2013. Nucleic Acids Res. 2013, 41, D1063–D1069. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Vu, V.Q. ggbiplot: A ggplot2 Based Biplot. R package Version 0.55. 2011. Available online: http://github.com/vqv/ggbiplot (accessed on 4 January 2020).
- Liu, F.; Yang, M.; Wang, X.; Yang, S.; Gu, J.; Zhou, J.; Zhang, X.E.; Deng, J.; Ge, F. Acetylome analysis reveals diverse functions of lysine acetylation in Mycobacterium tuberculosis. Mol. Cell. Proteom. 2014, 13, 3352–3366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.Y.; Xu, Z.; Liu, X.; Tan, M.; Ye, B.C. Protein acetylation and butyrylation regulate the phenotype and metabolic shifts of the endospore-forming Clostridium acetobutylicum. Mol. Cell. Proteom. 2018, 17, 1156–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bontemps-Gallo, S.; Gaviard, C.; Richards, C.L.; Kentache, T.; Raffel, S.J.; Lawrence, K.A.; Schindler, J.C.; Lovelace, J.; Dulebohn, D.P.; Cluss, R.G.; et al. Global profiling of lysine acetylation in Borrelia burgdorferi B31 reveals its role in central metabolism. Front. Microbiol. 2018, 9, 2036. [Google Scholar] [CrossRef]
- Zhang, J.; Sprung, R.; Pei, J.; Tan, X.; Kim, S.; Zhu, H.; Liu, C.F.; Grishin, N.V.; Zhao, Y. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol. Cell. Proteom. 2009, 8, 215–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhang, Y.; Yang, C.; Xiong, H.; Lin, Y.; Yao, J.; Li, H.; Xie, L.; Zhao, W.; Yao, Y.; et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010, 327, 1004–1007. [Google Scholar] [CrossRef] [Green Version]
- Nakayasu, E.S.; Burnet, M.C.; Walukiewicz, H.E.; Wilkins, C.S.; Shukla, A.K.; Brooks, S.; Plutz, M.J.; Lee, B.D.; Schilling, B.; Wolfe, A.J.; et al. Ancient regulatory role of lysine acetylation in central metabolism. mBio 2017, 8, e01894-17. [Google Scholar] [CrossRef] [Green Version]
- De Diego Puente, T.; Gallego-Jara, J.; Castano-Cerezo, S.; Sanchez, V.B.; Espín, V.F.; de la Torre, J.G.; Rubio, A.M.; Díaz, M.C. The protein acetyltransferase PatZ from Escherichia coli is regulated by autoacetylation-induced oligomerization. J. Biol. Chem. 2015, 290, 23077–23093. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, W.Q.; Yi, S.; Bill, M.; Brisson, V.L.; Feng, X.; Men, Y.; Conrad, M.E.; Tang, Y.J.; Alvarez-Cohen, L. Incomplete Wood-Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi. Proc. Natl. Acad. Sci. USA 2014, 111, 6419–6424. [Google Scholar] [CrossRef] [Green Version]
- Starai, V.J.; Celic, I.; Cole, R.N.; Boeke, J.D.; Escalante-Semerena, J.C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 2002, 298, 2390–2392. [Google Scholar] [CrossRef] [PubMed]
- Borukhov, S.; Lee, J.; Laptenko, O. Bacterial transcription elongation factors: New insights into molecular mechanism of action. Mol. Microbiol. 2005, 55, 1315–1324. [Google Scholar] [CrossRef]
- Kube, M.; Beck, A.; Zinder, S.H.; Kuhl, H.; Reinhardt, R.; Adrian, L. Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat. Biotechnol. 2005, 23, 1269–1273. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, S.; Thomas, C.; Krumova, N.; Quitzke, V.; Türkowsky, D.; Jehmlich, N.; Adrian, L.; Sawers, R.G. Heterologous complementation studies in Escherichia coli with the Hyp accessory protein machinery from Chloroflexi provide insight into [NiFe]-hydrogenase large subunit recognition by the HypC protein family. Microbiology 2015, 161, 2204–2219. [Google Scholar] [CrossRef]
- Brüser, T.; Sanders, C. An alternative model of the twin arginine translocation system. Microbiol. Res. 2003, 158, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Hamsanathan, S.; Musser, S.M. The Tat protein transport system: Intriguing questions and conundrums. FEMS Microbiol. Lett. 2018, 365, fny123. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhao, E.; Li, H.; Xia, B.; Jin, C. Solution NMR structure of the TatA component of the twin-arginine protein transport system from gram-positive bacterium Bacillus subtilis. J. Am. Chem. Soc. 2010, 132, 15942–15944. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Heidrich, E.S.; Mehner-Breitfeld, D.; Brüser, T. The TatA component of the twin-arginine translocation system locally weakens the cytoplasmic membrane of Escherichia coli upon protein substrate binding. J. Biol. Chem. 2018, 293, 7592–7605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Türkowsky, D.; Jehmlich, N.; Diekert, G.; Adrian, L.; von Bergen, M.; Goris, T. An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS Microbiol. Ecol. 2018, 94, fiy013. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, S.; Dragomirova, N.; Kublik, A.; Türkowsky, D.; von Bergen, M.; Lechner, U.; Adrian, L.; Sawers, R.G. A H2-oxidizing, 1,2,3-trichlorobenzene-reducing multienzyme complex isolated from the obligately organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1. Environ. Microbiol. Rep. 2017, 9, 618–625. [Google Scholar] [CrossRef] [PubMed]
Protein Description | Locus Tag | Pathway | Acetylated Lysine | Estimated log10 Acetylation Abundance Ratio | |
---|---|---|---|---|---|
Exponential Phase | Stationary Phase | ||||
Acetyltransferase, GNAT family | cbdbA937 | No pathway assigned | K114 | id. | 0.84 |
Acetyltransferase, GNAT family | cbdbA951 | No pathway assigned | K2 | −1.02 | n.d. |
2-C-methyl-D-erythritol 4-phosphate cytidylyl-transferase | cbdbA74 | Metabolism of terpenoids and polyketides | K138 | n.d. | −0.07 |
GTP cyclohydrolase 1 | cbdbA1120 | Metabolism of cofactors and vitamins | K104 | id. | −0.26 |
Twin-arginine translocation protein TatA | cbdbA1694 | Folding, sorting, and degradation; membrane transport | K66 | n.d. | −0.66 |
Transcription elongation factor GreA | cbdbA743 | Transcription | K17 | −1.56 | −0.76 |
Pyruvate-ferredoxin oxidoreductase, gamma-subunit | cbdbB16 | Carbohydrate metabolism; energy metabolism; xenobiotics biodegradation and metabolism | K166 | id. | −0.95 |
Protein Description | Locus Tag | Pathway | No. of Detected Acetylated Peptides | Acetylated Lysines within Quantifiable Peptides | Estimated log10 Acetylation Abundance Ratio | |
---|---|---|---|---|---|---|
Exponential Phase | Stationary Phase | |||||
60 kDa chaperonin GroEL | CbdbA1393 | Folding, sorting, and degradation; translation; transport and catabolism | 11 | K326 or K327 K121 K10 K116 K465 K362 | n.d. n.d. id. −3.13 n.d. −2.63 | −2.91 −2.45 −2.35 −2.49 −2.89 id. |
10 kDa chaperonin GroES | CbdbA1392 | Folding, sorting, and degradation; translation | 3 | K66 K52 or K55 K19 | n.d. n.d. n.d. | −2.29 −2.53 −2.78 |
Elongation factor TU | CbdbA960 | Translation; transport and catabolism | 10 | K57 K377 K219 | −3.46 id. id. | −2.84 −2.67 −2.61 |
Uncharacterized protein | CbdbA727 | No pathway assigned | 5 | K100 K97 or K100 | n.d. n.d. | −2.48 −2.50 |
Conserved domain protein | CbdbA1024 | No pathway assigned | 5 | K184 K132 K18 K425 | −2.26 −2.51 n.d. −2.72 | −1.59 id. −2.04 id. |
Myo-inositol-1-phosphate synthase family protein | CbdbA943 | Biosynthesis of other secondary metabolites; carbohydrate metabolism | 3 | K110 K240 | n.d. n.d. | −1.61 −2.44 |
Phospho-2-dehydro-3-deoxyheptonate aldolase | CbdbA432 | Amino acid metabolism | 4 | K98 K26 | n.d. n.d. | −2.17 −2.67 |
Acetyl-CoA synthetase | CbdbA1126 | Carbohydrate metabolism; energy metabolism; lipid metabolism | 3 | K573 K518 K7 | n.d. n.d. n.d. | −1.95 −2.46 −1.77 |
Conserved domain protein | CbdbA688 | No pathway assigned | 4 | K82 K65 | id. −2.51 | −1.99 id. |
GTPase domain protein | CbdbA568 | No pathway assigned | 3 | K367 K256 | −2.64 n.d. | id. −1.96 |
Glyceraldehyde-3-phosphate dehydrogenase, type I | CbdbA569 | Carbohydrate metabolism; energy metabolism; signal transduction; transport and catabolism | 3 | K334 or K335 K195 | n.d. n.d. | −1.46 −1.82 |
30S ribosomal protein S18 | CbdbA1018 | Translation | 2 | K114 K131 or K135 | id. n.d. | −1.67 −2.17 |
Inorganic pyrophosphatase | CbdbA309 | Energy metabolism | 2 | K30 K205, K208 or K209 | n.d. n.d. | −1.53 −1.81 |
NifU protein, homolog | CbdbA1730 | No pathway assigned | 3 | K1 or K4 N-Terminus | −2.58 −1.46 | n.d. −1.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greiner-Haas, F.; Bergen, M.v.; Sawers, G.; Lechner, U.; Türkowsky, D. Changes of the Proteome and Acetylome during Transition into the Stationary Phase in the Organohalide-Respiring Dehalococcoides mccartyi Strain CBDB1. Microorganisms 2021, 9, 365. https://doi.org/10.3390/microorganisms9020365
Greiner-Haas F, Bergen Mv, Sawers G, Lechner U, Türkowsky D. Changes of the Proteome and Acetylome during Transition into the Stationary Phase in the Organohalide-Respiring Dehalococcoides mccartyi Strain CBDB1. Microorganisms. 2021; 9(2):365. https://doi.org/10.3390/microorganisms9020365
Chicago/Turabian StyleGreiner-Haas, Franziska, Martin von Bergen, Gary Sawers, Ute Lechner, and Dominique Türkowsky. 2021. "Changes of the Proteome and Acetylome during Transition into the Stationary Phase in the Organohalide-Respiring Dehalococcoides mccartyi Strain CBDB1" Microorganisms 9, no. 2: 365. https://doi.org/10.3390/microorganisms9020365
APA StyleGreiner-Haas, F., Bergen, M. v., Sawers, G., Lechner, U., & Türkowsky, D. (2021). Changes of the Proteome and Acetylome during Transition into the Stationary Phase in the Organohalide-Respiring Dehalococcoides mccartyi Strain CBDB1. Microorganisms, 9(2), 365. https://doi.org/10.3390/microorganisms9020365